
Exam  solutions

Math , David Pierce

April , 

[Instructions given with exam:]
• This examination assumes the axioms of Equality, Null Set, Ad-
junction, Separation, Replacement, Union, and Infinity.

• Proofs are not required, unless they are explicitly asked for.
• In proofs, you may use any theorem that we know, unless you are
being asked to prove that theorem.

• All problems have equal weight.

Problem . Let a and b be sets.
a) Write down a formula that defines the class denoted by a×b. If you

use any symbols other than a, b, ∈, =, and logical symbols, you should
define them.
b) Prove that a× b is a set.

Solution.
a) Such a formula is

∃x ∃y (z = (x, y) ∧ x ∈ a ∧ y ∈ b),

where:

• z = (x, y) stands for z = {{x}, {x, y}},
• z = {u, v} stands for ∀x (x ∈ z ⇔ x = u ∨ x = v),

• x = {u} stands for ∀y (y ∈ x⇔ y = u).





b) By the Null Set and Adjunction axioms, ordered pairs are sets.
Therefore, for each c in a, there is a well-defined function

y 7→ (c, y)

on b. The image of b under this function is the class {c} × b; this class
is a set, by the Replacement Axiom. Therefore there is a well-defined
function

x 7→ {x} × b

on a. The image of a under this function is the class

{{x} × b : x ∈ a};

this is a set, again by Replacement. By the Union Axiom, the class⋃
{{x} × b : x ∈ a}

is a set; but this class is just a× b.

Remark. This problem was Exercise ; it is also Theorem  of the
notes. For example, if a = 3 = {0, 1, 2}, then

a× b = ({0} × b) ∪ ({1} × b) ∪ ({2} × b) =
⋃
{{k} × b : k ∈ 3}.

Problem . Write down:
a) A transitive set that is not an ordinal.
b) A set that is well-ordered by membership, but is not an ordinal.

Solution.
a) {0, {0}, {{0}}}.
b) {{0}}.

Remark. There are many possible answers; those given are probably the
simplest. One can approach this problem as follows:
a) Start with a set a that is not an ordinal, then find the smallest set b

that contains a and is transitive. The simplest set that is not an ordinal
is {1}, that is, {{0}}; let this be a. Then a ∈ b, so we must also have
a ⊆ b, which means 1 ∈ b. So {a, 1} ⊆ b. But since 1 ∈ b, we must have
1 ⊆ b, that is, 0 ∈ b. So {a, 1, 0} ⊆ b. We are done: the set {a, 1, 0}, is
now transitive, but it is not an ordinal, since a is not an ordinal.





b) Every set of ordinals is well-ordered by membership. So take a set
of ordinals that is not an ordinal. A set of one ordinal is enough, as long
as that ordinal is not 0.

Problem . Either prove or give a counterexample:
a) Every set of ordinals has a supremum.
b) Every class of ordinals has a supremum.

Solution.
a) Let a be a set of ordinals. Then its supremum is

⋃
a: we prove this

as follows.
First,

⋃
a is an ordinal. For, each ordinal is a set of ordinals, so

⋃
a is a

set of ordinals, and therefore it is well-ordered by membership. Moreover,
if α ∈

⋃
a, then α ∈ β for some β in a, so α ⊂ β, but also β ⊆

⋃
a, so

α ⊂
⋃
a. Thus

⋃
a is also transitive. Therefore it is an ordinal.

Now, if α ∈ a, then α ⊆
⋃
a. Thus

⋃
a is an upper bound of a. If β is an

upper bound, then for all α in a, we have α ⊆ β; but this shows
⋃
a ⊆ β.

Thus
⋃
a is the least upper bound of a.

b) The class ON itself has no supremum, since it is closed under x 7→
x′, and x ∈ x′.

Remark. The offered solution uses implicitly the theorem that, on ON,
the relations ∈ and ⊂ are the same (and are the relation by which ON
is well-ordered). Part (a) is really Theorem  of the notes.

Problem .
a) Find a set of successor ordinals whose supremum is a limit ordinal.
b) Prove that there is no set of limit ordinals whose union is a successor

ordinal.

Solution.
a) ω = sup{n+ 1: n ∈ ω}.
b) Say a is a set of limit ordinals, and let β = sup(a). If β ∈ a, it is a

limit. Say β /∈ a. Then for all α, if α < β, then α < γ < β for some γ in
a, and then α′ 6 γ < β. Thus β is still a limit, or 0.

Problem . Prove or disprove:
a) k + n = n+ k for all natural numbers k and n.
b) α+ β = β + α for all ordinals α and β.

Solution.





a) The statement is true. To prove it, we shall use the definition of
addition on ω:

k + 0 = k, k + n′ = (k + n)′.

We first show 0 + k by induction:
i) 0 + 0 = 0 by definition of +.
ii) If 0 + k = k, then

0 + k′ = (0 + k)′ [by definition of +]
= k′ [by inductive hypothesis].

Next, we show n′ + k = (n+ k)′ by induction:
i) n′ + 0 = n′ = (n+ 0)′.
ii) If n′ + k = (n+ k)′, then

n′ + k′ = (n′ + k)′ [by definition of +]
= (n+ k)′′ [by inductive hypothesis]
= (n+ k′)′ [by definition of +].

Now we can prove the original claim by induction:
i) n+ 0 = n = 0 + n.
ii) If n+ k = k + n, then

n+ k′ = (n+ k)′

= (k + n)′ [by inductive hypothesis]
= k′ + n.

b) The statement is false:

1 +ω = sup{1 + n : n ∈ ω}
= sup{n+ 1: n ∈ ω]}
= ω

6= ω+ 1.

Remark. In part (a), it was not strictly required to prove the preliminary
lemmas, since it is permitted to assume Lemma  of the notes. What is
to be proved in part (a) is Theorem  of the notes; and doing this was
Exercise .




