Fourth and Final Examination solutions

Math 320, David Pierce
June 11 (Saturday), 2011, at 13:30 in M-04

Instructions. Each of the five numbered problems is worth 8 points. As usual, write solutions on separate sheets, keeping this sheet. Then enjoy the holiday!

Problem 1. Write down formulas defining the following classes. (Use only the symbols $\in, \neg,(, \Rightarrow$,$) , and \exists$; variables; and the constant a.)
a) $\mathscr{P}(a)$
b) $\bigcup a$

Solution.

a) $x \subseteq a$, that is, $\forall y(y \in x \Rightarrow y \in a)$, that is,

$$
\neg \exists y \neg(y \in x \Rightarrow y \in a)
$$

b) $\exists y(y \in a \wedge x \in y)$.

Remark. The formulas defining the classes are as given. Then for example the class $\mathscr{P}(a)$ itself is

$$
\{x: \neg \exists y \neg(y \in x \Rightarrow y \in a)\} .
$$

Problem 2. Prove or disprove:
a) Every set is a class.
b) Every class is a set.

Solution.

a) Every set a is the class $\{x: x \in a\}$.
b) Not every class is a set. Indeed, the class $\{x: x \notin x\}$ is not a set, for if it were the set a, then

$$
\forall x(x \in a \Leftrightarrow x \notin x),
$$

and in particular

$$
a \in a \Leftrightarrow a \notin a,
$$

which is a contradiction.
Problem 3. Perform the following ordinal computations, giving the answers in Cantor normal form.

Solution.

a) $3 \cdot(\boldsymbol{\omega}+4)=3 \cdot \omega+3 \cdot 4=\omega+12$
b) $(\omega+4) \cdot 3=\omega \cdot 3+4$
c) $(\omega+5)^{2}=(\omega+5) \cdot(\omega+5)=(\omega+5) \cdot \omega+(\omega+5) \cdot 5=$ $\omega^{2}+\omega \cdot 5+5$
d) $9^{\omega+2}=9^{\omega} \cdot 9^{2}=\omega \cdot 81$
e) $(\omega+5)^{\omega+2}=(\omega+5)^{\omega} \cdot(\omega+5)^{2}=\omega^{\omega} \cdot\left(\omega^{2}+\omega \cdot 5+5\right)=$ $\omega^{\omega+2}+\omega^{\omega+1} \cdot 5+\omega^{\omega} \cdot 5$
f) $\left(\omega^{\omega}\right)^{\omega^{\omega}}=\omega^{\omega \cdot \omega^{\omega}}=\omega^{\omega^{1+\omega}}=\omega^{\omega^{\omega}}$
g) $\left(\omega^{\omega^{\omega}}\right)^{\omega^{\omega}}=\omega^{\omega^{\omega} \cdot \omega^{\omega}}=\omega^{\omega^{\omega \cdot 2}}$
h) $6^{\omega^{1330}}=\left(6^{\omega}\right)^{\omega^{1329}}=\omega^{\omega^{1329}}$

Problem 4. Prove, for all ordinals α, β, and γ such that $\alpha>1$,

$$
\begin{equation*}
\alpha^{\beta+\gamma}=\alpha^{\beta} \cdot \alpha^{\gamma} \tag{*}
\end{equation*}
$$

Use the recursive definitions, and normality, of $x \mapsto \alpha^{x}, x \mapsto$ $\beta+x$, and $x \mapsto \delta \cdot x$ (where $\delta>0$). You may use other known ordinal identities, besides (*) itself.

Solution. We use induction on γ. Since

$$
\alpha^{\beta+0}=\alpha^{\beta}=\alpha^{\beta} \cdot 1=\alpha^{\beta} \cdot \alpha^{0},
$$

the claim holds when $\gamma=0$. Suppose the claim holds when $\gamma=\delta$. Then

$$
\alpha^{\beta+\delta^{\prime}}=\alpha^{(\beta+\delta)^{\prime}}=\alpha^{\beta+\delta} \cdot \alpha=\alpha^{\beta} \cdot \alpha^{\delta} \cdot \alpha=\alpha^{\beta} \cdot \alpha^{\delta^{\prime}}
$$

so the claim holds when $\gamma=\delta^{\prime}$.
Suppose finally δ is a limit, and the claim holds when $\gamma<\delta$.

Then

$$
\begin{aligned}
\alpha^{\beta+\delta} & =\alpha^{\sup _{\gamma<\delta}(\beta+\gamma)} & & {[\text { by definition of } x \mapsto \beta+x] } \\
& =\sup _{\gamma<\delta} \alpha^{\beta+\gamma} & & {\left[\text { by normality of } x \mapsto \alpha^{x}\right] } \\
& =\sup _{\gamma<\delta}\left(\alpha^{\beta} \cdot \alpha^{\gamma}\right) & & {[\text { by inductive hypothesis }] } \\
& =\alpha^{\beta} \cdot \sup _{\gamma<\delta} \alpha^{\gamma} & & {\left[\text { by normality of } x \mapsto \alpha^{\beta} \cdot x\right] } \\
& =\alpha^{\beta} \cdot \alpha^{\delta}, & & {\left[\text { by definition of } x \mapsto \alpha^{x}\right] }
\end{aligned}
$$

so the claim holds when $\gamma=\delta$.
Problem 5. Define the function $\alpha \mapsto V_{\alpha}$ on $\mathbf{O N}$ by

$$
V_{0}=0, \quad V_{\alpha+1}=\mathscr{P}\left(V_{\alpha}\right), \quad V_{\beta}=\bigcup_{\alpha<\beta} V_{\alpha},
$$

where β is a limit. Find $\operatorname{card}\left(V_{\alpha}\right)$ in the following cases. Your answer should be a natural number, an aleph \aleph_{β}, or a beth \beth_{γ}.
a) $\alpha \in \omega$
b) $\alpha=\omega$
c) $\alpha=\omega+320$
d) $\alpha=\omega \cdot 6$
e) $\alpha=\omega \cdot 11+2011$
f) $\alpha=\omega^{2}$
g) $\alpha=\aleph_{1}$
h) $\alpha=\beth_{1}$

Solution.

a) $\operatorname{card}\left(V_{0}\right)=0$, and $\operatorname{card}\left(V_{k+1}\right)=2^{\operatorname{card}\left(V_{k}\right)}$ if $k \in \omega$.
b) $\operatorname{card}\left(V_{\omega}\right)=\sup _{k \in \omega} \operatorname{card}\left(V_{k}\right)=\aleph_{0}$.
c) $\operatorname{card}\left(V_{\omega+1}\right)=2^{\operatorname{card}\left(V_{\omega}\right)}=2^{\aleph_{0}}=2^{\beth_{0}}=\beth_{1}$, and in general

$$
\operatorname{card}\left(V_{\omega+k}\right)=\beth_{k}
$$

if $k \in \omega$; in particular, $\operatorname{card}\left(V_{320}\right)=\beth_{320}$.
d) $\operatorname{card}\left(V_{\omega \cdot 2}\right)=\sup _{k \in \omega} \operatorname{card}\left(V_{\omega+k}\right)=\sup _{k \in \omega} \beth_{k}=\beth_{\omega}$, and in general

$$
\operatorname{card}\left(V_{\omega \cdot(n+1)}\right)=\beth_{\omega \cdot n}
$$

if $n \in \omega$; in particular, $\operatorname{card}\left(V_{\omega \cdot 6}\right)=\beth_{\omega \cdot 5}$.
e) In general,

$$
\operatorname{card}\left(V_{\omega+\alpha}\right)=\beth_{\alpha}
$$

for all ordinals α; in particular, $\operatorname{card}\left(V_{\omega \cdot 11+2011}\right)=$ $\beth_{\omega \cdot 10+2011}$.
f) Since $\omega^{2}=\omega+\omega^{2}$, we have $\operatorname{card}\left(V_{\omega^{2}}\right)=\beth_{\omega^{2}}$.
g) $\operatorname{card}\left(V_{\aleph_{1}}\right)=\beth_{\aleph_{1}}$
h) $\operatorname{card}\left(V_{\beth_{1}}\right)=\beth_{\beth_{1}}$

Remark. The rule (\dagger) can be proved by induction, but this was not required. Note the resemblance to the rule for powers of natural numbers, which can be written as

$$
n^{\omega^{1+\alpha}}=n^{\omega \cdot \omega^{\alpha}}=\left(n^{\omega}\right)^{\omega^{\alpha}}=\omega^{\omega^{\alpha}}
$$

where $1<n<\omega$.

Scores

	EA	PC	AF	Mİ	OŞ	NT	ÖT
$\mathbf{1}$	-	3	7	-	1	7	0
2	-	3	7	0	4	7	0
3	8	7	7	-	6	7	6
4	5	8	7	-	6	8	6
5	o	2	4	-	2	7	0
	$\mathbf{1 3}$	23	$\mathbf{3}^{2}$	0	19	36	$\mathbf{1 2}$

