Exam 1 solutions

Math 320, David Pierce

April 7, 2011

[Instructions given with exam:]

- This examination assumes the axioms of Equality, Null Set, Adjunction, Separation, Replacement, Union, and Infinity.
- Proofs are not required, unless they are explicitly asked for.
- In proofs, you may use any theorem that we know, unless you are being asked to prove that theorem.
- All problems have equal weight.

Problem 1. Let a and b be sets.
a) Write down a formula that defines the class denoted by $a \times b$. If you use any symbols other than $a, b, \in,=$, and logical symbols, you should define them.
b) Prove that $a \times b$ is a set.

Solution.

a) Such a formula is

$$
\exists x \exists y(z=(x, y) \wedge x \in a \wedge y \in b)
$$

where:

- $z=(x, y)$ stands for $z=\{\{x\},\{x, y\}\}$,
- $z=\{u, v\}$ stands for $\forall x(x \in z \Leftrightarrow x=u \vee x=v)$,
- $x=\{u\}$ stands for $\forall y(y \in x \Leftrightarrow y=u)$.
b) By the Null Set and Adjunction axioms, ordered pairs are sets. Therefore, for each c in a, there is a well-defined function

$$
y \mapsto(c, y)
$$

on b. The image of b under this function is the class $\{c\} \times b$; this class is a set, by the Replacement Axiom. Therefore there is a well-defined function

$$
x \mapsto\{x\} \times b
$$

on a. The image of a under this function is the class

$$
\{\{x\} \times b: x \in a\} ;
$$

this is a set, again by Replacement. By the Union Axiom, the class

$$
\bigcup\{\{x\} \times b: x \in a\}
$$

is a set; but this class is just $a \times b$.
Remark. This problem was Exercise 18; it is also Theorem 74 of the notes. For example, if $a=3=\{0,1,2\}$, then

$$
a \times b=(\{0\} \times b) \cup(\{1\} \times b) \cup(\{2\} \times b)=\bigcup\{\{k\} \times b: k \in 3\} .
$$

Problem 2. Write down:
a) A transitive set that is not an ordinal.
b) A set that is well-ordered by membership, but is not an ordinal.

Solution.

a) $\{0,\{0\},\{\{0\}\}\}$.
b) $\{\{0\}\}$.

Remark. There are many possible answers; those given are probably the simplest. One can approach this problem as follows:
a) Start with a set a that is not an ordinal, then find the smallest set b that contains a and is transitive. The simplest set that is not an ordinal is $\{1\}$, that is, $\{\{0\}\}$; let this be a. Then $a \in b$, so we must also have $a \subseteq b$, which means $1 \in b$. So $\{a, 1\} \subseteq b$. But since $1 \in b$, we must have $1 \subseteq b$, that is, $0 \in b$. So $\{a, 1,0\} \subseteq b$. We are done: the set $\{a, 1,0\}$, is now transitive, but it is not an ordinal, since a is not an ordinal.
b) Every set of ordinals is well-ordered by membership. So take a set of ordinals that is not an ordinal. A set of one ordinal is enough, as long as that ordinal is not 0 .

Problem 3. Either prove or give a counterexample:
a) Every set of ordinals has a supremum.
b) Every class of ordinals has a supremum.

Solution.

a) Let a be a set of ordinals. Then its supremum is $\bigcup a$: we prove this as follows.
First, $\bigcup a$ is an ordinal. For, each ordinal is a set of ordinals, so $\bigcup a$ is a set of ordinals, and therefore it is well-ordered by membership. Moreover, if $\alpha \in \bigcup a$, then $\alpha \in \beta$ for some β in a, so $\alpha \subset \beta$, but also $\beta \subseteq \bigcup a$, so $\alpha \subset \bigcup a$. Thus $\bigcup a$ is also transitive. Therefore it is an ordinal.
Now, if $\alpha \in a$, then $\alpha \subseteq \bigcup a$. Thus $\bigcup a$ is an upper bound of a. If β is an upper bound, then for all α in a, we have $\alpha \subseteq \beta$; but this shows $\bigcup a \subseteq \beta$. Thus $\bigcup a$ is the least upper bound of a.
b) The class $\mathbf{O N}$ itself has no supremum, since it is closed under $x \mapsto$ x^{\prime}, and $x \in x^{\prime}$.

Remark. The offered solution uses implicitly the theorem that, on ON, the relations \in and \subset are the same (and are the relation by which $\mathbf{O N}$ is well-ordered). Part (a) is really Theorem 69 of the notes.

Problem 4.

a) Find a set of successor ordinals whose supremum is a limit ordinal.
b) Prove that there is no set of limit ordinals whose union is a successor ordinal.

Solution.

a) $\omega=\sup \{n+1: n \in \omega\}$.
b) Say a is a set of limit ordinals, and let $\beta=\sup (a)$. If $\beta \in a$, it is a limit. Say $\beta \notin a$. Then for all α, if $\alpha<\beta$, then $\alpha<\gamma<\beta$ for some γ in a, and then $\alpha^{\prime} \leqslant \gamma<\beta$. Thus β is still a limit, or 0 .

Problem 5. Prove or disprove:
a) $k+n=n+k$ for all natural numbers k and n.
b) $\alpha+\beta=\beta+\alpha$ for all ordinals α and β.

Solution.

a) The statement is true. To prove it, we shall use the definition of addition on ω :

$$
k+0=k, \quad k+n^{\prime}=(k+n)^{\prime}
$$

We first show $0+k$ by induction:
i) $0+0=0$ by definition of + .
ii) If $0+k=k$, then

$$
\begin{aligned}
0+k^{\prime} & =(0+k)^{\prime} & & \text { [by definition of }+ \text {] } \\
& =k^{\prime} & & {[\text { by inductive hypothesis]. }}
\end{aligned}
$$

Next, we show $n^{\prime}+k=(n+k)^{\prime}$ by induction:
i) $n^{\prime}+0=n^{\prime}=(n+0)^{\prime}$.
ii) If $n^{\prime}+k=(n+k)^{\prime}$, then

$$
\begin{aligned}
n^{\prime}+k^{\prime} & =\left(n^{\prime}+k\right)^{\prime} & & {[\text { by definition of }+] } \\
& =(n+k)^{\prime \prime} & & {[\text { by inductive hypothesis] }} \\
& =\left(n+k^{\prime}\right)^{\prime} & & {[\text { by definition of }+] . }
\end{aligned}
$$

Now we can prove the original claim by induction:
i) $n+0=n=0+n$.
ii) If $n+k=k+n$, then

$$
\begin{array}{rlr}
n+k^{\prime} & =(n+k)^{\prime} & \\
& =(k+n)^{\prime} & \text { [by inductive hypothesis] } \\
& =k^{\prime}+n . &
\end{array}
$$

b) The statement is false:

$$
\begin{aligned}
1+\omega & =\sup \{1+n: n \in \omega\} \\
& =\sup \{n+1: n \in \omega]\} \\
& =\omega \\
& \neq \omega+1
\end{aligned}
$$

Remark. In part (a), it was not strictly required to prove the preliminary lemmas, since it is permitted to assume Lemma 7 of the notes. What is to be proved in part (a) is Theorem 31 of the notes; and doing this was Exercise 8.

