DAVID PIERCE

Solution 1. A. The substitution $x=t-1$ converts $(*)$ into (\dagger); so x is a solution to $(*)$ if and only if $x+1$ is a solution to $(\dagger))$.
B. From (\dagger) we have

$$
\frac{t^{2}}{9}=\frac{t+1}{t}, \quad \frac{t}{3}=\frac{y}{t}=\frac{t+1}{y}
$$

for some y; that is, we can solve (\dagger) by simultaneously solving $t / 3=y / t$ and $y / t=(t+1) / y$, that is,

$$
t^{2}=3 y, \quad y^{2}=t(t+1)
$$

These equations define a parabola and a hyperbola, respectively, as below. Then $A B$ is a solution to (\dagger).

C. The negative solutions of (\dagger) are $C D$ and $E F$. (The parabola and hyperbola intersect also at G, but no solution to (\dagger) corresponds to this, since the corresponding value of y is 0 .)
D. Let $t=u+v$; then

$$
t^{3}=3 u v t+u^{3}+v^{3}
$$

Then (\dagger) holds, provided $u v=3$ and $u^{3}+v^{3}=9$. Solving these, we have

$$
u^{6}+u^{3} v^{3}=9 u^{3}, \quad u^{6}+27=9 u^{3}, \quad u^{3}=\frac{9}{2} \pm \sqrt{\frac{81}{4}-27}=\frac{9 \pm 3 \sqrt{-3}}{2} .
$$

So if u is a cube root of $(9+3 \sqrt{-3}) / 2$, then one solution to (\dagger) is $u+3 / u$.
Remark. Cardano could not give a meaning to the solution we found in the last part; today we can, and the three choices of the cube root give the three solutions found geometrically earlier.

Solution 2. A. If (\ddagger) holds, then in particular it holds when C is F. Therefore (\ddagger) is equivalent to
$\frac{C D^{2}}{A C \times C B}=\frac{E F^{2}}{A F \times F B}=\frac{a^{2}}{b^{2}}, \quad \frac{x^{2}}{b^{2}-y^{2}}=\frac{a^{2}}{b^{2}}, \quad b^{2} x^{2}=a^{2} b^{2}-a^{2} y^{2}$,
which is equivalent to $(\|)$.
B. Let $H G=e$. Then (§) becomes

$$
\frac{e-b}{e+b}=\frac{b-d}{b+d}
$$

which yields $e=b^{2} / d$.
C. Since $C D L \sim F E G$, and

$$
F E G=\frac{1}{2}\left(\frac{b^{2}}{d}-d\right) c,
$$

we have

$$
C D L=\frac{x^{2}}{c^{2}} F E G=\frac{x^{2}}{2 c}\left(\frac{b^{2}}{d}-d\right)
$$

We assume angle $B A K$ is right; otherwise, we can just multiply throughout by its sine.) Also $A H K$ and $C H M$ are both similar to $F H E$, which is $c d / 2$; so

$$
A K H-C H M=\frac{c d}{2}\left(\frac{b^{2}}{d^{2}}-\frac{y^{2}}{d^{2}}\right)
$$

So (**) holds if and only if

$$
\begin{gathered}
\frac{x^{2}}{c}\left(\frac{b^{2}}{d}-d\right)=c \frac{b^{2}-y^{2}}{d}, \\
x^{2}\left(b^{2}-d^{2}\right)=c^{2}\left(b^{2}-y^{2}\right), \\
b^{2} x^{2}=a^{2}\left(b^{2}-y^{2}\right),
\end{gathered}
$$

which is equivalent to $(\|)$.
D. In $(* *)$, let C be F; then the equation becomes

$$
F E G=A H K-F H E,
$$

so $A H K=F E G+F H E=G H E$.
E. By part C, it is enough to show

$$
P D M=E H G-P H L
$$

We have

$$
\begin{aligned}
P D M & =C D L+C H M-P H L & & \\
& =A H K-P H L & & {[\text { by }(* *)] } \\
& =E H G-P H L & & {[\text { by } \mathbf{D}] . }
\end{aligned}
$$

