NUMBER-THEORY EXERCISES, IV

DAVID PIERCE

Exercise 1. Prove that the following are equivalent:
(a) Every even integer greater than 2 is the sum of two primes.
(b) Every integer greater than 5 is the sum of three primes.

Exercise 2. Infinitely many primes are congruent to -1 modulo 6 .
Exercise 3. Find all n such that
(a) $n!$ is square;
(b) $n!+(n+1)!+(n+2)$! is square.

Exercise 4. Determine whether $a^{2} \equiv b^{2}(\bmod n) \Longrightarrow a \equiv b(\bmod n)$.
Exercise 5. Compute $\sum_{k=1}^{1001} k^{365}(\bmod 5)$.
Exercise 6. $39 \mid 53^{103}+103^{53}$.
Exercise 7. Solve $6^{n+2}+7^{2 n+1} \equiv x(\bmod 43)$.
Exercise 8. Determine whether $a \equiv b(\bmod n) \Longrightarrow c^{a} \equiv c^{b}(\bmod n)$.
Exercise 9. Determine r such that $a \equiv b(\bmod r)$ whenever $a \equiv b(\bmod m)$ and $a \equiv b(\bmod n)$.

Exercise 10. Solve the system

$$
\left\{\begin{array}{l}
x \equiv 1 \quad(\bmod 17) \\
x \equiv 8 \quad(\bmod 19) \\
x \equiv 16 \quad(\bmod 21)
\end{array}\right.
$$

Exercise 11. The system

$$
\left\{\begin{array}{lc}
x \equiv a & \bmod n \\
x \equiv b & \bmod m
\end{array}\right.
$$

has a solution if and only if $\operatorname{gcd}(n, m) \mid b-a$.

Mathematics Dept, Middle East Technical University, Ankara 06531, Turkey
E-mail address: dpierce@metu.edu.tr
URL: http://www.math.metu.edu.tr/~dpierce

