Second Examination solutions

Math 320, David Pierce

May 6, 2011

Problem 1. Write the following ordinals in Cantor normal form (that is, in base ω). All exponents should themselves be in normal form. (Exception: The exponent 1 and the coefficient 1 need not be written. In strict normal form, ω should be written as ω^{ω^0} or even $\omega^{\omega^0 \cdot 1} \cdot 1$; but this is not required.)

Solution.

a) $\omega + 2$ [already in normal form]

b)
$$2 + \omega = \omega$$

- c) $\omega^2 + \omega$ [already in normal form]
- d) $\omega + \omega^2 = \omega^2$
- e) $(\boldsymbol{\omega}+2) \cdot 2 = \boldsymbol{\omega} \cdot 2 + 2$
- f) $2 \cdot (\omega + 2) = 2 \cdot \omega + 2 \cdot 2 = \omega + 4$
- g) $(\omega + 2) \cdot \omega = \omega \cdot \omega = \omega^2$
- h) $(\omega + 2) \cdot (\omega + 2) = (\omega + 2) \cdot \omega + (\omega + 2) \cdot 2 = \omega^2 + \omega \cdot 2 + 2$ [by (g) and (e)]
- i) $(\omega + 2)^2 = \omega^2 + \omega \cdot 2 + 2$ [by (h)]

- j) $2^{\omega+2} = 2^{\omega} \cdot 2^2 = \omega \cdot 4$
- k) $(\omega + 2)^{\omega} = \omega^{\omega}$
- l) $(\omega + 2)^{\omega+2} = (\omega + 2)^{\omega} \cdot (\omega + 2)^2 = \omega^{\omega} \cdot (\omega^2 + \omega \cdot 2 + 2) = \omega^{\omega+2} + \omega^{\omega+1} \cdot 2 + \omega^{\omega} \cdot 2$ [by (k) and (i)]
- m) $(\omega^{\omega^{\omega}})^{\omega^{\omega^{\omega}}} = \omega^{\omega^{\omega} \cdot \omega^{\omega^{\omega}}} = \omega^{\omega^{\omega+\omega^{\omega}}} = \omega^{\omega^{\omega+\omega^{\omega}}}$
- n) $(\omega^{\omega^{\omega^{\omega}}})^{\omega^{\omega^{\omega}}} = \omega^{\omega^{\omega^{\omega} \cdot 2}} = \omega^{\omega^{\omega^{\omega} \cdot 2}}$

o)
$$2^{\omega^2} = (2^{\omega})^{\omega} = \omega^{\omega}$$

Remark. It is essential to distinguish between $2 + \omega$ (which is ω) and $\omega + 2$ (which is not). One cannot do anything with ordinals without having internalized this distinction (made it a part of oneself).

Some people misremembered various rules of arithmetic, or forgot the special conditions under which they apply. I don't try to memorize them, myself; I figure out what they must be, and I play with them, so that I develop a feeling for why they should be true.

Problem 2.

- a) State the recursive definition of ordinal addition.
- b) Prove from this definition that $0 + \alpha = \alpha$ for all α .

Solution.

- a) $\alpha + 0 = \alpha$ $\alpha + \beta' = (\alpha + \beta)'$ $\alpha + \gamma = \sup\{\alpha + x \colon x < \gamma\}$ if γ is a limit
- b) 0 + 0 = 0. If $0 + \alpha = \alpha$, then $0 + \alpha' = (0 + \alpha)' = \alpha'$. If β is a limit, and $0 + \alpha = \alpha$ whenever $\alpha < \beta$, then

$$0 + \beta = \sup_{\alpha < \beta} (0 + \alpha) = \sup_{\alpha < \beta} \alpha = \beta.$$

Problem 3. Prove that

 $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$

for all ordinals. Use only the recursive definitions of + and \cdot . You may use the normality of the functions $x \mapsto \alpha + x$ and $x \mapsto \beta \cdot x$ where $\beta > 0$, and you may use the theorem that makes normality useful (as the instructions above suggest).

Solution. We use induction on γ .

- i) $\alpha \cdot (\beta + 0) = \alpha \cdot \beta = \alpha \cdot \beta + 0 = \alpha \cdot \beta + \alpha \cdot 0.$
- ii) If $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$, then

$$\alpha \cdot (\beta + \gamma') = \alpha \cdot (\beta + \gamma)'$$

= $\alpha \cdot (\beta + \gamma) + \alpha$
= $(\alpha \cdot \beta + \alpha \cdot \gamma) + \alpha$
= $\alpha \cdot \beta + (\alpha \cdot \gamma + \alpha)$
= $\alpha \cdot \beta + \alpha \cdot \gamma'.$

iii) If δ is a limit, and $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$ whenever $\gamma < \delta$, then

$$\begin{aligned} \alpha \cdot (\beta + \delta) &= \alpha \cdot \sup_{\gamma < \delta} (\beta + \gamma) = \sup_{\gamma < \delta} (\alpha \cdot (\beta + \gamma)) \\ &= \sup_{\gamma < \delta} (\alpha \cdot \beta + \alpha \cdot \gamma) \\ &= \alpha \cdot \beta + \sup_{\gamma < \delta} (\alpha \cdot \gamma) = \alpha \cdot \beta + \alpha \cdot \delta \end{aligned}$$

Remark. The induction must be on γ ; nothing else works. With ordinals, all of the action that we know about from definitions happens on the *right*.

Problem 4. Assuming $\alpha > 1$, prove that the function $x \mapsto \alpha^x$ on **ON** is normal.

Solution. By definition, if β is a limit, then $\alpha^{\beta} = \sup\{\alpha^x \colon x < \beta\}$. Therefore it remains to show

$$\beta < \gamma \Rightarrow \alpha^{\beta} < \alpha^{\gamma}.$$

We prove this for all β , by induction on γ .

- i) The claim is vacuously true when $\gamma = 0$ [since it is never true that $\beta < 0$].
- ii) Suppose the claim is true when $\gamma = \delta$. If $\beta < \delta'$, then $\beta \leq \delta$, so

$$\alpha^{\beta} \leqslant \alpha^{\delta} < \alpha^{\delta} \cdot \alpha = \alpha^{\delta'}.$$

iii) Suppose δ is a limit, and the claim holds when $\gamma < \delta$. If now $\beta < \delta$, then $\beta < \beta' < \delta$, so

$$\alpha^{\beta} < \alpha^{\beta'} \leqslant \sup_{\gamma < \delta} \alpha^{\gamma} = \alpha^{\delta}.$$

Scores:

	EA	PC	AF	Μİ	MM	OŞ	NT	ÖΤ
1	10	13	8	2	7	13	13	9
2	2	5	5	2	0	5	5	4
3	0	5	5	0	0	0	5	0
4	2	0	2	0	0	4	2	2
	14	23	20	4	7	22	25	15