Third Examination solutions

Math 320, David Pierce

May 25, 2011

Instructions. Write solutions on separate sheets; you may keep this sheet. In Problem 3, do not assume the Axiom of Choice. Problem 1 is worth 15 points; the other three problems are worh 5 points each.

Problem 1. For each of the following sets, write its cardinality as \aleph_{α} or \beth_{α} for some ordinal α. All operations involving numbers \aleph_{α} or \beth_{α} are cardinal operations; all operations involving ω are ordinal operations.
a) ω
i) $\aleph_{\omega}+\aleph_{\omega^{\omega}}$
b) ω^{ω}
j) $\aleph_{\omega^{\omega}} \cdot \aleph_{\omega}$
c) $\sup \left\{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \ldots\right\}$
k) $\aleph_{0}{ }^{N_{0}}$
d) the set of countable ordinals
e) \mathbb{R}
l) $\sup \left\{\aleph_{0}, \aleph_{0}{ }^{\aleph_{0}}, \aleph_{0}{ }^{\aleph_{0}{ }_{0}}, \ldots\right\}$
f) ${ }^{\omega} \mathbb{R}$
m) $\aleph_{\omega^{2} \cdot 3+\omega}{ }^{\aleph_{\omega} \omega}$
g) the set of uncountable subsets of \mathbb{R}
n) $\beth_{\omega+1} \beth_{\omega}$
h) $\aleph_{\omega \omega}+\aleph_{\omega}$
o) $\mathscr{P}\left(\beth_{\omega}\right)$

Solution.

a) $\omega=\aleph_{0}$ [it is already a cardinal, so the cardinality of ω is itself, which is \aleph_{0}]
b) ω^{ω} has cardinality \aleph_{0} [remember that ω^{ω} is the ordinal power; see $\S 5 \cdot 4$ of the notes]
c) $\sup \left\{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \ldots\right\}=\bigcup\left\{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \ldots\right\}$, the union of a nonempty countable set of countably infinite sets [by part (b)], so its cardinality is \aleph_{0} [this is a special case of Theorem 123 of the notes]
d) the set of countable ordinals is exactly the first uncountable ordinal, which is therefore itself a cardinal, namely \aleph_{1}
e) \mathbb{R} has cardinality \beth_{1} [since $\mathbb{R} \approx \mathscr{P}(\boldsymbol{\omega}) \approx{ }^{\omega} 2 \approx 2^{\aleph_{0}}$ (the cardinal power), which is \beth_{1} by definition]
f) $\operatorname{card}\left({ }^{\omega} \mathbb{R}\right)=\left(2^{\aleph_{0}}\right)^{\aleph_{0}}=2^{\aleph_{0} \cdot \aleph_{0}}=2^{\aleph_{0}}=\beth_{1}$
g) The set of uncountable subsets of \mathbb{R} has cardinality \beth_{2}. [Denote the set of uncountable subsets of \mathbb{R} by a. Then $\mathscr{P}(\mathbb{R}) \backslash a$ is the set b of countable subsets of \mathbb{R}. Since $b \preccurlyeq{ }^{\omega} \mathbb{R}$, we have $\operatorname{card}(b) \leqslant \beth_{1}$ by part (f). Hence

$$
\begin{aligned}
\beth_{2}=\operatorname{card}(\mathscr{P}(\mathbb{R}))=\operatorname{card}(a \cup b) & \leqslant \operatorname{card}(a)+\operatorname{card}(b) \\
& \leqslant \operatorname{card}(a)+\beth_{1}=\max \left(\operatorname{card}(a), \beth_{1}\right) .
\end{aligned}
$$

Since $\beth_{1}<\beth_{2}$, we must have $\beth_{2} \leqslant \operatorname{card}(a)$. But also

$$
\operatorname{card}(a) \leqslant \operatorname{card}(\mathscr{P}(\mathbb{R}))=\beth_{2}
$$

Therefore $\operatorname{card}(a)=\beth_{2}$. Similarly, whenever $c \subset d$ and $\operatorname{card}(c)<\operatorname{card}(d)$, but d is infinite, then $\operatorname{card}(d \backslash c)=\operatorname{card}(d)$.]
h) $\aleph_{\omega^{\omega}}+\aleph_{\omega}=\aleph_{\omega^{\omega}}$ [the greater of the two alephs]
i) $\aleph_{\omega}+\aleph_{\omega^{\omega}}=\aleph_{\omega^{\omega}}$ [as in part (i)]
j) $\aleph_{\omega^{\omega}} \cdot \aleph_{\omega}=\aleph_{\omega^{\omega}}$ [as in parts (i) and (j)]
k) $\aleph_{0}{ }^{\aleph_{0}}=2^{\aleph_{0}}=\beth_{1}\left[\right.$ since $2^{\aleph_{0}} \leqslant \aleph_{0}{ }^{\aleph_{0}} \leqslant\left(2^{\aleph_{0}}\right)^{\aleph_{0}}=2^{\aleph_{0} \cdot \aleph_{0}}=2^{\aleph_{0}}$; see Exercise 30$]$
l) $\sup \left\{\aleph_{0}, \aleph_{0} \aleph_{0}, \aleph_{0}{ }^{\aleph_{0} \aleph_{0}}, \ldots\right\}=\sup \left\{\aleph_{0}, 2^{\aleph_{0}}, 2^{2^{\aleph_{0}}}, \ldots\right\}[$ as in (k) $]$, and

$$
\sup \left\{\aleph_{0}, 2^{\aleph_{0}}, 2^{2^{\aleph_{0}}}, \ldots\right\}=\sup \left\{\beth_{0}, \beth_{1}, \beth_{2}, \ldots\right\}=\beth_{\omega}
$$

[by definition of the beths; compare Exercise 35]
m) $\aleph_{\omega^{2} \cdot 3+\omega^{\aleph_{\omega} \omega}}=2^{\aleph_{\omega} \omega}$ [as in (k), since $2 \leqslant \omega^{2} \cdot 3+\omega \leqslant \omega^{\omega}$; the cardinal $2^{\aleph_{\omega \omega} \omega}$ is \aleph_{α} for some unknown α, but I do not know whether it is \beth_{β} for any β; see Exercise 34; note that the given cardinal must be understood as κ^{λ}, where $\kappa=\aleph_{\omega^{2} \cdot 3+\omega}$ and $\left.\lambda=\aleph_{\omega^{\omega}}\right]$
n) $\beth_{\omega+1} \beth_{\omega}=\left(2^{\beth_{\omega}}\right)^{\beth_{\omega}}=2^{\beth_{\omega} \cdot \beth_{\omega}}=2^{\beth_{\omega}}=\beth_{\omega+1}$
o) $\operatorname{card}\left(\mathscr{P}\left(\beth_{\omega}\right)\right)=2^{\beth_{\omega}}=\beth_{\omega+1}$

Remark. Five of the exercises involved the beths (the numbers \beth_{α}).

Problem 2.

a) Write the definitions of the cardinal product $\kappa \cdot \lambda$ and the cardinal power κ^{λ}.
b) Show that $\left(\kappa^{\lambda}\right)^{\mu}=\kappa^{\lambda \cdot \mu}$.

Solution.

a) $\kappa \cdot \lambda=\operatorname{card}(\kappa \times \lambda)$ and $\kappa^{\lambda}=\operatorname{card}\left({ }^{\lambda} \kappa\right)$.
b) [Short version:] There is a bijection from ${ }^{\mu}\left({ }^{\lambda} \kappa\right)$ to ${ }^{\lambda \times \mu} \kappa$, namely the function that converts a function f on μ (where $f(\alpha)$ is a function $x \mapsto f(\alpha)(x)$ from λ to κ for all α in μ) to the function

$$
(x, y) \mapsto f(y)(x)
$$

[Long version:] We show there is a bijection Φ from ${ }^{\mu}\left({ }^{\lambda} \kappa\right)$ to ${ }^{\lambda \times \mu} \kappa$. An element of ${ }^{\mu}\left(\lambda^{\lambda} \kappa\right)$ is a function f from μ to ${ }^{\lambda} \kappa$. In particular, if $\alpha \in \mu$, then $f(\alpha)$ is a function from λ to κ. We can denote this function by

$$
x \mapsto f(\alpha)(x) .
$$

We can convert f into a function $\Phi(f)$ from $\lambda \times \mu$ into κ by defining

$$
\Phi(f)(x, y)=f(y)(x) .
$$

Then Φ is the desired bijection. Indeed, we can define a function Ψ from ${ }^{\lambda \times \mu} \kappa$ to ${ }^{\mu}\left({ }^{\lambda} \kappa\right)$ so that, if $g \in{ }^{\lambda \times \mu} \kappa$, and $\alpha \in \mu$, then $\Psi(g)(\alpha)$ is the function

$$
x \mapsto g(x, \alpha)
$$

from λ to κ. Then Ψ is the inverse of Φ, since

$$
\Phi(\Psi(g))(x, y)=\Psi(g)(y)(x)=g(x, y),
$$

so $\Phi(\Psi(g))=g$, and

$$
\Psi(\Phi(f))(y)(x)=\Phi(f)(x, y)=f(y)(x)
$$

so $\Psi(\Phi(f))=f$.
Remark. Part (b) was part of Exercise 25.
Problem 3. Let a be some nonempty set.
a) What is a choice-function for a?
b) Define a set b such that every subset of b that is linearly ordered by \subset has an upper bound in b, and every maximal element of b (with respect to \subset) is a choice-function for a.

Solution.

a) A choice-function for a is a function from $\mathscr{P}(a) \backslash\{0\}$ (or $\mathscr{P}(a))$ to a such that

$$
f(x) \in x
$$

for all nonempty subsets x of a.
b) Let b be the set of functions f such that the domain of f is a subset of $\mathscr{P}(a) \backslash\{0\}$ and $f(x) \in x$ whenever x is a nonempty subset of a. In particular, if the domain of f is all of $\mathscr{P}(a) \backslash\{0\}$, then f is a choice-function for a. Suppose $g \in b$, but the domain of g is a proper subset of $\mathscr{P}(a) \backslash\{0\}$. Then some element c of $\mathscr{P}(a) \backslash\{0\}$ is not in the domain of g. Then c has an element d, and therefore $g \cup\{(c, d)\}$ is an element of b that is greater (with respect to \subset) than g; so g is not maximal. Thus a maximal element of b must have domain $\mathscr{P}(a) \backslash\{0\}$ and therefore be a choice-function for a.

Remark. Part (b) was part of Exercise 24.
Problem 4. Recall the definition

$$
\mathbf{R}(0)=0, \quad \mathbf{R}(\alpha+1)=\mathbf{R}(\alpha), \quad \mathbf{R}(\beta)=\bigcup\{\mathbf{R}(x): x \in \beta\}
$$

where β is a limit. Show that, for every subset a of $\bigcup \mathbf{R}[\mathbf{O N}]$, there is
a) α such that $a \subseteq \mathbf{R}(\alpha)$,
b) β such that $a \in \mathbf{R}(\beta)$.

Solution. The definition of \mathbf{R} is given incorrectly in the statement of the problem. [This was my mistake. The correct definition had been given in the exercises, just before Exercise 28.] Under the given incorrect definition, $\mathbf{R}(\alpha)=0$ for all α, so that $\bigcup \mathbf{R}[\mathbf{O N}]=0$. The only subset of this is 0 , and this is a subset of each $\mathbf{R}(\alpha)$, but it is not an element of any $\mathbf{R}(\alpha)$, since they are all empty. [This would have been an acceptable answer.]

Under the correct definition, $\mathbf{R}(\alpha+1)=\mathscr{P}(\mathbf{R}(\alpha))$. Then the problem can be solved as follows.
a) Note that $\bigcup \mathbf{R}[\mathbf{O N}]=\bigcup\{\mathbf{R}(\alpha): \alpha \in \mathbf{O N}\}$. If b is a member of this, let $f(b)$ be the least ordinal α such that $b \in \mathbf{R}(\alpha)$. Let $\gamma=\sup \{f(x): x \in a\}$. Then

$$
a \subseteq \bigcup\{\mathbf{R}(\delta): \delta \leqslant \gamma\} \subseteq \bigcup\{\mathbf{R}(\delta): \delta<\gamma+\omega\}=\mathbf{R}(\gamma+\omega)
$$

(since $\gamma+\omega$ is a limit). So we can let $\alpha=\gamma+\omega$.
b) If α is as in (a), then $a \in \mathscr{P}(\mathbf{R}(\alpha))$, which is $\mathbf{R}(\alpha+1)$; so we can let $\beta=\alpha+1$.

Remark. In part (a), the ordinal $f(b)$ must be a successor, which is $\operatorname{rank}(b)+1$ by definition of the rank function.

Scores.

	EA	PC	AF	Mİ	OŞ	NT	ÖT
1	4	5	5	1	5	11	5
2	1	2	3	1	3	5	4
3	-	2	1	-	1	4	2
4	-	1	2	-	0	3	0
	5	10	11	2	9	23	11

