Second Examination solutions

Math 320, David Pierce

May 6, 2011

Problem 1. Write the following ordinals in Cantor normal form (that is, in base $\mathbf{\omega}$). All exponents should themselves be in normal form. (Exception: The exponent 1 and the coefficient 1 need not be written. In strict normal form, ω should be written as $\omega^{\omega^{0}}$ or even $\omega^{\omega^{0} \cdot 1} \cdot 1$; but this is not required.)

Solution.

a) $\omega+2$ [already in normal form]
b) $2+\omega=\omega$
j) $2^{\omega+2}=2^{\omega} \cdot 2^{2}=\omega \cdot 4$
k) $(\omega+2)^{\omega}=\omega^{\omega}$
c) $\omega^{2}+\omega$ [already in normal form]
l) $(\omega+2)^{\omega+2}=(\omega+2)^{\omega} \cdot(\omega+2)^{2}=$
d) $\omega+\omega^{2}=\omega^{2}$
e) $(\omega+2) \cdot 2=\omega \cdot 2+2$ $\omega^{\omega} \cdot\left(\omega^{2}+\omega \cdot 2+2\right)=\omega^{\omega+2}+\omega^{\omega+1}$. $2+\omega^{\omega} \cdot 2$ [by (k) and (i)]
f) $2 \cdot(\omega+2)=2 \cdot w+2 \cdot 2=\omega+4$
m) $\left(\omega^{\omega^{\omega}}{ }^{\omega}\right)^{\omega^{\omega^{\omega}}}=\omega^{\omega^{\omega} \cdot \omega^{\omega^{\omega}}}=\omega^{\omega^{\omega+\omega^{\omega}}}=$ $\omega^{\omega^{\omega}}$
g) $(\omega+2) \cdot \omega=\omega \cdot \omega=\omega^{2}$
h) $(\omega+2) \cdot(\omega+2)=(\omega+2) \cdot \omega+(\omega+$ 2) $\cdot 2=\omega^{2}+\omega \cdot 2+2[b y$ (g) and (e)]
n) $\left(\omega^{\omega^{\omega^{\omega}}}\right)^{\omega^{\omega^{\omega}}}=\omega^{\omega^{\omega^{\omega}} \cdot \omega^{\omega^{\omega}}}=$ $\omega^{\omega^{\omega^{\omega}+\omega^{\omega}}}=\omega^{\omega^{\omega^{\omega} \cdot 2}}$
i) $(\omega+2)^{2}=\omega^{2}+\omega \cdot 2+2[$ by (h)]
o) $2^{\omega^{2}}=\left(2^{\omega}\right)^{\omega}=\omega^{\omega}$

Remark. It is essential to distinguish between $2+\omega$ (which is ω) and $\omega+2$ (which is not). One cannot do anything with ordinals without having internalized this distinction (made it a part of oneself).

Some people misremembered various rules of arithmetic, or forgot the special conditions under which they apply. I don't try to memorize them, myself; I figure out what they must be, and I play with them, so that I develop a feeling for why they should be true.

Problem 2.

a) State the recursive definition of ordinal addition.
b) Prove from this definition that $0+\alpha=\alpha$ for all α.

Solution.

a) $\alpha+0=\alpha$
$\alpha+\beta^{\prime}=(\alpha+\beta)^{\prime}$
$\alpha+\gamma=\sup \{\alpha+x: x<\gamma\}$ if γ is a limit
b) $0+0=0$.

If $0+\alpha=\alpha$, then $0+\alpha^{\prime}=(0+\alpha)^{\prime}=\alpha^{\prime}$.
If β is a limit, and $0+\alpha=\alpha$ whenever $\alpha<\beta$, then

$$
0+\beta=\sup _{\alpha<\beta}(0+\alpha)=\sup _{\alpha<\beta} \alpha=\beta .
$$

Problem 3. Prove that

$$
\alpha \cdot(\beta+\gamma)=\alpha \cdot \beta+\alpha \cdot \gamma
$$

for all ordinals. Use only the recursive definitions of + and \cdot. You may use the normality of the functions $x \mapsto \alpha+x$ and $x \mapsto \beta \cdot x$ where $\beta>0$, and you may use the theorem that makes normality useful (as the instructions above suggest).

Solution. We use induction on γ.
i) $\alpha \cdot(\beta+0)=\alpha \cdot \beta=\alpha \cdot \beta+0=\alpha \cdot \beta+\alpha \cdot 0$.
ii) If $\alpha \cdot(\beta+\gamma)=\alpha \cdot \beta+\alpha \cdot \gamma$, then

$$
\begin{aligned}
\alpha \cdot\left(\beta+\gamma^{\prime}\right) & =\alpha \cdot(\beta+\gamma)^{\prime} \\
& =\alpha \cdot(\beta+\gamma)+\alpha \\
& =(\alpha \cdot \beta+\alpha \cdot \gamma)+\alpha \\
& =\alpha \cdot \beta+(\alpha \cdot \gamma+\alpha) \\
& =\alpha \cdot \beta+\alpha \cdot \gamma^{\prime} .
\end{aligned}
$$

iii) If δ is a limit, and $\alpha \cdot(\beta+\gamma)=\alpha \cdot \beta+\alpha \cdot \gamma$ whenever $\gamma<\delta$, then

$$
\begin{aligned}
\alpha \cdot(\beta+\delta)=\alpha \cdot \sup _{\gamma<\delta}(\beta+\gamma) & =\sup _{\gamma<\delta}(\alpha \cdot(\beta+\gamma)) \\
& =\sup _{\gamma<\delta}(\alpha \cdot \beta+\alpha \cdot \gamma) \\
& =\alpha \cdot \beta+\sup _{\gamma<\delta}(\alpha \cdot \gamma)=\alpha \cdot \beta+\alpha \cdot \delta
\end{aligned}
$$

Remark. The induction must be on γ; nothing else works. With ordinals, all of the action that we know about from definitions happens on the right.

Problem 4. Assuming $\alpha>1$, prove that the function $x \mapsto \alpha^{x}$ on $\mathbf{O N}$ is normal.
Solution. By definition, if β is a limit, then $\alpha^{\beta}=\sup \left\{\alpha^{x}: x<\beta\right\}$. Therefore it remains to show

$$
\beta<\gamma \Rightarrow \alpha^{\beta}<\alpha^{\gamma} .
$$

We prove this for all β, by induction on γ.
i) The claim is vacuously true when $\gamma=0$ [since it is never true that $\beta<0$].
ii) Suppose the claim is true when $\gamma=\delta$. If $\beta<\delta^{\prime}$, then $\beta \leqslant \delta$, so

$$
\alpha^{\beta} \leqslant \alpha^{\delta}<\alpha^{\delta} \cdot \alpha=\alpha^{\delta^{\prime}} .
$$

iii) Suppose δ is a limit, and the claim holds when $\gamma<\delta$. If now $\beta<\delta$, then $\beta<\beta^{\prime}<\delta$, so

$$
\alpha^{\beta}<\alpha^{\beta^{\prime}} \leqslant \sup _{\gamma<\delta} \alpha^{\gamma}=\alpha^{\delta}
$$

Scores:

	EA	PC	AF	Mİ	MM	OŞ	NT	ÖT
1	10	13	8	2	7	13	13	9
2	2	5	5	2	0	5	5	4
3	0	5	5	0	0	0	5	0
4	2	0	2	0	0	4	2	2
	14	23	20	4	7	22	25	15

