Third Examination solutions

Math 320, David Pierce

May 25, 2011

Instructions. Write solutions on separate sheets; you may keep *this* sheet. In Problem 3, do not assume the Axiom of Choice. Problem 1 is worth 15 points; the other three problems are worh 5 points each.

Problem 1. For each of the following sets, write its cardinality as \aleph_{α} or \beth_{α} for some ordinal α . All operations involving numbers \aleph_{α} or \beth_{α} are cardinal operations; all operations involving ω are ordinal operations.

a) w	i) $\aleph_{\omega} + \aleph_{\omega^{\omega}}$
b) ω^{ω}	$j) leph_{\omega^{\omega}} \cdot leph_{\omega}$
c) $\sup\{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \dots\}$	$k) \aleph_0^{\aleph_0}$
d) the set of countable ordinals	$l) \sup \{ \aleph_0, \aleph_0^{\aleph_0}, \aleph_0^{\aleph_0^{\aleph_0}}, \dots \}$
$e) \mathbb{R}$	
$f)$ " \mathbb{R}	$m) \kappa_{\omega^2 \cdot 3 + \omega} \kappa_{\omega\omega}$
g) the set of uncountable subsets of $\mathbb R$	$n) \ \beth_{\omega+1} \urcorner_{\omega}$
$h) \aleph_{\omega^{\omega}} + \aleph_{\omega}$	$o) \mathscr{P}(\beth_{\omega})$

Solution.

- a) $\omega = \aleph_0$ [it is already a cardinal, so the cardinality of ω is itself, which is \aleph_0]
- b) ω^{ω} has cardinality \aleph_0 [remember that ω^{ω} is the *ordinal* power; see §5.4 of the notes]
- c) $\sup\{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \dots\} = \bigcup\{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \dots\}$, the union of a nonempty countable set of countably infinite sets [by part (b)], so its cardinality is \aleph_0 [this is a special case of Theorem 123 of the notes]
- d) the set of countable ordinals is exactly the first uncountable ordinal, which is therefore itself a cardinal, namely \aleph_1

- e) \mathbb{R} has cardinality \beth_1 [since $\mathbb{R} \approx \mathscr{P}(\boldsymbol{\omega}) \approx {}^{\boldsymbol{\omega}}2 \approx 2^{\aleph_0}$ (the cardinal power), which is \beth_1 by definition]
- f) card(${}^{\omega}\mathbb{R}$) = $(2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0 \cdot \aleph_0} = 2^{\aleph_0} = \beth_1$
- g) The set of uncountable subsets of \mathbb{R} has cardinality \beth_2 . [Denote the set of uncountable subsets of \mathbb{R} by a. Then $\mathscr{P}(\mathbb{R}) \smallsetminus a$ is the set b of countable subsets of \mathbb{R} . Since $b \preccurlyeq {}^{\omega}\mathbb{R}$, we have card $(b) \preccurlyeq \beth_1$ by part (f). Hence

$$\exists_2 = \operatorname{card}(\mathscr{P}(\mathbb{R})) = \operatorname{card}(a \cup b) \leqslant \operatorname{card}(a) + \operatorname{card}(b) \\ \leqslant \operatorname{card}(a) + \exists_1 = \max(\operatorname{card}(a), \exists_1).$$

Since $\beth_1 < \beth_2$, we must have $\beth_2 \leq \operatorname{card}(a)$. But also

$$\operatorname{card}(a) \leq \operatorname{card}(\mathscr{P}(\mathbb{R})) = \beth_2.$$

Therefore $\operatorname{card}(a) = \beth_2$. Similarly, whenever $c \subset d$ and $\operatorname{card}(c) < \operatorname{card}(d)$, but d is infinite, then $\operatorname{card}(d \smallsetminus c) = \operatorname{card}(d)$.]

- h) $\aleph_{\omega^{\omega}} + \aleph_{\omega} = \aleph_{\omega^{\omega}}$ [the greater of the two alephs]
- i) $\aleph_{\omega} + \aleph_{\omega^{\omega}} = \aleph_{\omega^{\omega}}$ [as in part (i)]
- j) $\aleph_{\omega^{\omega}} \cdot \aleph_{\omega} = \aleph_{\omega^{\omega}}$ [as in parts (i) and (j)]
- k) $\aleph_0^{\aleph_0} = 2^{\aleph_0} = \beth_1$ [since $2^{\aleph_0} \leq \aleph_0^{\aleph_0} \leq (2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0 \cdot \aleph_0} = 2^{\aleph_0}$; see Exercise 30]
- l) $\sup\{\aleph_0, \aleph_0^{\aleph_0}, \aleph_0^{\aleph_0^{\aleph_0}}, \dots\} = \sup\{\aleph_0, 2^{\aleph_0}, 2^{2^{\aleph_0}}, \dots\}$ [as in (k)], and

 $\sup\{\aleph_0, 2^{\aleph_0}, 2^{2^{\aleph_0}}, \dots\} = \sup\{\beth_0, \beth_1, \beth_2, \dots\} = \beth_{\omega}$

[by definition of the beths; compare Exercise 35]

- m) $\aleph_{\omega^{2}\cdot 3+\omega}^{\aleph_{\omega}\omega} = 2^{\aleph_{\omega}\omega}$ [as in (k), since $2 \leq \omega^{2} \cdot 3 + \omega \leq \omega^{\omega}$; the cardinal $2^{\aleph_{\omega}\omega}$ is \aleph_{α} for some unknown α , but I do not know whether it is \beth_{β} for any β ; see Exercise 34; note that the given cardinal must be understood as κ^{λ} , where $\kappa = \aleph_{\omega^{2}\cdot 3+\omega}$ and $\lambda = \aleph_{\omega}\omega$]
- n) $\beth_{\omega+1}^{\beth_{\omega}} = (2^{\beth_{\omega}})^{\beth_{\omega}} = 2^{\beth_{\omega} \cdot \beth_{\omega}} = 2^{\beth_{\omega}} = \beth_{\omega+1}$

o)
$$\operatorname{card}(\mathscr{P}(\beth_{\omega})) = 2^{\beth_{\omega}} = \beth_{\omega+1}$$

Remark. Five of the exercises involved the beths (the numbers \beth_{α}).

Problem 2.

- a) Write the definitions of the cardinal product $\kappa \cdot \lambda$ and the cardinal power κ^{λ} .
- b) Show that $(\kappa^{\lambda})^{\mu} = \kappa^{\lambda \cdot \mu}$.

Solution.

- a) $\kappa \cdot \lambda = \operatorname{card}(\kappa \times \lambda)$ and $\kappa^{\lambda} = \operatorname{card}({}^{\lambda}\kappa)$.
- b) [Short version:] There is a bijection from ${}^{\mu}({}^{\lambda}\kappa)$ to ${}^{\lambda\times\mu}\kappa$, namely the function that converts a function f on μ (where $f(\alpha)$ is a function $x \mapsto f(\alpha)(x)$ from λ to κ for all α in μ) to the function

$$(x, y) \mapsto f(y)(x)$$

[Long version:] We show there is a bijection Φ from $^{\mu}(^{\lambda}\kappa)$ to $^{\lambda\times\mu}\kappa$. An element of $^{\mu}(^{\lambda}\kappa)$ is a function f from μ to $^{\lambda}\kappa$. In particular, if $\alpha \in \mu$, then $f(\alpha)$ is a function from λ to κ . We can denote this function by

$$x \mapsto f(\alpha)(x).$$

We can convert f into a function $\Phi(f)$ from $\lambda \times \mu$ into κ by defining

$$\Phi(f)(x,y) = f(y)(x)$$

Then Φ is the desired bijection. Indeed, we can define a function Ψ from $^{\lambda \times \mu}\kappa$ to $^{\mu}(^{\lambda}\kappa)$ so that, if $g \in {}^{\lambda \times \mu}\kappa$, and $\alpha \in \mu$, then $\Psi(g)(\alpha)$ is the function

 $x \mapsto g(x, \alpha)$

from λ to κ . Then Ψ is the inverse of Φ , since

$$\Phi(\Psi(g))(x,y) = \Psi(g)(y)(x) = g(x,y),$$

so $\Phi(\Psi(g)) = g$, and

$$\Psi(\Phi(f))(y)(x) = \Phi(f)(x,y) = f(y)(x),$$

so $\Psi(\Phi(f)) = f$.

Remark. Part (b) was part of Exercise 25.

Problem 3. Let a be some nonempty set.

- a) What is a choice-function for a?
- b) Define a set b such that every subset of b that is linearly ordered by \subset has an upper bound in b, and every maximal element of b (with respect to \subset) is a choice-function for a.

Solution.

a) A choice-function for a is a function from $\mathscr{P}(a) \smallsetminus \{0\}$ (or $\mathscr{P}(a)$) to a such that

$$f(x) \in x$$

for all nonempty subsets x of a.

b) Let b be the set of functions f such that the domain of f is a subset of $\mathscr{P}(a) \setminus \{0\}$ and $f(x) \in x$ whenever x is a nonempty subset of a. In particular, if the domain of f is all of $\mathscr{P}(a) \setminus \{0\}$, then f is a choice-function for a. Suppose $g \in b$, but the domain of g is a proper subset of $\mathscr{P}(a) \setminus \{0\}$. Then some element c of $\mathscr{P}(a) \setminus \{0\}$ is not in the domain of g. Then c has an element d, and therefore $g \cup \{(c,d)\}$ is an element of b that is greater (with respect to \subset) than g; so g is not maximal. Thus a maximal element of b must have domain $\mathscr{P}(a) \setminus \{0\}$ and therefore be a choice-function for a.

Remark. Part (b) was part of Exercise 24.

Problem 4. Recall the definition

$$\mathbf{R}(0) = 0, \qquad \mathbf{R}(\alpha + 1) = \mathbf{R}(\alpha), \qquad \mathbf{R}(\beta) = \bigcup \{\mathbf{R}(x) \colon x \in \beta\},\$$

where β is a limit. Show that, for every subset a of $\bigcup \mathbf{R}[\mathbf{ON}]$, there is

- a) α such that $a \subseteq \mathbf{R}(\alpha)$,
- b) β such that $a \in \mathbf{R}(\beta)$.

Solution. The definition of **R** is given incorrectly in the statement of the problem. [This was my mistake. The correct definition had been given in the exercises, just before Exercise 28.] Under the given incorrect definition, $\mathbf{R}(\alpha) = 0$ for all α , so that $\bigcup \mathbf{R}[\mathbf{ON}] = 0$. The only subset of this is 0, and this is a subset of each $\mathbf{R}(\alpha)$, but it is not an element of any $\mathbf{R}(\alpha)$, since they are all empty. [This would have been an acceptable answer.]

Under the correct definition, $\mathbf{R}(\alpha + 1) = \mathscr{P}(\mathbf{R}(\alpha))$. Then the problem can be solved as follows.

a) Note that $\bigcup \mathbf{R}[\mathbf{ON}] = \bigcup \{\mathbf{R}(\alpha) : \alpha \in \mathbf{ON}\}$. If b is a member of this, let f(b) be the least ordinal α such that $b \in \mathbf{R}(\alpha)$. Let $\gamma = \sup\{f(x) : x \in a\}$. Then

$$a \subseteq \bigcup \{ \mathbf{R}(\delta) \colon \delta \leqslant \gamma \} \subseteq \bigcup \{ \mathbf{R}(\delta) \colon \delta < \gamma + \omega \} = \mathbf{R}(\gamma + \omega)$$

(since $\gamma + \omega$ is a limit). So we can let $\alpha = \gamma + \omega$.

b) If α is as in (a), then $a \in \mathscr{P}(\mathbf{R}(\alpha))$, which is $\mathbf{R}(\alpha+1)$; so we can let $\beta = \alpha + 1$.

Remark. In part (a), the ordinal f(b) must be a successor, which is rank(b) + 1 by definition of the rank function.

Scores.

	ΕA	PC	AF	Mİ	OŞ	NT	ÖΤ
1	4	5	5	1	5	11	5
2	1	2	3	1	3	5	4
3		2	1		1	4	2
4		1	2		0	3	0
	5	10	11	2	9	23	11