
MATH , FINAL EXAMINATION SOLUTIONS

DAVID PIERCE

The following table of powers of 3 modulo 257 was provided for use in several problems:
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3k 3 9 27 81 −14 −42 −126 −121 −106 −61 74 −35 −105 −58 83 −8
316+k −24 −72 41 123 112 79 −20 −60 77 −26 −78 23 69 −50 107 64
332+k −65 62 −71 44 −125 −118 −97 −34 −102 −49 110 73 −38 −114 −85 2
348+k 6 18 54 −95 −28 −84 5 15 45 −122 −109 −70 47 −116 −91 −16
364+k −48 113 82 −11 −33 −99 −40 −120 −103 −52 101 46 −119 −100 −43 128
380+k 127 124 115 88 7 21 63 −68 53 −98 −37 −111 −76 29 87 4
396+k 12 36 108 67 −56 89 10 30 90 13 39 117 94 25 75 −32
3112+k −96 −31 −93 −22 −66 59 −80 17 51 −104 −55 92 19 57 −86 −1

Problem . For positive integers n, let ω(n) = |{p : p | n}|, the number of primes divid-
ing n.

(a) Show that the function n 7→ 2ω(n) is multiplicative.
(b) Define the Möbius function µ in terms of ω.
(c) Show

∑
d|n

|µ(d)| = 2ω(n) for all positive integers n.

Powers of 3 modulo 257:
Solution. (a) If gcd(m, n) = 1, then ω(mn) = ω(m) + ω(n), so

2ω(mn) = 2ω(m)+ω(n) = 2ω(m) · 2ω(n).

(b) µ(n) =

{
0, if p2 | n for some p;
(−1)ω(n), otherwise.

(c) As µ is multiplicative, so are |µ| and n 7→
∑

d|n |µ(d)|. Hence it is enough to
establish the equation when n is a prime power. We have∑

d|ps

|µ(d)| =
s∑

k=0

∣∣µ(pk)
∣∣ = |µ(1)|+ |µ(p)| = 1 + 1 = 2 = 21 = 2ω(ps).

Problem . Fill out the following table of Legendre symbols:
a 1 2 3 5 7 11 13 17 19( a

257

)
Solution. By the table of powers, 3 must be a primitive root of 257. Hence (a/257) = 1
if and only if a is an even power of 3 modulo 257. In particular, (−1/257) = 1, so
(a/257) = (−a/257). So the table of powers yields the answers:

a 1 2 3 5 7 11 13 17 19( a

257

)
1 1 −1 −1 −1 1 1 1 −1
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Remark. Many people preferred to find these Legendre symbols by means of the Law of
Quadratic Reciprocity. Possibly this method is faster than hunting for numbers in the
table of powers; but it may also provide more opportunity for error.
Problem . In the following table, in the box below each number a, write the least positive
integer n such that ord257(n) = a.

1 2 4 8 16 32 64 128 256

Solution. If r is a primitive root of 257, then ord257(r
256/a) = a. The primitive roots of

257 are 3s, where s is odd. So below a we want the least n such that n ≡ 3(256/a)·s for
some odd s. (In searching the table of powers, since 3k+128 ≡ −3k, we can ignore signs,
except when a 6 2. For example, when a = 4, then 3(256/a)·s = 364s, so n can only be
|364|. When a = 32, then 3(256/a)·s = 38s, so n will be the absolute value of an entry in
the column of powers that is headed by 8.)

1 2 4 8 16 32 64 128 256
1 256 16 4 2 15 11 9 3

Remark. Another way to approach the problem is to note that

ord257(3
k) =

256

gcd(256, k)
.

Then one must look among those powers 3k such that gcd(256, k) = 256/a. Some expla-
nation is necessary, though it need not be so elaborate as what I gave above.

Some people apparently misread the problem as asking for the orders of the given
numbers. Others provided numbers that had the desired orders; but they weren’t the
least positive such numbers.
Problem . Solve x2 + 36x + 229 ≡ 0 (mod 257).

Solution. Complete the square: (36/2)2 = (2 · 9)2 = 4 · 81 = 324, and 324 − 229 = 95,
so (using the table of powers)

x2 + 36x + 229 ≡ 0 ⇐⇒ (x + 18)2 ≡ 95 ≡ 3128+52 ≡ 3180 ≡ (390)2

⇐⇒ x + 18 ≡ ±390 ≡ ∓98

⇐⇒ x ≡ −116, 80

⇐⇒ x ≡ 141, 80 (mod 257).

Remark. There were a few unsuccessful attempts to factorize the polynomial directly. See
my remark on Problem  of Exam .
Problem . Solve 197x ≡ 137 (mod 257).

Solution. From the table of powers of 3, we can obtain logarithms:
197x ≡ 137 (mod 257) ⇐⇒ (−60)x ≡ −120 (mod 257)

⇐⇒ x log3(−60) ≡ log3(−120) (mod 256)

⇐⇒ x · 24 ≡ 72 (mod 256)

⇐⇒ x · 8 ≡ 24 (mod 256)

⇐⇒ x ≡ 3 (mod 32)

⇐⇒ x ≡ 3, 35, 67, 99, 131, 163, 195, 227 (mod 256).
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Remark. A number of people overlooked the change of modulus when passing from x ·
8 ≡ 24 to x ≡ 3. One need not use logarithms explicitly; one can observe instead
197 ≡ −60 ≡ 324 and 137 ≡ −120 ≡ 372 (mod 256), so that

197x ≡ 137 (mod 257) ⇐⇒ 324x ≡ 372 (mod 257)

⇐⇒ 24x ≡ 72 (mod 256),

and then proceed as above.

Problem . Solve 127x + 55y = 4.

Solution. Use the Euclidean algorithm:

127 = 55 · 2 + 17,

55 = 17 · 3 + 4,

17 = 4 · 4 + 1,

17 = 127− 55 · 2,
4 = 55− (127− 55 · 2) · 3 = 55 · 7− 127 · 3,
1 = 17− 4 · 4 = 127− 55 · 2− (55 · 7− 127 · 3) · 4

= 127 · 13− 55 · 30.

Hence 4 = 127 · 52 − 55 · 120, and gcd(127, 55) = 1, so the original equation has the
general solution

(52,−120) + (55,−127) · t.

Remark. Some people omitted to find the general solution. In carrying out the Euclidean
algorithm here, one can save a step, as some people did, by noting that, once we find
4 = 55 · 7− 127 · 3, we need not find 1 as a linear combination of 127 and 55; we can pass
immediately to the general solution (7,−3) + (55,−127) · t.

Problem . Solve x2 ≡ 59 (mod 85).

Solution. Since 85 = 5 · 17, we first solve x2 ≡ 59 modulo 5 and 17 separately:

x2 ≡ 59 (mod 5)

⇐⇒ x2 ≡ 4 (mod 5)

⇐⇒ x ≡ ±2 (mod 5);

x2 ≡ 59 (mod 17)

⇐⇒ x2 ≡ 8 (mod 17)

⇐⇒ x2 ≡ 25 (mod 17)

⇐⇒ x ≡ ±5 (mod 17).

Now there are four systems to solve:
x ≡ ±2 (mod 5)

x ≡ ±5 (mod 17)

}
⇐⇒ x ≡ ±22 (mod 85),

x ≡ ±2 (mod 5)

x ≡ ∓5 (mod 17)

}
⇐⇒ x ≡ ±12 (mod 85).

(I solved these by trial.) So the original congruence is solved by

x ≡ ±22,±12 (mod 85),

or x ≡ 12, 22, 63, 73 (mod 85).

Remark. One may, as some people did, use the algorithm associated with the Chinese
Remainder Theorem here. Even if we do not use the algorithm, we rely on it to know
that the solution we find to each pair of congruences is the only solution. Some used

a theoretical formation of the solution, noting for example that
{

x ≡ 2 (mod 5)

x ≡ 5 (mod 17)

}
has
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the solution x ≡ 2 · 17φ(5) + 5 · 5φ(17) (mod 85); but this is not useful (the number is not
between 0 and 85, or between −85/2 and 85/2).
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