NUMBER-THEORY EXERCISES, II

DAVID PIERCE

These exercises are for Elementary Number Theory I (Math 365 at METU). In them, if a statement is given that is not a definition, then the exercise is to prove the statement.

A first set of exercises is the proofs not given in [2]. The exercises below are mostly inspired by exercises in [1, Ch. 2].

Recall that the triangular numbers compose a sequence $\left(t_{n}: n \in \mathbb{N}\right)$, defined recursively by $t_{0}=0$ and $t_{n+1}=t_{n}+n+1$.
Exercise 1. An integer n is a triangular number if and only if $8 n+1$ is a square number.

Exercise 2.

(a) If n is triangular, then so is $9 n+1$.
(b) Find infinitely many pairs (k, ℓ) such that, if n is triangular, then so is $k n+\ell$.

Exercise 3. If $a=n(n+3) / 2$, then $t_{a}+t_{n+1}=t_{a+1}$.
Exercise 4. The pentagonal numbers are $1,5,12, \ldots$ call these $p_{1}, p_{2}, \& c$.
(a) Give a recursive definition of these numbers.
(b) Find a closed expression for p_{n} (that is, an expression not involving p_{n-1}, $p_{n-2}, \& c$.).
(c) Find such an expression involving triangular numbers and square numbers.

Exercise 5.

(a) $7 \mid 2^{3 n}+6$.
(b) Given a in \mathbb{Z} and k in \mathbb{N}, find integers b and c such that $b \mid a^{k n}+c$ for all n in \mathbb{N}.

Exercise 6. $\operatorname{gcd}(a, a+1)=1$.
Exercise 7. $(k!)^{n} \mid(k n)$! for all k and n in \mathbb{N}.
Exercise 8. If a and b are co-prime, and a and c are co-prime, then a and $b c$ are co-prime.
Exercise 9. Let $\operatorname{gcd}(204,391)=n$.
(a) Compute n.
(b) Find a solution of $204 x+391 y=n$.

Exercise 10. Let $\operatorname{gcd}(a, b)=n$.
(a) If $k \mid \ell$ and $\ell \mid 2 k$, then $|\ell| \in\{|k|,|2 k|\}$.
(b) Show $\operatorname{gcd}(a+b, a-b) \in\{n, 2 n\}$.
(c) Find an example for each possibility.
(d) $\operatorname{gcd}(2 a+3 b, 3 a+4 b)=n$.
(e) Solve $\operatorname{gcd}(a x+b y, a z+b w)=n$.

Exercise 11. $\operatorname{gcd}(a, b) \mid \operatorname{lcm}(a, b)$.

Exercise 12. When are $\operatorname{gcd}(a, b)$ and $\operatorname{lcm}(a, b)$ the same?
Exercise 13. The binary operation $(x, y) \mapsto \operatorname{gcd}(x, y)$ on $\mathbb{N} \backslash\{0\}$ is commutative and associative.

Exercise 14. The co-prime relation on $\mathbb{N} \backslash\{0\}$, namely

$$
\{(x, y) \in \mathbb{N} \backslash\{0\}: \operatorname{gcd}(x, y)=1\}
$$

-is it reflexive? irreflexive? symmetric? anti-symmetric? transitive?
Exercise 15. Give complete solutions, or show that they do not exist, for:
(a) $14 x-56 y=34$;
(b) $10 x+11 y=12$.

Exercise 16. I have some 1-YTL pieces and some 50- and $25-\mathrm{YKr}$ pieces: 16 coins in all. They make 6 YTL. How many coins of each denomination have I got?

References

[1] David M. Burton. Elementary Number Theory. McGraw-Hill, Boston, sixth edition, 2007.
[2] David Pierce. Foundations of number-theory. http://www.math.metu.edu.tr/~dpierce/ courses/365/. 4 pp.

Mathematics Dept, Middle East Technical University, Ankara 06531, Turkey E-mail address: dpierce@metu.edu.tr
URL: http://www.math.metu.edu.tr/~dpierce

