MATH 304, 2009/10, SECOND EXAMINATION SOLUTIONS

DAVID PIERCE

Problem 1. The ellipse $A E B$ is determined as follows. Triangle $A B C$ is given, the angle at A being right. If a point D is chosen at random on $A B$, and $D E$ is erected at right angles to $A B$, then E lies on the ellipse if (and only if) the square on $D E$ is equal to the rectangle $A D F G$ (which is formed by letting $E D$, extended as necessary, meet $B C$ at F). Let also the circle $A H B$ with diameter $A B$ be given.
Find h (in terms of the given straight lines) such that h is to $A B$ as the ellipse is to the circle. Prove that your answer is correct, using Newton's lemmas as needed.

Remark. The ellipse appears to result from contracting the circle in one direction. If this is so, then by Newton's Lemma 4, the ratio of ellipse to circle is the factor of contraction, which should be $D E / D H$. So one should find this ratio and check that it is indeed independent of the choice of D.

Two students solved this problem perfectly. Five others used without proof a rule for the area of an ellipse; but we do not officially have such a rule, and in fact the point of this problem is to establish this rule.

Solution. By construction and the similarity of the triangles $B D F$ and $B A C$,

$$
D E^{2}=A D F G=A D \times D F=A D \times D B \times \frac{A C}{A B}
$$

In the circle,

$$
D H^{2}=A D \times D B .
$$

[^0]Let h be a mean proportional of $A B$ and $A C$, so

$$
h^{2}=A B \times A C, \quad \frac{A C}{A B}=\frac{h^{2}}{A B^{2}}
$$

Then

$$
\frac{D E^{2}}{D H^{2}}=\frac{A C}{A B}, \quad \frac{D E}{D H}=\frac{h}{A B} .
$$

If we inscribe series of parallelograms in the ellipse and circle, all of the same breadth, then corresponding parallelograms will be to each other as $D E$ to $D H$, that is, h to $A B$. Therefore this is the ratio of the ellipse to the circle [by Newton's Lemma 4].

Problem 2. We have used without proof Propositions I. 33 and 49 of the Conics of Apollonius. This problem is an opportunity to prove those propositions, using the techniques of Descartes and Newton as appropriate.
A straight line ℓ (not shown), a curved line $A B E$, and a straight line $A C$ are given such that, whenever a point B is chosen at random on $A B E$, and straight line $B C$ is dropped perpendicular to $A C$, then the square on $B C$ is equal to the rectangle bounded by ℓ and $A C$. So $A B E$ is a parabola with axis $A C$.

Let B now be fixed; so we may write $B C=a$ and $A C=b$. Extend $C A$ to D so that $A D=A C$. Draw straight line $D B K$, and let $c=B D$.

Let a point E be chosen at random on the parabola $A B E$. Draw straight lines $B F$ parallel to $A C$, and $E F$ parallel to $B D$.
(a). Show that the parabola $A B E$ must indeed lie all on one side of $D B K$.
(b). Show that the square on $E F$ varies as $B F$, and find m (in terms of a, b, and c only) such that $m \times B F$ is equal to the square on $E F$. For your computations, let $x=E F$ and $y=B F$.
(c). Explain why $B D$ is tangent to the parabola at B.

Remark. One approach to (a) is showing that E lies above K. The height of E above D is the length of $D H$; by similarity of triangles, the height of K above D is $2 b / a$ times $E H$. The point of using $D H$ and $E H$ is that we know how their lengths are related. Two students solved this problem perfectly; one other was partially successful.

In (b), we want to find x^{2} / y in terms of fixed magnitudes. We have one equation, $E H^{2}=\ell \times A H$, and we can write this in terms of x and y (and fixed magnitudes) by using the similar triangles $B C D$ and $E G F$. Three students solved this problem completely; two others got halfway there.

For (c), one student showed that $D B$ is the only straight line passing through B and meeting $A D$ that meets the parabola exactly once. A number of students observed that $D B$ does meet the parabola just once; but this is not enough to establish that $D B$ is a tangent. Note also that $B G$ also meets the parabola exactly once, but is not a tangent.

Solution. (a). Assuming $K E$ is parallel to $A C$, drop a perpendicular $K L$ to $A C$.
We want to show $D H \geqslant D L$ or $A H \geqslant A L$. We have

$$
A H=\frac{E H^{2}}{\ell}, \quad D L=L K \times \frac{2 b}{a}=E H \times \frac{2 b}{a},
$$

so

$$
\ell \times(D H-D L)=E H^{2}+b \ell-E H \times \frac{2 b \ell}{a}=E H^{2}+a^{2}-E H \times 2 a=(E H-a)^{2},
$$

which is positive when E is not B; so $D H>D L$.
(b). We have $E H^{2}=\ell \times A H$. Since $E G=a x / c$ and $G F=2 b x / c$, this means

$$
\begin{gathered}
\left(a+\frac{a x}{c}\right)^{2}=\ell\left(y+\frac{2 b x}{c}+b\right), \\
a^{2}+\frac{2 a^{2} x}{c}+\frac{a^{2} x^{2}}{c^{2}}=\ell y+\frac{2 b \ell x}{c}+b \ell
\end{gathered}
$$

and since $a^{2}=\ell b$, we have

$$
\frac{a^{2} x^{2}}{c^{2}}=\ell y, \quad x^{2}=\frac{c^{2}}{a^{2}} \ell y, \quad m=\frac{c^{2}}{b}
$$

(c). In the figure, as E approaches $B, E K$ varies as $B K^{2}$. Therefore $E K / B K$ varies as $B K$, so the angle $E B K$ ultimately vanishes.

E-mail address: dpierce@metu.edu.tr
Mathematics Dept., Middle East Technical University, Ankara o6531, Turkey
URL: metu.edu.tr/~dpierce/

[^0]: Date: Tuesday, May 18, 2010.

