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Preface

This is a summary of ordinals, as we are studying them. You should be able
to give proofs by transfinite induction of the basic properties of ordinal arith-
metic (addition, multiplication, and exponentiation of ordinals). If you omit
the limit steps from these proofs, then you have proved the same properties
of natural numbers, by ordinary induction.

 Introduction

.. By definition, an ordinal (or ordinal number) is a transitive set that
is well-ordered by membership (∈). Ordinals are denoted by α, β, γ, δ, . . .

.. The class of ordinals is denoted by ON. This is a transitive class that
is well-ordered by membership. Therefore it is a proper class: it is not a
set. On ON, membership is the same as proper inclusion (⊂) and may be
denoted by <. So each ordinal is the set of its predecessors in ON: that is,
α = {x ∈ ON : x < α}.

.. The class ON:

(a) contains ∅, which is also denoted by 0 and called zero;

(b) is closed under the successor-operation, x 7→ x′, where x′ = x∪{x};

(c) contains the union of each of its subsets.

.. The union of a subset of ON is also its supremum (least upper bound):⋃
a = sup(a).

If a = {F (x) : ϕ(x)}, then sup(a) can be written as supϕ(x) F (x).

.. There are three kinds of ordinals:

(a) zero;



(b) successors, namely, ordinals α′;

(c) limits (non-zero non-successors).

The successor of 0 is 1; the successor of 1 is 2; and so on. The first limit is
ω, the set of natural numbers, which is the smallest set containing 0 and
closed under x 7→ x′. In these notes, λ will always denote a limit, and n will
always denote a natural number. So α < λ ⇒ α′ < λ, which implies

sup(λ) = λ.

Also, sup(0) = 0, but sup(α′) = α.

 Induction and recursion

.. Proof by transfinite induction is possible in ON: if C ⊆ ON, and

(a) 0 ∈ C (the base step),

(b) α ∈ C ⇒ α′ ∈ C (the successor step),

(c) λ ⊆ C ⇒ λ ∈ C (the limit step),

then C = ON. (There are also alternative formulations of this procedure.)

.. Definition by transfinite recursion is possible on ON: if α is an
ordinal, and F is a singulary operation on ON, and G : P(ON) → ON,
then there is a unique singulary operation H on ON such that

(a) H(0) = α,

(b) H(β′) = F (H(β)),

(c) H(λ) = G(H[λ ]).

(There are also alternative versions of this kind of definition.)

 Operations

.. By recursion in the second argument, we can define the binary opera-
tions of addition, multiplication, and exponentiation on ON:

α + 0 = α, α · 0 = 0, α0 = 1,

α + β′ = (α + β)′, α · β′ = α · β + α, αβ′
= αβ · α,

α + λ = sup
x<λ

(α + x); α · λ = sup
x<λ

(α · x); αλ = sup
0<x<λ

(αx).

(Alternative definitions in terms of order types are also possible.)
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.. A singulary operation F on ON is normal if:

(a) α < β ⇒ F (α) < F (β) (that is, F is strictly order-preserving);

(b) F (λ) = supx<λ F (x).

If F is normal, and a ⊆ ON, then we can show

(c) F (sup(a)) = supx∈a F (x).

.. By definition, the operations x 7→ α + x and x 7→ α · x satisfy part (b)
of the definition of normality; so does x 7→ αx, if α 6= 0. However, the
successor-operation is not normal, even though it satisfies (a); indeed, since
α < λ ⇒ α′ < λ, we have {x′ : x < λ} ⊆ λ, so

sup
x<λ

(x′) = sup{x′ : x < λ} 6 sup(λ) = λ < λ′.

 Arithmetic

.. By induction, we can establish the basic properties of:

(a) addition:

i. β < γ ⇒ α + β < α + γ, so x 7→ α + x is normal;

ii. addition is associative: α + (β + γ) = (α + β) + γ;

iii. 0 + α = α;

iv. α 6 β ⇒ α + γ 6 β + γ;

(b) multiplication:

i. if 0 < α, then β < γ ⇒ α · β < α · γ, so x 7→ α · x is normal;

ii. multiplication is associative: α · (β · γ) = (α · β) · γ;

iii. multiplication from the left distributes over addition: α ·(β+γ) =
α · β + α · γ;

iv. 1 · α = α;

v. α 6 β ⇒ α · γ 6 β · γ;

(c) exponentiation:

i. if 1 < α, then β < γ ⇒ αβ < αγ , so x 7→ αx is normal;

ii. αβ+γ = αβ · αγ ;

iii. (αβ)γ = αβ·γ ;

iv. 0 < α ⇒ 0α = 0;

v. 1α = 1;
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vi. α 6 β ⇒ αγ 6 βγ .

.. We now have the following initial segment of ω; every entry is a limit
if it is not of the form α + n, where n ∈ ω:

0, 1, 2, . . . ;
ω,ω + 1,ω + 2, . . . ;
ω + ω = ω · 2,ω · 2 + 1, . . . ;ω · 3, . . . ;

ω ·ω = ω2,ω2 + 1, . . . ;ω2 + ω, . . . ;ω2 + ω · 2, . . . ;ω2 · 2, . . . ;ω3, . . . ;

ωω, . . . ;ωω+1, . . . ;ωω·2, . . . ;ωω2
, . . . ;ωωω

, . . .

. Theorem and Definition. If α 6 β, then the equation

α + x = β

has a unique solution, which can be denoted by

β − α.

Proof. If there is some solution, then its uniqueness follows, since x 7→ α+x
is strictly order-preserving. We prove existence by induction on β:

(a) If β = 0 and α 6 β, then α = 0, so α + 0 = β.

(b) Suppose the claim holds when β = γ. Say α 6 γ′. If α = γ′, then
α + 0 = γ′. If α < γ′, then α 6 γ, so γ − α exists, and then

α + (γ − α)′ = (α + (γ − α))′ = γ′.

Thus the claim holds when β = γ′.

(c) Suppose the claim holds when β < λ. Say α 6 λ. If α = λ, then
α + 0 = λ. Now suppose α < λ. We shall show

α + sup{x : α + x < λ} = λ. (∗)

Since x 7→ α + x is normal, we have

α + sup{x : α + x < λ} = sup{α + x : α + x < λ} 6 sup(λ) = λ.

For the reverse inequality, suppose α 6 γ < λ. Then γ − α exists and
is a member of {x : α + x < λ}, so

γ − α 6 sup{x : α + x < λ},
γ = α + (γ − α) 6 α + sup{x : α + x < λ}.

Therefore λ 6 α + sup{x : α + x < λ}, and (∗) holds. This completes
the induction and the proof.
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.. Addition and multiplication on ω have properties that fail on ON. As
we can prove by induction, on ω:

(a) addition is commutative: n + m = m + n;

(b) multiplication is commutative: n ·m = m · n;

(c) multiplication distributes from the right: (n + m) · k = n · k + m · k.

However, on ON,

(a) addition does not commute: 1 + ω < ω + 1, since

1 + ω = sup{1 + x : x ∈ ω} 6 sup(ω) = ω < ω + 1;

(b) multiplication does not commute: 2 ·ω < ω · 2, since

2 ·ω = sup{2 · x : x ∈ ω} 6 sup(ω) = ω < ω · 2,

(c) multiplication does not distribute: (1 + 1) ·ω < 1 ·ω + 1 ·ω.

 Base ω

.. The remainder of these notes investigates the possibility of computa-
tions with ordinals.

. Lemma. β < α ⇒ ωβ + ωα = ωα.

. Lemma. β + α = α ⇒ (α + β) · γ =

{
α · γ + β, if γ is a successor;
α · γ, if γ is a limit or 0.

.. An algorithm for writing a positive natural number n in decimal or
“base-ten” notation is the following:

(a) Find k such that 10k 6 n < 10k+1;

(b) find n0 such that 10k · n0 6 n < 10k · (n0 + 1);

(c) find n1 such that 10k ·n0 + 10k−1 ·n1 6 n < 10k ·n0 + 10k−1 · (n1 + 1);

(d) and so on.

Then

n = 10k · n0 + 10k−1 · n1 + · · ·+ nk =
k∑

i=0

10k−i · ni,

and we may write n simply as n0 n1 · · ·nk. A similar procedure allows us
to write any ordinal in base ω. We first need to know that sufficiently large
powers of ω can be found:
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. Lemma. α 6 ωα, so α < ωα′ .

. Lemma. If 0 < α, then there are (unique) β and n such that

ωβ · n 6 α < ωβ · (n + 1).

Proof. If α ∈ ω, then β = 0 and n = α. Now assume ω 6 α. By the
previous lemma, the class {x : ωx 6 α} is bounded above by α; so the class
is a subset of α′; so the class is a set. Let β be its supremum. Then 1 6 β.
By normality of x 7→ αx, we have

ωβ = sup({ωx : ωx 6 α}) 6 α.

Now, α < ωβ′
= ωβ ·ω. By normality of x 7→ ωβ · x, there is a greatest n

such that ωβ · n 6 α. Then α < ωβ · (n′) = ωβ · n + ωβ . So β and n are as
desired. (Uniqueness is straightforward.)

. Theorem. For every positive ordinal α, for some positive k in ω, there
are ordinals β0, . . . , βk, and there are positive natural numbers n0, . . . , nk−1

and a natural number nk, such that

α = ωβ0 · n0 + · · ·+ ωβk · nk,

where βk < · · · < β0.

Proof. Apply the previous lemma repeatedly, to α, and then to α −ωβ · n,
and so on. The process must end, since there is no infinite strictly descending
sequence of ordinals.

.. We can add and multiply ordinals in base ω; for example,

(ωω+1 · 3 + ω6 · 4 + 1) · (ωω2 · 2 + 3)

= (ωω+1 · 3 + ω6 · 4 + 1) · (ωω2 · 2) + (ωω+1 · 3 + ω6 · 4 + 1) · 3

= (ωω+1 · 3) · (ωω2 · 2) + (ωω+1 · 3) · 3 + ω6 · 4 + 1

= ωω+1 · (3 ·ωω2
) · 2 + ωω+1 · (3 · 3) + ω6 · 4 + 1

= (ωω+1 ·ωω2
) · 2 + ωω+1 · 9 + ω6 · 4 + 1

= (ωω+1+ω2
) · 2 + ωω+1 · 9 + ω6 · 4 + 1

= (ωω2
) · 2 + ωω+1 · 9 + ω6 · 4 + 1.
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