Fourth and Final Examination *solutions*

Math 320, David Pierce

June 11 (Saturday), 2011, at 13:30 in M-04

Instructions. Each of the five numbered problems is worth 8 points. As usual, write solutions on separate sheets, keeping *this* sheet. Then enjoy the holiday!

Problem 1. Write down formulas defining the following classes. (Use only the symbols \in , \neg , (, \Rightarrow ,), and \exists ; variables; and the constant a.)

a) $\mathscr{P}(a)$

b) $\bigcup a$

Solution.

a) $x \subseteq a$, that is, $\forall y \ (y \in x \Rightarrow y \in a)$, that is,

$$\neg \exists y \ \neg (y \in x \Rightarrow y \in a).$$

b) $\exists y \ (y \in a \land x \in y).$

Remark. The formulas *defining* the classes are as given. Then for example the class $\mathscr{P}(a)$ itself is

$$\{x: \neg \exists y \ \neg (y \in x \Rightarrow y \in a)\}.$$

Problem 2. Prove or disprove:

- a) Every set is a class.
- b) Every class is a set.

Solution.

- a) Every set a is the class $\{x \colon x \in a\}$.
- b) Not every class is a set. Indeed, the class $\{x : x \notin x\}$ is not a set, for if it were the set a, then

$$\forall x \ (x \in a \Leftrightarrow x \notin x),$$

and in particular

$$a \in a \Leftrightarrow a \notin a$$
,

which is a contradiction.

Problem 3. Perform the following ordinal computations, giving the answers in Cantor normal form.

Solution.

- a) $3 \cdot (\omega + 4) = 3 \cdot \omega + 3 \cdot 4 = \omega + 12$
- b) $(\omega + 4) \cdot 3 = \omega \cdot 3 + 4$
- c) $(\omega + 5)^2 = (\omega + 5) \cdot (\omega + 5) = (\omega + 5) \cdot \omega + (\omega + 5) \cdot 5 = \omega^2 + \omega \cdot 5 + 5$

d)
$$9^{\omega+2} = 9^{\omega} \cdot 9^2 = \omega \cdot 81$$

e)
$$(\omega+5)^{\omega+2} = (\omega+5)^{\omega} \cdot (\omega+5)^2 = \omega^{\omega} \cdot (\omega^2 + \omega \cdot 5 + 5) = \omega^{\omega+2} + \omega^{\omega+1} \cdot 5 + \omega^{\omega} \cdot 5$$

f)
$$(\omega^{\omega})^{\omega^{\omega}} = \omega^{\omega \cdot \omega^{\omega}} = \omega^{\omega^{1+\omega}} = \omega^{\omega^{\omega}}$$

g)
$$(\omega^{\omega^{\omega}})^{\omega^{\omega}} = \omega^{\omega^{\omega} \cdot \omega^{\omega}} = \omega^{\omega^{\omega \cdot 2}}$$

h)
$$6^{\omega^{1330}} = (6^{\omega})^{\omega^{1329}} = \omega^{\omega^{1329}}$$

Problem 4. Prove, for all ordinals α , β , and γ such that $\alpha > 1$,

$$\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma} \tag{(*)}$$

Use the recursive definitions, and normality, of $x \mapsto \alpha^x$, $x \mapsto \beta + x$, and $x \mapsto \delta \cdot x$ (where $\delta > 0$). You may use other known ordinal identities, besides (*) itself.

Solution. We use induction on γ . Since

$$\alpha^{\beta+0} = \alpha^{\beta} = \alpha^{\beta} \cdot 1 = \alpha^{\beta} \cdot \alpha^{0},$$

the claim holds when $\gamma = 0$. Suppose the claim holds when $\gamma = \delta$. Then

$$\alpha^{\beta+\delta'} = \alpha^{(\beta+\delta)'} = \alpha^{\beta+\delta} \cdot \alpha = \alpha^{\beta} \cdot \alpha^{\delta} \cdot \alpha = \alpha^{\beta} \cdot \alpha^{\delta'},$$

so the claim holds when $\gamma = \delta'$.

Suppose finally δ is a limit, and the claim holds when $\gamma < \delta$.

Then

$$\begin{aligned} \alpha^{\beta+\delta} &= \alpha^{\sup_{\gamma<\delta}(\beta+\gamma)} & \text{[by definition of } x \mapsto \beta+x] \\ &= \sup_{\gamma<\delta} \alpha^{\beta+\gamma} & \text{[by normality of } x \mapsto \alpha^x] \\ &= \sup_{\gamma<\delta} (\alpha^\beta \cdot \alpha^\gamma) & \text{[by inductive hypothesis]} \\ &= \alpha^\beta \cdot \sup_{\gamma<\delta} \alpha^\gamma & \text{[by normality of } x \mapsto \alpha^\beta \cdot x] \\ &= \alpha^\beta \cdot \alpha^\delta, & \text{[by definition of } x \mapsto \alpha^x] \end{aligned}$$

so the claim holds when $\gamma = \delta$.

Problem 5. Define the function $\alpha \mapsto V_{\alpha}$ on **ON** by

$$V_0 = 0,$$
 $V_{\alpha+1} = \mathscr{P}(V_{\alpha}),$ $V_{\beta} = \bigcup_{\alpha < \beta} V_{\alpha},$

where β is a limit. Find $\operatorname{card}(V_{\alpha})$ in the following cases. Your answer should be a natural number, an aleph \aleph_{β} , or a beth \beth_{γ} .

a) $\alpha \in \omega$ e) $\alpha = \omega \cdot 11 + 2011$ b) $\alpha = \omega$ f) $\alpha = \omega^2$ c) $\alpha = \omega + 320$ g) $\alpha = \aleph_1$ d) $\alpha = \omega \cdot 6$ h) $\alpha = \beth_1$

Solution.

a)
$$\operatorname{card}(V_0) = 0$$
, and $\operatorname{card}(V_{k+1}) = 2^{\operatorname{card}(V_k)}$ if $k \in \omega$.

b) $\operatorname{card}(V_{\omega}) = \sup_{k \in \omega} \operatorname{card}(V_k) = \aleph_0.$

c) $\operatorname{card}(V_{\omega+1}) = 2^{\operatorname{card}(V_{\omega})} = 2^{\aleph_0} = 2^{\beth_0} = \beth_1$, and in general

$$\operatorname{card}(V_{\omega+k}) = \beth_k$$

if $k \in \omega$; in particular, $\operatorname{card}(V_{320}) = \beth_{320}$.

d) $\operatorname{card}(V_{\omega \cdot 2}) = \sup_{k \in \omega} \operatorname{card}(V_{\omega+k}) = \sup_{k \in \omega} \beth_k = \beth_{\omega},$ and in general

$$\operatorname{card}(V_{\omega \cdot (n+1)}) = \beth_{\omega \cdot n}$$

if $n \in \omega$; in particular, $\operatorname{card}(V_{\omega \cdot 6}) = \beth_{\omega \cdot 5}$.

e) In general,

$$\operatorname{card}(V_{\omega+\alpha}) = \beth_{\alpha} \tag{\dagger}$$

for all ordinals α ; in particular, $\operatorname{card}(V_{\omega \cdot 11+2011}) = \beth_{\omega \cdot 10+2011}$.

f) Since $\omega^2 = \omega + \omega^2$, we have $\operatorname{card}(V_{\omega^2}) = \beth_{\omega^2}$.

g)
$$\operatorname{card}(V_{\aleph_1}) = \beth_{\aleph_1}$$

h) $\operatorname{card}(V_{\beth_1}) = \beth_{\beth_1}$

Remark. The rule (\dagger) can be proved by induction, but this was not required. Note the resemblance to the rule for powers of natural numbers, which can be written as

$$n^{\omega^{1+\alpha}} = n^{\omega \cdot \omega^{\alpha}} = (n^{\omega})^{\omega^{\alpha}} = \omega^{\omega^{\alpha}}.$$

where $1 < n < \omega$.

Scores

	EA	PC	AF	Mİ	OŞ	NT	ÖΤ
1	—	3	7	—	1	7	0
2	—	3	7	0	4	7	0
3	8	7	7		6	7	6
4	5	8	7		6	8	6
5	0	2	4		2	7	0
	13	23	3^2	0	19	36	12