NUMBER-THEORY EXERCISES, XI

DAVID PIERCE

Exercise 1. Compute the Legendre symbols (91/167) and (111/941).

Exercise 2. Find (5/p) in terms of the class of p modulo 5.

Exercise 3. Find (7/p) in terms of the class of p modulo 28.

Exercise 4. The *n*th **Fermat number**, or F_n , is $2^{2^n} + 1$. A **Fermat prime** is a Fermat number that is prime.

- (a) Show that every prime number of the form $2^m + 1$ is a Fermat prime.
- (b) Show $4^k \equiv 4 \pmod{12}$ for all positive k.
- (c) If p is a Fermat prime, show (3/p) = -1.
- (d) Show that 3 is a primitive root of every Fermat prime.
- (e) Find a prime p less than 100 such that (3/p) = -1, but 3 is not a primitive root of p.

Exercise 5. Solve the congruence $x^2 \equiv 11 \pmod{35}$.

Exercise 6. We have so far defined the Legendre symbol (a/p) only when $p \nmid a$; but if $p \mid a$, then we can define (a/p) = 0. We can now define (a/n) for arbitrary a and n: the result is the **Jacobi symbol**, and the definition is

$$\left(\frac{a}{n}\right) = \prod_{p} \left(\frac{a}{p}\right)^{k(p)}, \quad \text{where} \quad n = \prod_{p} p^{k(p)}.$$

- (a) Prove that the function $x \mapsto (x/n)$ on \mathbb{Z} is **completely multiplicative** in the sense that $(ab/n) = (a/n) \cdot (b/n)$ for all a and b (not necessarily co-prime).
- (b) If gcd(a, n) = 1, and the congruence $x^2 \equiv a \pmod{n}$ is soluble, show (a/n) = 1.
- (c) Find an example where (a/n) = 1, and gcd(a, n) = 1, but $x^2 \equiv a \pmod{n}$ is insoluble.
- (d) If m and n are co-prime, show

$$\left(\frac{m}{n}\right) \cdot \left(\frac{n}{m}\right) = (-1)^k$$
, where $k = \frac{m-1}{2} \cdot \frac{n-1}{2}$

MATHEMATICS DEPT, MIDDLE EAST TECH. UNIV., ANKARA 06531, TURKEY E-mail address: dpierce@metu.edu.tr

URL: http://www.math.metu.edu.tr/~dpierce/

Date: December 18, 2007.