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Preface

This is a summary of ordinals, as we are studying them. You should be able
to give proofs by transfinite induction of the basic properties of ordinal arith-
metic (addition, multiplication, and exponentiation of ordinals). If you omit
the limit steps from these proofs, then you have proved the same properties
of natural numbers, by ordinary induction.

1 Introduction

1.1. By definition, an ordinal (or ordinal number) is a transitive set that
is well-ordered by membership (€). Ordinals are denoted by «, 3, 7, 0, ...

1.2. The class of ordinals is denoted by ON. This is a transitive class that
is well-ordered by membership. Therefore it is a proper class: it is not a
set. On ON, membership is the same as proper inclusion (C) and may be
denoted by <. So each ordinal is the set of its predecessors in ON: that is,
a={r € ON: z<a}l.

1.3. The class ON:
(a) contains &, which is also denoted by 0 and called zero;
(b) is closed under the successor-operation, x — 2/, where 2’ = zU{xz};
(c) contains the union of each of its subsets.

1.4. The union of a subset of ON is also its supremum (least upper bound):

U a = sup(a).

If a={F(x): ¢(x)}, then sup(a) can be written as sup, F(z).
1.5. There are three kinds of ordinals:

(a) zero;



(b) successors, namely, ordinals o;
(c) limits (non-zero non-successors).

The successor of 0 is 1; the successor of 1 is 2; and so on. The first limit is
w, the set of natural numbers, which is the smallest set containing 0 and
closed under = +— z’. In these notes, A will always denote a limit, and n will
always denote a natural number. So a < X = o < A\, which implies

sup(A) = A

Also, sup(0) = 0, but sup(a’) = a.

2 Induction and recursion

2.1. Proof by transfinite induction is possible in ON: if C' C ON, and
(a) 0 € C (the base step),
(b) o € C = o € C (the successor step),
(¢c) ACC = X e C (the limit step),

then C'= ON. (There are also alternative formulations of this procedure.)

2.2. Definition by transfinite recursion is possible on ON: if « is an
ordinal, and F' is a singulary operation on ON, and G: P(ON) — ON,
then there is a unique singulary operation H on ON such that

(a) H(0) = o,
(b) H(5') = F(H(9)),
(c) H(A) = G(H[A]).

(There are also alternative versions of this kind of definition.)

3 Operations

3.1. By recursion in the second argument, we can define the binary opera-
tions of addition, multiplication, and exponentiation on ON:

a+0=aq, a-0=0, aozl,

a+ﬂ/:(a+ﬁ)', a~ﬁ':a-ﬁ+o¢, aﬁ/:aﬂ'aa

a+ A =sup(a+x); a-A=sup(a-x); o= sup (o).
<A <A 0<z<A

(Alternative definitions in terms of order types are also possible.)



3.2. A singulary operation F' on ON is normal if:
(a) a < 8= F(a) < F(B) (that is, F is strictly order-preserving);
(b) F(A) = sup, < F().

If F is normal, and ¢ € ON, then we can show
(c) F(sup(a)) = sup,e, F ().

3.3. By definition, the operations z +— « + x and x — « - x satisfy part (b)
of the definition of normality; so does x — o, if a # 0. However, the
successor-operation is not normal, even though it satisfies (a); indeed, since
a<A=a <\ wehave {z/: z <A} C )\, so

sup(2’) = sup{z’: z < A\} <sup(\) = A < \.
<

4 Arithmetic

4.1. By induction, we can establish the basic properties of:
(a) addition:

i. f<y=>a+0<a+7,s0x+— a+ x is normal;
ii. addition is associative: a+ (84 ) = (a + 8) + 73
iii. 0+ a=aq;
iv.a<f=>a+y< B+
(b) multiplication:

i. if0<aq,then B<vy=a-06<a-7v,80 ¢+ a-z is normal;
ii. multiplication is associative: a - (5 -7) = (a - 0) - 7v;
iii. multiplication from the left distributes over addition: «-(5+7) =
o ftoany,
iv. 1 a=qa;
v.as<fB=>a-v< 0
(c) exponentiation:
i. if 1 < o, then g <y = a” < a?, so z — o® is normal;
ii. &Pt =0l ar;
iii. () =abf;
iv. 0 <a=0%=0;
v. 1* =1;



vi. a<fB=a7 <G

4.2. We now have the following initial segment of w; every entry is a limit
if it is not of the form a + n, where n € w:

0,1,2,...;
w,w+1l,w+2,...;

wt+tw=w-2,w-2+1,...;w-3,...;

2 2 2 2 2
wWew=w,wH1. W, W W2, w2, WL

w® . ww—i—l . ww-2 . (Uw2 . ww“’
4.3 Theorem and Definition. If a < 3, then the equation
atxz=p0
has a unique solution, which can be denoted by

68— a.

Proof. If there is some solution, then its uniqueness follows, since z — a+x
is strictly order-preserving. We prove existence by induction on 3:

(a) f B=0and a < 3, then a =0, s0 a + 0 = 3.

(b) Suppose the claim holds when 8 = 4. Say a < 7. If a = +/, then
a+0=+"TIf a <+, then a < 7, so v — « exists, and then

/

at(y—a)=(a+(y—a) =7
Thus the claim holds when 8 = +'.

(¢) Suppose the claim holds when 5 < A. Say a < A. If @ = A, then
a+ 0= X. Now suppose a < A. We shall show

a+sup{z: a+z <A} =\ ()
Since x — « + x is normal, we have
a+sup{z: a+z <A} =sup{a+z:a+x <A} <sup(A) = A

For the reverse inequality, suppose a < v < A\. Then v — « exists and
is a member of {z: a+x < A}, so

v—a<sup{z: a+ 1z < A},
y=a+(y—a) <a+sup{z: a+x <A}

Therefore A < a4+ sup{z: o + 2 < A}, and (*) holds. This completes
the induction and the proof. O



4.4. Addition and multiplication on w have properties that fail on ON. As
we can prove by induction, on w:

(a) addition is commutative: n +m =m + n;

(b) multiplication is commutative: n-m =m - n;

(c¢) multiplication distributes from the right: (n+m)-k=n-k+m-k.
However, on ON,

(a) addition does not commute: 1+ w < w + 1, since

l+w=sup{l+z:z€w}<sup(w)=w < w+1;

(b) multiplication does not commute: 2 - w < w - 2, since

2-w=sup{2-z:z € w} <sup(w) =w < w-2,

(¢) multiplication does not distribute: (1+1) - w<1-w+1-w.

5 Base w

5.1. The remainder of these notes investigates the possibility of computa-
tions with ordinals.

5.2 Lemma. § < a = 0w’ + w® = w®.

a-v+ 0, ifvisa successor;

5.3 Lemma. f+a=a= (a+ ) -v= L
-, if v is a limit or 0.

5.4. An algorithm for writing a positive natural number n in decimal or
“base-ten” notation is the following;:

(a) Find k such that 10* < n < 108+1;
(b) find ng such that 10¥ - ng < n < 108 - (ng + 1);
(¢) find ny such that 10¥ - ng 4+ 10F~1 - ny < n < 10¥ - ng + 10571 (ng +1);
(d) and so on.
Then
k .
n=10"-ng+10" " ny 4 fnp=> 1057,
=0
and we may write n simply as ng nq---ng. A similar procedure allows us

to write any ordinal in base w. We first need to know that sufficiently large
powers of w can be found:



«

5.5 Lemma. o < w?®, so a < w®.

5.6 Lemma. If 0 < «, then there are (unique) B and n such that
w? n<a<w? (n+1).

Proof. If a € w, then § = 0 and n = . Now assume w < «. By the
previous lemma, the class {z: w® < a} is bounded above by «; so the class
is a subset of o/; so the class is a set. Let 3 be its supremum. Then 1 < .
By normality of z — ¥, we have

w? = sup({w®: w?® < a}) < o

Now, a < w? = w? - w. By normality of z — w? - z, there is a greatest n
such that w” - n < a. Then a < w? - (n') = w? - n4+ wP. So B and n are as
desired. (Uniqueness is straightforward.) O

5.7 Theorem. For every positive ordinal o, for some positive k in w, there
are ordinals By, ..., Bk, and there are positive natural numbers ng, ..., ng_1
and a natural number ng, such that

o= ng+ - 4+ whny,
where B < --- < Bo.

Proof. Apply the previous lemma repeatedly, to «, and then to a — w? - n,
and so on. The process must end, since there is no infinite strictly descending
sequence of ordinals. O

5.8. We can add and multiply ordinals in base w; for example,

(w‘”+1-3+w6-4—|—1)-(ww2-2+3)
= (@ 34wl 44+1) (W 2) + (Wt 3+l 441)-3
= (W 3) (- 2) + (W 3) - 34+ wb-4+1
:ww-‘rl.(3.ww2).2+ww+l.<3_3)+w6_4+1
:(ww+1'wwz)'2+ww+1'9+w6_4+1
= (WP g4 @t g4 @b 441

= (W) 24+ w9+ @b 441,



