# NUMBER-THEORY EXERCISES, XI 

DAVID PIERCE

Exercise 1. Compute the Legendre symbols (91/167) and (111/941).
Exercise 2. Find ( $5 / p$ ) in terms of the class of $p$ modulo 5.
Exercise 3. Find ( $7 / p$ ) in terms of the class of $p$ modulo 28.
Exercise 4. The $n$th Fermat number, or $F_{n}$, is $2^{2^{n}}+1$. A Fermat prime is a Fermat number that is prime.
(a) Show that every prime number of the form $2^{m}+1$ is a Fermat prime.
(b) Show $4^{k} \equiv 4(\bmod 12)$ for all positive $k$.
(c) If $p$ is a Fermat prime, show $(3 / p)=-1$.
(d) Show that 3 is a primitive root of every Fermat prime.
(e) Find a prime $p$ less than 100 such that $(3 / p)=-1$, but 3 is not a primitive root of $p$.
Exercise 5. Solve the congruence $x^{2} \equiv 11(\bmod 35)$.
Exercise 6. We have so far defined the Legendre symbol $(a / p)$ only when $p \nmid a$; but if $p \mid a$, then we can define $(a / p)=0$. We can now define $(a / n)$ for arbitrary $a$ and $n$ : the result is the Jacobi symbol, and the definition is

$$
\left(\frac{a}{n}\right)=\prod_{p}\left(\frac{a}{p}\right)^{k(p)}, \quad \text { where } \quad n=\prod_{p} p^{k(p)}
$$

(a) Prove that the function $x \mapsto(x / n)$ on $\mathbb{Z}$ is completely multiplicative in the sense that $(a b / n)=(a / n) \cdot(b / n)$ for all $a$ and $b$ (not necessarily co-prime).
(b) If $\operatorname{gcd}(a, n)=1$, and the congruence $x^{2} \equiv a(\bmod n)$ is soluble, show $(a / n)=1$.
(c) Find an example where $(a / n)=1$, and $\operatorname{gcd}(a, n)=1$, but $x^{2} \equiv a$ $(\bmod n)$ is insoluble.
(d) If $m$ and $n$ are co-prime, show

$$
\left(\frac{m}{n}\right) \cdot\left(\frac{n}{m}\right)=(-1)^{k}, \quad \text { where } \quad k=\frac{m-1}{2} \cdot \frac{n-1}{2} .
$$

Mathematics Dept, Middle East Tech. Univ., Ankara 06531, Turkey E-mail address: dpierce@metu.edu.tr
URL: http://www.math.metu.edu.tr/~dpierce/

[^0]
[^0]:    Date: December 18, 2007.

