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These notes are for Math 272 at METU. I intend to edit them and add to
them from time to time; the latest version is in the course directory, <http:
//www.math.metu.edu.tr/~dpierce/courses/272/>. The catalog description
of the course is:

Riemann–Stieltjes Integral. Infinite series and products. Sequences
of functions. Inverse Function Theorem. Multiple Integrals.

These topics are covered in [1, chs 7, 8, 9, 12, 13 and 14]. This book will be my
main reference, although [2] may also be useful. I shall also cover functions of
bounded variation (in [1, ch. 6]), a topic left over from Math 271. My proof of
Theorem 4.13 below is based on that of [3, ch. 1, § 1, Proposition 6]; my §§ 5
and 6 are influenced by [4, chs 2 and 3].

I prepare the notes, first of all, for my own use. They are only an outline of what
is to be discussed in class. In particular, for the student, reading these notes is
probably not an adequate substitute for coming to class. Your own notes, taken
properly in class, will be richer and more complete than these notes.

The parts of these notes labelled ‘proof’ are generally only sketches of proofs. I
leave it to the reader both:

• to recognize where details are missing, and

• to supply those details.

I might give the details in class, especially if I am asked to. I myself might ask
for the details on an exam.

Some proofs are omitted entirely and are thus left to be given in class or to be
done as exercises. These proofs too might be asked for on an exam.

I do intend to write my proofs (or proof-sketches) in complete sentences, with
the usual sorts of punctuation (commas, semicolons, full stops/periods). Like
any other writing (in English and Turkish and many other languages), the proofs
are to be read left to right, top to bottom. Students should follow this example
in writing their own complete proofs.

Every time a new class of functions (for example) is introduced, one should ask:
What are some examples of functions that belong to this class? Which functions
do not belong to this class?
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Likewise, when a theorem is introduced, one should ask: What sorts of functions
does the theorem apply to? What does the theorem not tell us? For example,
if the theorem is an implication (an if-then statement), then can we prove the
converse, or is there a counter-example?

Examples and counter-examples could be requested on an exam.

In studying the proof of a theorem, one should ask: What previous lemmas and
theorems does the proof rely on? Is the proof in the style of earlier proofs; does
it use familiar techniques; or does it introduce a new approach? Will a similar
proof work to prove something else? Is there an alternative proof?
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1 Variation

Here are some conventions, definitions and notations to be used throughout this
section:

Let I be a compact interval of R; so I is [a, b] for some numbers a and b. Let f
be a real-valued function on I. A partition of I is a subset that:

• is finite, and

• contains the endpoints a and b.

Let P be a partition of I. We may also write P as

{x0, x1, . . . , xn}

for some positive integer n, where

a = x0 < x1 < · · · < xn = b.

If 0 < k 6 n, then for xk − xk−1 we may write

Mxk,

and for f(xk)− f(xk−1) we may write

Mfk.

For
∑n
k=1 |Mfk| we may write ∑

(P ).

The set of partitions of I can be denoted

PI.

(This is not the power-set of I!) Suppose there is a number M such that for all
P in PI we have

∑
(P ) 6M . Then f is said to be of bounded variation on I.

In this case, the supremum of the set {∑(P ) : P ∈ PI} exists; this supremum
is called the total variation of f on I, and can be denoted

VfI

or just Vf . Note that total variation is always non-negative. We may say that
f itself is bounded on I by A if |f(x)| 6 A for all x in I.

What sorts of functions are of bounded variation? How bad can a function be
while still being of bounded variation?

Theorem 1.1. Suppose f is monotone on I. Then f is of bounded variation
on I, and in fact

VfI = |f(b)− f(a)| .
In particular, constant functions x 7→ a and the identity-function x 7→ x are of
bounded variation on any compact interval.
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Recall that monotonicity does not imply continuity. So, functions of bounded
variation need not be continuous.

The converse of Theorem 1.1 fails: consider x 7→ x2 : [−1, 1]→ R.

Theorem 1.2. If f is of bounded variation on I, then f is bounded on I, and
in fact

|f(x)| 6 Vf + |f(a)|
for all x in I.

Proof. Suppose f is of bounded variation. If x ∈ I, let Px be the partition
{a, x, b} of I. Then

|f(x)| − |f(a)| 6 |f(x)− f(a)| 6 |f(x)− f(a)|+ |f(b)− f(x)| =
∑

(Px) 6 Vf ,

which yields the claim.

The converse fails: consider x 7→
{
x sin 1

x , if x ∈ (0, 1];

0, if x = 0.

Theorem 1.3. Suppose f and g are of bounded variation on I. Then so are
f + g and f − g, and in fact

Vf±g 6 Vf + Vg.

Moreover, f · g is also of bounded variation on I, and if A bounds f and B
bounds g on I, then

Vf ·g 6 B · Vf +A · Vg.

Consequently, all polynomial functions are of bounded variation on compact
intervals.

Lemma 1.4. If P and Q are partitions of I such that P ⊆ Q, then

∑
(P ) 6

∑
(Q).

Theorem 1.5. Suppose x ∈ (a, b). Then f is of bounded variation on [a, b] if
and only if it is of bounded variation on both [a, x] and [x, b]. In either case,

Vf [a, b] = Vf [a, x] + Vf [x, b].

Proof. Say f is of bounded variation on [a, b]. Let Q be a partition of [a, x], and
R be a partition of [x, b]. Then Q ∪R is a partition of [a, b]. Hence

∑
(Q) +

∑
(R) =

∑
(Q ∪R) 6 Vf [a, b].

Therefore f is of bounded variation on [a, x] and on [x, b], and

Vf [a, x] + Vf [x, b] 6 Vf [a, b]. (i)
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Conversely, say f is of bounded variation both on [a, x] and on [x, b]. If P is a
partition of [a, b], then so is P ∪{x}, and the latter is Q∪R for some partitions
Q and R of [a, x] and [x, b] respectively. Hence (by Lemma 1.4)

∑
(P ) 6

∑
(P ∪ {x}) =

∑
(Q) +

∑
(R) 6 Vf [a, x] + Vf [x, b].

Therefore f is of bounded variation on [a, b], and

Vf [a, b] 6 Vf [a, x] + Vf [x, b]. (ii)

Either of the foregoing hypotheses now yields the other and hence yields both
(i) and (ii).

Theorem 1.5 (with Theorem 1.1) gives another proof that polynomial functions
are of bounded variation on compact intervals.

Theorem 1.6. Suppose that f is continuous on [a, b] and differentiable on (a, b)
and that f ′ is bounded on (a, b). Then f is of bounded variation on [a, b].

Proof. For every partition {x0, . . . , xn} in P[a, b], for every k in {1, . . . , n}, by
the Mean-Value Theorem there is tk in (xk−1, xk) such that

Mfk
Mxk

= f ′(tk).

Hence, if A is an upper bound of {f ′(x) : x ∈ (a, b)}, then

n∑

k=1

|Mfk| =
n∑

k=1

|f ′(tk)|Mxk 6
n∑

k=1

AMxk = A(b− a),

so f is of bounded variation by definition.

Hence for example the function

x 7→
{
x sin log x, if x ∈ (0, 1];

0, if x = 0

is of bounded variation. The converse of Theorem 1.6 fails: consider x 7→ √x :
[0, 1]→ R.

Theorem 1.7. Suppose f is of bounded variation on I. Then the functions
x 7→ Vf [a, x] and x 7→ Vf [a, x]− f(x) are increasing on I.

Proof. Suppose a 6 x 6 y 6 b. By Theorem 1.5, we have

Vf [a, x] 6 Vf [a, y].

Hence x 7→ Vf [a, x] is increasing. We also have

Vf [a, x] + f(y)− f(x) 6 Vf [a, x] + |f(y)− f(x)| 6 Vf [a, x] + Vf [x, y] = Vf [a, y],

whence Vf [a, x] − f(x) 6 Vf [a, y] − f(y). Therefore x 7→ Vf [a, x] − f(x) is
increasing.
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In the proof, note that if, for example, x = y, then [x, y] is not in fact an interval,
although we can still understand the total variation Vf [x, y] to be 0.

Theorem 1.8. A function is of bounded variation if and only if it is the differ-
ence of two increasing functions.

Lemma 1.9. Suppose f is of bounded variation on [a, b], and c ∈ [a, b]. Then
f is continuous at c if and only if x 7→ Vf [a, x] is continuous at c.

Proof (not given in class). Let V be the increasing function x 7→ Vf [a, x]. If
a 6 x 6 y 6 b, then

0 6 |f(y)− f(x)| 6 Vf [x, y] = V (y)− V (x).

Hence continuity of V implies that of f .

Suppose conversely that f is continuous at c. Let ε > 0. It is enough to
find positive numbers δ` and δr such that, for all x in [a, b], we have the two
implications

c− δ` < x 6 c =⇒ V (c)− V (x) < ε,

c 6 x < c+ δr =⇒ V (x)− V (c) < ε.

Now, by continuity of f at c, we can pick a positive δ so that, for all x in [a, b],

c− δ < x < c+ δ′ =⇒ |f(c)− f(x)| < ε

2
.

There is a partition P of [a, c] such that, for all finer partitions {u0, . . . , um},
we have

V (c) 6
m∑

k=1

|Mfk|+ ε/2.

Let y be the greatest element of P r {c}, and let

δ` = min(c− y, δ).

Suppose c− δ` < x < c. We may assume um−1 = x; hence

V (c) 6
m−1∑

k=1

|Mfk|+ ε 6 V (x) + ε.

Thus we have the first implication above; the second is obtained similarly.

Theorem 1.10. A continuous function is of bounded variation if and only if it
is the difference of two continuous increasing functions.

2 The Riemann–Stieltjes Integral

Let us continue to use the notation of the previous section, letting also g be a
real-valued function on I. If g is in fact differentiable, and if one writes g ′(x) as
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d g/ dx, then one might write g′(x) dx as d g, and
∫ b
a
f(x)g′(x) dx as

∫ b
a
f d g.

If f is also differentiable, then the rule of integration by parts is

∫ b

a

f d g = f(b)g(b)− f(a)g(a)−
∫ b

a

g d f. (iii)

We shall show that this equation is meaningful and true even if f and g are not
differentiable.

If P,Q ∈ PI, and P ⊆ Q, let us say that Q is finer than P (also, P is coarser
than Q).

Theorem 2.1. There is at most one number A such that, for every positive ε,
there is a partition P of I such that, for all partitions {u0, . . . , um} of I that
are finer than P , and for all tk in [uk−1, uk] (where k ∈ {1, 2, . . . ,m}),

∣∣∣∣∣
m∑

k=1

f(tk)Mgk −A
∣∣∣∣∣ < ε.

The sum in the theorem is a Riemann–Stieltjes sum of f with respect to g
for the partition P . If the number A exists, it is denoted

∫ b

a

f d g.

This is a Riemann–Stieltjes integral, and in particular it is the Riemann
integral of f on I with respect to g. The set of all functions f on I whose
Riemann integrals with respect to g exist is denoted

R(g).

If g is differentiable, with constant derivative 1, then
∫ b
a
f d g is just

∫ b
a
f , the

ordinary Riemann integral.

Theorem 2.2. If f ∈ R(g), then g ∈ R(f), and also equation (iii) holds.

Proof. Let {x0, . . . , xn} be a partition P as in Theorem 2.1. Choose some tk in
[xk−1, xk]. Then

f(b)g(b)− f(a)g(a)−
n∑

k=1

g(tk)Mfk =

n∑

k=1

f(xk)g(xk)−
n∑

k=1

f(xk−1)g(xk−1)−
n∑

k=1

g(tk)f(xk) +
n∑

k=1

g(tk)f(xk−1) =

n∑

k=1

f(xk)(g(xk)− g(tk)) +

n∑

k=1

f(xk−1)(g(tk)− g(xk−1)).

This is a Riemann–Stieltjes sum for f with respect to g corresponding to the
partition {x0, t1, x1, . . . , xn−1, tn, xn}. This partition is finer than P , so the sum

is within ε of
∫ b
a
f d g. Therefore the Riemann–Stieltjes sum

∑n
k=1 g(tk)Mfk is

within ε of f(b)g(b)− f(a)g(a)−
∫ b
a
f d g.
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Theorem 2.3. R(g) is a vector-space, that is, it contains the 0-function and
is also closed under the taking of linear combinations. In fact, if fi ∈ R(g) and
ai ∈ R (where i < n), then

∫ b

a

∑

i<n

aifi d g =
∑

i<n

ai

∫ b

a

fi d g.

Hence also ⋂

i<n

R(fi) ⊆ R
(∑

i<n

aifi
)
,

and if g ∈ ⋂i<nR(fi), then

∫ b

a

g d
∑

i<n

aifi =
∑

i<n

ai

∫ b

a

g d fi.

If
∫ b
a
f d g exists, then we may define

∫ a

b

f d g = −
∫ b

a

f d g.

Also,
∫ a
a
f d g = 0.

Theorem 2.4. If x ∈ I, and any two of the three integrals

∫ x

a

f d g,

∫ b

x

f d g,

∫ a

b

f d g

exist, then they all exist, and their sum is 0.

Theorem 2.5. Let h be an increasing bijection from an interval [c, d] onto [a, b].
If f ∈ R(g), then f ◦ h ∈ R(g ◦ h), and

∫ d

c

f ◦ h d(g ◦ h) =

∫ h(d)

h(c)

f d g.

Proof. Pick P as in Theorem 2.1. This determines a partition h−1(P ) of [c, d].
A Riemann–Stieltjes sum of f ◦ h on [c, d] with respect to g ◦ h for a partition
finer than h−1(P ) can be understood as a Riemann–Stieltjes sum of f on [a, b]

with respect to g for a partition finer than P ; hence it is within ε of
∫ b
a
f d g.

Theorem 2.6. If f is bounded on I, and f ∈ R(g), and g has a continuous
derivative on I, then fg′ is Riemann-integrable on I, and

∫ b

a

fg′ =

∫ b

a

f d g.

Proof. For any partition {x0, . . . , xn} of I, by the Mean-Value Theorem, there
are uk in (xk−1, xk) such that Mgk = g′(uk)Mxk. Hence, for any tk in [xk−1, xk],
the Riemann–Stieltjes sum

n∑

k=1

f(tk)Mgk
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is precisely
n∑

k=1

f(tk)g′(uk)Mxk.

We have
∣∣∣∣∣
n∑

k=1

f(tk)g′(uk)Mxk −
n∑

k=1

f(tk)g′(tk)Mxk

∣∣∣∣∣ =

n∑

k=1

f(tk) |g′(uk)− g′(tk)|Mxk.

Since f is bounded on I, and g′—being continuous on a compact interval—is uni-
formly continuous on I, we conclude that, in the last equation, the right member
can be made smaller than ε/2, provided that the partition {x0, . . . , xn} is suffi-
ciently fine. This partition can also be fine enough that the sum

∑n
k=1 f(tk)Mgk

is within ε/2 of
∫ b
a
f d g. In this case, we have

∣∣∣∣∣

∫ b

a

f d g −
n∑

k=1

f(tk)g′(tk)Mxk

∣∣∣∣∣ < ε,

which establishes the claim.

Lemma 2.7. Suppose u ∈ (a, b], and f is continuous from the left at u, that is,
for every positive ε, there is a positive δ such that for all t in I,

u− δ < t 6 u =⇒ |f(u)− f(t)| < ε.

Let g be defined so that g(x) =

{
0, if a 6 x < u;

1, if u 6 x 6 b.
Then f ∈ R(g) and

∫ b

a

f d g = f(u).

Proof. Suppose s ∈ (a, u). For every partition that is finer than {a, s, u, b},
every Riemann–Stieltjes sum for f with respect to g is

f(t)(g(u)− g(s)),

that is, f(t), for some t in [s, u]. With ε and δ as in the statement, if we choose
s in (u− δ, u), then |f(u)− f(t)| < ε.

Theorem 2.8. Every finite sum can be expressed as a Riemann–Stieltjes inte-
gral. In fact, if f is continuous on [a, b], and a < x1 < · · · < xn = b, then

n∑

k=1

f(xk) =

∫ b

a

f d g

for some function g.

Proof. Let g = max{k : xk 6 x}.

In the theorem and its proof, if xk = k for each k, then g is the greatest-integer
function, x 7→ bxc. Hence:
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Theorem 2.9 (Euler’s summation-formula). If f is continuously differen-
tiable on [0, n], then

n∑

k=1

f(k) =

∫ n

0

f +

∫ n

0

(x− bxc)f ′(x) dx;

n∑

k=0

f(k) =

∫ n

0

f +

∫ n

0

(
x− bxc − 1

2

)
f ′(x) dx+

1

2
(f(n) + f(0)).

Proof. Just calculate:

n∑

k=1

f(k) =

∫ n

0

f(x) d bxc =

∫ n

0

f −
∫ n

0

f(x) d(x− bxc) =

∫ n

0

f −
∫ n

0

(x− bxc) d f(x) =

∫ n

0

f +

∫ n

0

(x− bxc)f ′(x) dx,

by Theorems 2.8, 2.3, 2.2 and 2.6 respectively. Note however that, to have

the second equation, we must know that
∫ b
a
f does in fact exist. Since f is

continuous, its Riemann-integrability will be a consequence of Theorem 2.18.
For the second equation, add f(0) to both sides, and use

∫ n

0

f ′ = f(n)− f(0),

which will be Theorem 2.22.

As noted in the last proof, we need to be able to say which functions are
Riemann-integrable with respect to a given function. Towards this end, we
make some definitions—but we must assume that f is bounded:

mk(f) = inf{f(x) : x ∈ [xk−1, xk]}, L(P, f, g) =
n∑

k=1

mk(f)Mgk,

Mk(f) = sup{f(x) : x ∈ [xk−1, xk]}, U(P, f, g) =
n∑

k=1

Mk(f)Mgk.

Lemma 2.10. Assume g is increasing. For all partitions P and Q of I,

L(P, f, g) 6 L(P ∪Q, f, g) 6 U(P ∪Q, f, g) 6 U(Q, f, g).

If g is increasing, then by the lemma we can define

∫ b

a

f d g = sup{L(P, f, g) : P ∈ PI},
∫ b

a

f d g = inf{U(P, f, g) : P ∈ PI}.

Moreover:

Lemma 2.11. Assume g is increasing. Then

L(P, f, g) 6
∫ b

a

f d g 6
∫ b

a

f d g 6 U(P, f, g)

for all partitions P of I.
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Suppose g is increasing. Let us say that f satisfies Riemann’s condition with
respect to g on I if for each positive ε there is a partition P of I such that

U(P, f, g)− L(P, f, g) < ε.

Lemma 2.12. Assume g is increasing. Then the following conditions are equiv-
ant:

(0) f satisfies Riemann’s condition with respect to g on I.

(1)
∫ b
a
f d g =

∫ b
a
f d g.

(2) f ∈ R(g).

Proof. If condition (0) holds, then
∫ b
a
f d g −

∫ b
a
f d g < ε for all positive ε, so

condition (1) holds.

Suppose ε > 0. By Lemma 2.10, we can let P be a partition of I such that

L(P, f, g) is within ε of
∫ b
a
f d g, and U(P, f, g) is within ε of

∫ b
a
f d g. But if

P = {x0, . . . , xn}, for any tk in [xk−1, xk], we have

L(P, f, g) 6
n∑

i=1

f(tk)Mgk 6 U(P, f, g);

if condition (1) holds, then by Lemma 2.11, the sum
∑n
i=1 f(tk)Mgk must be

within ε of the common value of
∫ b
a
f d g and

∫ b
a
f d g. Hence this common value

is
∫ b
a
f d g, and condition (2) holds.

Finally, suppose (2) holds. We can choose P so that
∣∣∣∣∣
n∑

i=1

f(tk)Mgk −
∫ b

a

f d g

∣∣∣∣∣ <
ε

4

for all tk in [xk−1, xk]. But also, since g is increasing, we can choose the tk so
that, in addition, ∣∣∣∣∣

n∑

i=1

f(tk)Mgk − L(P, f, g)

∣∣∣∣∣ <
ε

4
.

Then
∣∣∣L(P, f, g)−

∫ b
a
f d g

∣∣∣ < ε/2. Likewise,
∣∣∣U(P, f, g)−

∫ b
a
f d g

∣∣∣ < ε/2. So

condition (0) holds.

Theorem 2.13. Assume g is increasing. If f0, f1 ∈ R(g), and f0 6 f1 (that is,
f0(x) 6 f1(x) for all x in I), then

∫ b

a

f0 d g 6
∫ b

a

f1 d g.

Lemma 2.14. Assume g is increasing. If f ∈ R(g), then |f | ∈ R(g) and
∣∣∣∣∣

∫ b

a

f d g

∣∣∣∣∣ 6
∫ b

a

|f |d g.
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Proof. Since
∣∣ |f(x)| − |f(y)|

∣∣ 6 |f(x)− f(y)|, we have

Mk(|f |)−mk(|f |) 6 Mk(f)−mk(f),

hence U(P, |f | , g)−L(P, |f | , g) 6 U(P, f, g)−L(P, f, g). Now use Lemma 2.12.

Lemma 2.15. Assume g is increasing. If f ∈ R(g), then f 2 ∈ R(g).

Proof. Suppose M bounds |f |. Then

Mk(f2)−mk(f2) =

(Mk(|f |) + mk(|f |))(Mk(|f |)−mk(|f |)) 6
2M(Mk(|f |)−mk(|f |)).

Now use Lemma 2.12.

If g is merely of bounded variation, then g is the difference g0− g1 of increasing
functions, by Theorem 1.8, and R(g0) ∩ R(g1) ⊆ R(g), by Theorem 2.3. But
what about the reverse inclusion?

Lemma 2.16. Assume g is of bounded variation. Let V be the function x 7→
Vg[a, x]. If f is bounded, and f ∈ R(g), then f ∈ R(V ).

Proof (not given in class). Since V is increasing, we can use Lemma 2.12. We
have

U(P, f, V )− L(P, f, V ) =
n∑

k=1

(Mk(f)−mk(f))MVk =

n∑

k=1

(Mk(f)−mk(f))(MVk − |Mgk|) +
n∑

k=1

(Mk(f)−mk(f)) |Mgk| ,

and we can make each of the last summations less than ε/2. Indeed, if |f | 6M ,
then

n∑

k=1

(Mk(f)−mk(f))(MVk − |Mgk|) 6 2M(V (b)−
n∑

k=1

|Mgk|),

which is less than ε/2 if P is fine enough. We can also choose tk and t′k in
[xk−1, xk] so that

Mk(f)−mk(f) < |f(tk)− f(t′k)|+ ε

4V (b)
.

We may assume also that f(tk)− f(t′k) has the same sign as Mgk. Then

n∑

k=1

(Mk(f)−mk(f)) |Mgk| <
n∑

k=1

(f(tk)− f(t′k))Mgk +
ε

4
.

If P is fine enough, then
∑n
k=1(f(tk)− f(t′k))Mgk < ε/4.



June 20, 2003, Analysis II notes 11

Theorem 2.17. Assume g is of bounded variation. Then there are increasing
functions g0 and g1 such that g = g0 − g1 and every bounded function in R(g)
is also in R(g) = R(g0) ∩R(g1).

Theorem 2.18. If g is of bounded variation, then R(g) contains all continuous
functions.

Proof. It is enough to prove the theorem in case g is increasing and g(a) < g(b).
Suppose f is continuous (on I); then f is uniformly continuous. Let ε > 0.
Then there is a positive δ such that for all x and y (in I),

|x− y| < δ =⇒ |f(x)− f(y)| < ε

g(b)− b(a)
.

Let P be a partition fine enough that Mxk < δ in each case. Since f is continu-
ous, we have

Mk(f)−mk(f) = |f(tk)− f(t′k)| < ε

g(b)− b(a)

for some tk and t′k in [xk−1, xk], for each k; this means

U(P, f, g)− L(P, f, g) <

n∑

k=1

ε

g(b)− g(a)
Mgk = ε.

Thus, Riemann’s condition is met.

Corollary 2.19. All functions of bounded variation are Riemann-integrable.

Lemma 2.20 (Mean-Value Theorem for Integrals). Suppose f is contin-
uous, and g is increasing. Then

∫ b

a

f d g = f(t)(g(b)− g(a)) = f(t)

∫ b

a

d g

for some t in (a, b).

Proof. The second equation is clear from the definition of the Riemann–Stieltjes
integral, or from Theorem 2.2. For the first equation, work with the partition
{a, b} of I. We have

m1(f)(g(b)− g(a)) 6
∫ b

a

f d g 6 M1(f)(g(b)− g(a)),

so (
∫ b
a
f d g)/(g(b)− g(a)) is between m1(f) and M1(f). Now use the interme-

diate-value theorem for continuous functions.

Theorem 2.21 (First Fundamental, of Calculus). If g is increasing, then
the function

x 7→
∫ x

a

f d g

is well-defined on I, and is differentiable, with derivative f(u)g′(u), at every
point u of I where f is continuous and g is differentiable.
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Proof. If u is such a point, and u+ h ∈ I, then

∫ u+h

a
f d g −

∫ u
a
f d g

h
=

∫ u+h

u
f d g

h
= f(t)

g(u+ h)− g(u)

h

for some t between u and u+ h inclusive.

Theorem 2.22 (Second Fundamental, of Calculus). For any function g
that is continuous on I and differentiable on (a, b),

∫ b

a

g′ = g′(b)− g′(a),

provided the integral exists.

Proof. For any partition {x0, . . . , xn} of I, we can pick tk in (xk−1, xk) such
that g′(tk)Mxk = Mg′k, whence the Riemann sum

∑n
k=1 g

′(tk)Mxk is just g′(b)−
g′(a).

3 Infinite series and products

An infinite sequence is a function with domain {n ∈ Z : k 6 n} for some k in Z.
Usually the domain is N (the set {0, 1, 2, . . . } of natural numbers) or Z+ (the
set {1, 2, 3, . . . } of positive integers).

Informally, a sequence (an) has a real number b as a limit, provided that an is
close to b whenever n is sufficiently large. We can understand ‘sufficiently large’
to mean ‘close to ∞’. Then we can allow the limit b to be ∞ or −∞ as well.

To be more precise: Recall that a neighborhood of a real number x is a set of
real numbers that has, as a subset, an open interval that contains x. We can
define a neighborhood of ∞ to be a set of real numbers that has, as a subset,
an interval of the form (a,∞). Similarly, neighborhoods of −∞ have subsets
(∞, a).

Now we can say that the sequence (an) of real numbers has the limit b (where
b ∈ {−∞}∪R∪{∞}) if, for every neighborhood U of b, there is a neighborhood
U ′ of ∞ such that, for all n in the domain of the sequence,

n ∈ U ′ =⇒ bn ∈ U.

In this case, we write

lim
n→∞

an = b.

If b is finite (that is, b ∈ R), then the sequence is said to converge to b. If b
is infinite, then the sequence diverges to b. If the sequence has no limit, then
the sequence simply diverges.

The extended real number system, R∗, consists of the elements of the set

{−∞} ∪ R ∪ {∞}.
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This can be ordered in the obvious way, so that −∞ < x < ∞ for all x in
R. Defining open and closed intervals of R∗ is somewhat easier than for R. If
a, b ∈ R∗, then

(a, b) = {x ∈ R∗ : a < x < b}; [a, b] = {x ∈ R∗ : a 6 x 6 b}.
An open interval of R∗ is an interval (a, b); a closed, [a, b]. Note that R is an
open, but not a closed, interval of R∗.
Let f be the function from [−1, 1] to R∗ given by

f(x) =





−∞, if x = −1;
x

1−x2 , if − 1 < x < 1;

∞, if x = 1.

Then f is a bijective, order-preserving function. This means that both f−1 and
f send open sets to open sets; that is, both f and f−1 are continuous. However,
we cannot extend the usual metric on R so as to make R∗ into a metric space;
R∗ is simply a topological space.

If a subset A of R has no upper bound in R, then we may write

supA =∞;

if no lower bound, then inf A = −∞. Also, sup∅ = inf R = −∞, and inf ∅ =
supR =∞. Thus, every subset of R has a supremum and in infimum in R∗.
Every monotone sequence has a limit in R∗.
A sequence (an) has the limit superior b in R if for all positive ε:

∃M ∀n (M < n =⇒ an < b+ ε);

and
∀M ∃n (M < n & b− ε < an).

In this case, we write
lim sup
n→∞

an = b.

Theorem 3.1. The following are equivalent:

(1) lim supn→∞ an = b.

(2) limn→∞ sup{am : n < m} = b.

(3) (an) has a subsequence converging to b, but not a subsequence converging
to a greater limit.

If {an} has no upper bound, then

lim sup
n→∞

an =∞;

if there is an upper bound, but no finite limit superior, then

lim sup
n→∞

an = −∞.

So every sequence has a limit superior in R∗. The limit inferior is defined
similarly; in fact,

lim inf
n→∞

an = − lim sup
n→∞

−an.
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Examples 3.2.

an lim sup
n→∞

an lim inf
n→∞

an

(−1)n 1 −1
n+ 1

n
(1 + (−1)n) 2 0

n(1 + (−1)n) ∞ 0
logn ∞ ∞

For a sequence (ap, ap+1, . . . ), the sequence of its partial sums is



n∑

i=p

ai : n = p, p+ 1, . . .


 .

Considered with respect to its sequence of partial sums, a sequence is a series;
the series converges to a limit b if the sequence of partial sums does; in this
case, we write

∞∑

i=p

ai = b.

A sequence (an), as a series, can be written
∑

an.

Theorem 3.3. The set of convergent series is a vector-space: if
∑
an and

∑
bn

converge, and c, d ∈ R, then
∑

(can + dbn) converges, and

∞∑

k=p

(can + dbn) = c

∞∑

k=p

an + d

∞∑

k=p

bn.

Lemma 3.4 (Cauchy condition). The series
∑
an converges if and only if,

for every positive ε, there is M such that, for all k in N,

n > M =⇒
∣∣∣∣∣
n+k∑

m=n

am

∣∣∣∣∣ < ε.

Theorem 3.5. If
∑
an converges, then limn→∞ an = 0.

Proof. Use the Cauchy condition when k = 1.

It is clear that, if
∑
an converges, then so does

∑
(a2n + a2n+1).

Lemma 3.6. If
∑

(a2n + a2n+1) converges, and limn→∞ an = 0, then
∑
an

converges.

Proof. Let
∑∞
k=p(a2k + a2k+1) = b. Let M be such that

n > M =⇒

∣∣∣∣∣∣

p+n∑

k=p

(a2k + a2k+1)− b

∣∣∣∣∣∣
,
∣∣a2(p+n)+1

∣∣ < ε

2
.

Then also n > M =⇒
∣∣∣
∑2(p+n)
k=p ak − b

∣∣∣ ,
∣∣∣
∑2(p+n)+1
k=p ak − b

∣∣∣ < ε.
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A series
∑
an is alternating if (−1)nan > 0 for each n, or (−1)nan 6 0 for

each n.

Theorem 3.7. An alternating series
∑
an converges if limn→∞ an = 0.

Proof. Assume (−1)nan > 0 in each case. Then a2n − a2n+1 > 0, and

n∑

k=0

(a2k − a2k+1) = a0 −
n−1∑

k=0

(a2k+1 − a2k+2)− a2n+1,

so partial sums of
∑

(a2n − a2n+1) are bounded. Therefore the latter series
converges. Now use Lemma 3.6.

Example 3.8.
∑

(−1)n/n converges.

Theorem 3.9. If |x| < 1, then

∞∑

k=0

xk =
1

1− x.

Proof.
∑n
k=0 x

k = (1−xn+1)/(1−x). If |x| < 1, then the partial sums converge
to 1/(1− x).

Lemma 3.10 (Comparison Test). If 0 6 an 6 cbn when n is large enough,
for some non-zero c, and

∑
bn converges, then

∑
an converges.

Theorem 3.11 (Limit Comparison Test). If limn→∞ an/bn is finite and
non-zero, then ∑

an converges ⇐⇒
∑

bn converges.

Theorem 3.12 (Integral Test). If f is monotone on [0,∞), then

∑
f(n) converges ⇐⇒ lim

x→∞

∫ x

0

f is finite.

Proof. Assume f is decreasing. If f(x) < 0 for some x, then each member of
the equivalence fails. Suppose f(x) > 0 for all x. Since f(k + 1) 6 f(x) 6 f(k)
when k 6 x 6 k + 1, we have

n∑

k=1

f(k) 6
∫ n

0

f 6
n−1∑

k=0

f(k).

If
∫∞

0
f exists, then so does

∑∞
k=1 ak; if not, not.

Examples 3.13. We have

∫ x

1

d t

ts
=





log x, if s = 1;
1

s− 1

(
1− 1

xs−1

)
, if s 6= 1.

Hence
∑

1/ns converges if and only if s > 1.
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A series
∑
an is absolutely convergent if

∑ |an| converges. Absolute conver-
gence implies convergence, by the Cauchy criterion.

Theorem 3.14 (Ratio Test). Let

r = lim inf
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ and R = lim sup
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ .

Then

• R < 1 =⇒ ∑
an converges absolutely;

• 1 < r =⇒ ∑
an diverges.

In case r 6 1 6 R, no conclusion is possible.

Proof. Suppose R < x < 1. Then, for some M ,

n >M =⇒
∣∣∣∣
an+1

an

∣∣∣∣ < x,

so n >M =⇒ |an+1| < |aM |xn−M . By the Comparison Test,
∑
an converges.

Suppose 1 < r. Then, for some M ,

n >M =⇒
∣∣∣∣
an+1

an

∣∣∣∣ > 1,

which means an cannot converge to 0.

Finally, limn→∞
1/(n+ 1)

1/n
= 1 =

1/(n+ 1)2

1/n2
.

Theorem 3.15 (Root Test). Let ρ = lim supn→∞
n
√
|an|. Then

• ρ < 1 =⇒ ∑
an converges absolutely;

• 1 < ρ =⇒ ∑
an diverges.

In case ρ = 1, no conclusion is possible.

Proof. If ρ < x < 1, and n is large enough, then

n
√
|an| < x,

whence |an| < xn.

If 1 < ρ, then an does not converge to 0.

Finally, limn→∞ n1/n = exp limn→∞ logn/n = e0 = 1; hence limn→∞(n2)1/n =
1.

Theorem 3.16. If
∑
an is absolutely convergent, and f : N→ N is a bijection,

then
∑
af(n) converges, and

∞∑

k=0

∣∣af(k)

∣∣ =
∞∑

k=0

|ak| .
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Proof.
∑n
k=0

∣∣af(k)

∣∣ 6∑∞k=0 |ak|, so
∑
af(n) converges absolutely.

We have
∣∣∣∣∣
n∑

k=0

af(k) −
∞∑

k=0

ak

∣∣∣∣∣ 6
∣∣∣∣∣
n∑

k=0

af(k) −
m∑

k=0

ak

∣∣∣∣∣+

∣∣∣∣∣
∞∑

k=m+1

ak

∣∣∣∣∣ .

Let ε > 0. Let m be large enough that
∣∣∑∞

k=m+1 ak
∣∣ 6 ∑∞k=m+1 |ak| 6 ε/2.

Then n can be large enough that

{0, 1, . . . ,m} ⊆ {f(0), f(1), . . . , f(n)}.
Then

∣∣∑n
k=0 af(k) −

∑m
k=0 ak

∣∣ < ε/2, so
∣∣∑n

k=0 af(k) −
∑∞
k=0 ak

∣∣ < ε.

Theorem 3.17. If
∑
an is convergent, but not absolutely convergent, and

−∞ 6 b 6 c 6∞, then there is a bijection f : N→ N such that

lim inf
n→∞

n∑

k=0

af(k) = b and lim sup
n→∞

n∑

k=0

af(k) = c.

Proof. For any x in R, we have

x = max(0, x) + min(0, x) and |x| = max(0, x)−min(0, x).

Hence (by Theorem 3.3), if
∑
an and one of

∑
max(0, an) and

∑
min(0, an)

converge, then
∑
an converges absolutely.

Suppose
∑
an converges, but not absolutely, and −∞ < b 6 c < ∞. Then

both
∑

max(0, an) and
∑

min(0, an) diverge, to ∞ and −∞ respectively. So it
is possible to find a strictly increasing sequence (g(n) : n ∈ N) and a bijection
f : N→ N such that:

• g(0) = 0;

• f is increasing on {k ∈ N : (∃n ∈ N) g(2n) 6 k < g(2n + 1)} and on its
complement;

• af(k) > 0 ⇐⇒ (∃n ∈ N) g(2n) 6 k < g(2n+ 1);

• ∑g(2n+1)−2
k=0 af(k) 6 c <

∑g(2n+1)−1
k=0 af(k);

• ∑g(2n+2)−1
k=0 af(k) < b 6

∑g(2n+2)−2
k=0 af(k).

Since limn→∞ af(n) = 0, we have

lim inf
n→∞

n∑

k=0

af(k) = b and lim sup
n→∞

n∑

k=0

af(k) = c.

If possibly one or both of b and c are infinite, then we modify the construction
of f by choosing sequences (bn) and (cn) that have limits b and c respectively
and that satisfy bn < cn. Then we require

g(2n+1)−2∑

k=0

af(k) 6 cn <
g(2n+1)−1∑

k=0

af(k)

and
∑g(2n+1)−1
k=0 af(k) < bn 6

∑g(2n+1)−2
k=0 af(k).
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Suppose (p, q) 7→ ap q is a function from N × N to R (that is, a double se-
quence). Then we say

lim
(p,q)→∞

ap q = b

if for all positive ε there is M such that

p, q > M =⇒ |ap q − b| < ε.

Theorem 3.18. Suppose

lim
(p,q)→∞

ap q = b.

If limq→∞ ap q exists for each p in N, then

lim
p→∞

lim
q→∞

ap q = b.

Proof. Let N be such that

p, q > N =⇒ |ap q − b| <
ε

2
.

Suppose p > N and limq→∞ ap q = cp. There is M such that

q > M =⇒ |ap q − cp| <
ε

2
.

Hence, if q > max(M,N), then |cp − b| 6 |cp − ap q|+ |ap q − b| < ε.

Example 3.19. We have

lim
p→∞

lim
q→∞

pq

p2 + q2
= lim
p→∞

0 = 0;

but pq/(p2 + q2) = 1/2 if p = q; so the double sequence

(p, q) 7→ pq

p2 + q2

has no limit.

Suppose (an : n ∈ N) is a sequence of real numbers. We shall say that
∏
an

converges if, for some p in N, the sequence of products
∏n
k=p ak converges to

a finite and non-zero limit b. In this case, we write

∞∏

k=p

an = b and
∞∏

k=0

ak = b ·
p−1∏

k=0

ak.

(If p = 0, then
∏p−1
k=0 ak = 1.) The definition has two immediate consequences:

• If
∏
an converges, then an 6= 0 for all but finitely many n.

• ∏ an converges if and only if
∏

1/an converges.
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Examples 3.20.
∏n
k=1(1 + 1/k) =

∏n
k=1((k + 1)/k) = n+ 1, and

n+1∏

k=2

(
1− 1

k

)
=
n+1∏

k=2

k − 1

k
=

1

n+ 1
;

so
∏

(1± 1/n) diverges in each case.

Theorem 3.21 (Cauchy condition for products). The product
∏
an con-

verges if and only if, for every positive ε, there is M such that, for all n and k
in N,

n > M =⇒
∣∣∣∣∣
n+k∏

`=n

a` − 1

∣∣∣∣∣ < ε.

Proof. Suppose
∏
an converges. Then for some p there is a positive δ such that

∣∣∣∣∣∣

p+n∏

`=p

a`

∣∣∣∣∣∣
> δ

for all n in N. Also, there is M such that

n > M =⇒

∣∣∣∣∣∣

p+n+k+1∏

`=p

a` −
p+n∏

`=p

a`

∣∣∣∣∣∣
< εδ

for all k in N. Division yields

n > M =⇒

∣∣∣∣∣∣

p+n+k+1∏

`=p+n+1

a` − 1

∣∣∣∣∣∣
< ε.

Suppose conversely that for all positive ε there is M such that

n > M =⇒
∣∣∣∣∣
n+k∏

`=n

a` − 1

∣∣∣∣∣ < ε.

for all k in N. Then, in particular, there is p such that

1

2
<

p+k∏

`=p

a` <
3

2

for all k in N. Hence if limn→∞
∏p+n
`=p a` exists, then it is not zero, so

∏
an

converges. We can show that this limit exists by the Cauchy criterion. Indeed,
we have

∣∣∣∣∣∣

p+n+k+1∏

`=p

a` −
p+n∏

`=p

a`

∣∣∣∣∣∣
=

∣∣∣∣∣∣

p+n+k+1∏

`=p+n+1

a` − 1

∣∣∣∣∣∣
·

∣∣∣∣∣∣

p+n∏

`=p

a`

∣∣∣∣∣∣
<

3

2
ε

if n > M .



20 David Pierce, June 20, 2003

Theorem 3.22. If (an) is a sequence of positive terms, then

∏
(1 + an) converges ⇐⇒

∑
an converges.

Proof. If 1 < x, then, by the Mean-Value Theorem, 1 6 et = (ex − 1)/x for
some t in (1, x), so 1 + x 6 ex. Hence

n∑

k=0

ak < 1 +

n∑

k=0

ak 6
n∏

k=0

(1 + ak) 6
n∏

k=0

exp ak = exp

n∑

k=0

ak.

Thus, the increasing sequence of partial sums is bounded if and only if the
increasing sequence of partial products is bounded.

The Riemann Zeta-function is defined on the interval (1,∞) by the formula

ζ(s) =

∞∑

n=1

1

ns
.

(See Examples 3.13.)

Theorem 3.23 (Euler product). Let the set of prime numbers be the range
of the increasing sequence (pn : n ∈ N). Then the Riemann Zeta-function is
given by

ζ(s) =

∞∏

k=0

1

1− p−sk
=

∞∏

k=0

∞∑

n=0

1

pnsk
.

Proof. Every partial product
∏m
k=0

1
1−p−sk

is the limit of the products

m∏

k=0

n∑

`=0

1

p`sk
,

which can be written as the sums
∑
a 1/as, where a ranges over the positive

integers whose only prime factors are among the pk such that k 6 m, and which
are divisible by any one of these pk at most n times. Hence

∣∣∣∣∣ζ(s)−
m∏

k=0

1

1− p−sk

∣∣∣∣∣ 6
∑

b

1

bs
6

∞∑

n=pm

1

ns
,

where b ranges over those positive integers divisible by a prime greater than pm.
Since limn→∞

∑∞
n=pm

1/ns = 0, the claim follows.

4 Sequences of functions

Suppose I is a sub-interval of R, and (fn : n ∈ N) is a sequence of functions
from I to R. If f is another such sequence, then (fn) converges pointwise to
f if, for all x in I,

lim
n→∞

fn(x) = f(x).

Nice properties need not be preserved under the taking of pointwise limits:
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Examples 4.1. (0) The sequence of continuous functions x 7→ xn : [0, 1]→ R
converges pointwise to the non-continuous function

x 7→
{

0, if 0 6 x < 1;

1, if x = 1.

(1) The sequence of integrable functions x 7→ n2xn(1 − x) : [0, 1] → R con-
verges pointwise to 0, but

∫ 1

0

n2xn(1− x) dx = n2

(
xn+1

n+ 1
− xn+2

n+ 2

)∣∣∣∣
1

0

=
n2

(n+ 1)(n+ 2)
,

so the sequence of integrals converges to 1.

(2) The sequence of differentiable functions x 7→ (sinn2x)/n converges to 0,
but the sequence of derivatives x 7→ 2n cosnx does not converge.

The sequence (fn) converges uniformly to f if for every positive ε there is
M such that for all x in I and all n in Z,

n > M =⇒ |fn(x)− f(x)| < ε.

We showed in Math 271 that the uniform limit of continuous functions is con-
tinuous.

Let B(I) be the set of bounded real-valued functions on I. This becomes a
metric space when we define

d(f, g) = sup{|f(x)− g(x)| : x ∈ I}.

Then a sequence of functions in B(I) converges uniformly if and only if it con-
verges in the metric d.

Lemma 4.2 (Cauchy condition for uniform convergence). A sequence
(fn) of functions on I converges uniformly if and only if for all positive ε there
is M such that for all x in I, all n in Z and all k in N,

n > M =⇒ |fn+k(x)− fn(x)| < ε.

Proof. Suppose (fn) converges uniformly to f . If ε > 0, let M be such that

n > M =⇒ |fn(x)− f(x)| < ε

2
. (iv)

If n > M , then also |fn+k(x)− f(x)| < ε/2, so |fn+k(x)− f(x)| < ε.

Conversely, if (fn) satisfies the Cauchy condition, then each sequence (fn(x)) of
real numbers is Cauchy, so it has a limit, say f(x). Hence, for all n, we have

lim
k→∞

|fn(x)− fn+k(x)| = |fn(x)− f(x)| .

If ε > 0, let M be such that (iv) holds. Then

n > M =⇒ |fn(x)− f(x)| 6 ε

2
< ε.

So (fn) converges uniformly to f .
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A series
∑
fn of functions converges uniformly if the sequence of partial sums∑n

k=0 fk converges uniformly.

Lemma 4.3 (Cauchy condition for uniform convergence of series). A
series

∑
fn of functions converges uniformly if and only if, for all positive ε,

there is M such that for all x in I, for all n in Z and all k in N,

n > M =⇒
∣∣∣∣∣
n+k∑

`=n

f`(x)

∣∣∣∣∣ < ε.

Theorem 4.4 (Weierstraß M-test). Suppose the sequences (fn) of functions
and (Mn) of numbers are such that, for each x in I,

|fn(x)| 6Mn.

If
∑
Mn converges, then

∑
fn converges uniformly.

Proof. If
∑
Mn converges, then it satisfies the Cauchy criterion for series; so∑

fn satisfies the Cauchy criterion for series of functions; so
∑
fn converges

uniformly.

Theorem 4.5. Suppose each fn is continuous, and
∑
fn converges uniformly

to f . Then f is continuous; in particular,

lim
y→x

∞∑

n=0

fn(y) =
∞∑

n=0

lim
y→x

fn(y).

Theorem 4.6 (A space-filling curve). There is a continuous surjective func-
tion from [0, 1] to [0, 1]× [0, 1].

Proof. Let φ be a continuous function on R such that, for all n in Z,

φ(x) =

{
0, if k − 1/6 6 x 6 k + 1/6;

1, if k + 1/3 6 x 6 k + 2/3.

Then φ is periodic, with period 1; that is, φ(x) = φ(x − bxc). For each e in
{0, 1}, let fe be the function given by

fe(x) =

∞∑

k=0

φ(32k+ex)

2k+1
.

The series converge uniformly, by the M -test with Mk = 1/2k+1. Since φ is
continuous, so are the fe. Our function will be

x 7→ (f0(x), f1(x)).

Any point of [0, 1]× [0, 1] can be written, in binary notation, as

( ∞∑

k=1

ak
2k
,
∞∑

k=1

bk
2k

)
,
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where ak and bk are in {0, 1}. Now define

cn =

{
ak, if 2k − 1 = n;

bk, if 2k = n;

and let

c =
∞∑

n=1

cn
3n
.

Then

3kc−
⌊
3kc
⌋

=
ck+1

3
+
∞∑

n=1

cn+k+1

3n+1
,

so φ(3kc) = ck+1.

Theorem 4.7. Let g be of bounded variation on [a, b]. If fn ∈ R(g), and (fn)
converges uniformly to f on [a, b], then f ∈ R(g), and (

∫ x
a
fn d g) converges

uniformly to
∫ x
a
f d g.

Proof. We may assume g is increasing and g(b) 6= g(a). There is M such that,
for all x in [a, b],

n >M =⇒ |fn(x)− f(x)| < ε

3(g(b)− g(a))
.

We use this first to prove f ∈ R(g). For any partition P of [a, b], we have

|U(P, f − fM , g)| , |L(P, f − fM , g)| < ε

3
.

Suppose in particular that P is fine enough that

U(P, fM , g)− L(P, fM , g) <
ε

3
.

Because sup{f(x) : x ∈ [a, b]} 6 sup{f(x) − fM (x) : x ∈ [a, b]} + sup{fM (x) :
x ∈ [a, b]}, and likewise for the infima, we have

U(P, f, g)− L(P, f, g) 6
U(P, f − fM , g) + U(P, fM , g)− (L(P, f − fM , g) + L(P, fM , g)) 6 ε.

So Riemann’s condition is satisfied, and f ∈ R(g). We have also

∣∣∣∣
∫ x

a

fn d g −
∫ x

a

f d g

∣∣∣∣ =

∣∣∣∣
∫ x

a

(fn − f) d g

∣∣∣∣ 6
∫ x

a

|fn − f |d g 6
∫ b

a

|fn − f | d g 6
ε

3
,

so the convergence of the sequence of integrals is uniform.

Under the conditions of the theorem, we have

lim
n→∞

∫ x

a

fn d g =

∫ x

a

( lim
n→∞

fn) d g.
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If also
∑
fn converges uniformly, then

∞∑

n=0

∫ x

a

fn d g =

∫ x

a

(
∞∑

n=0

fn) d g.

A power series is a function

z 7→
∞∑

n=0

cn(z − a)n.

At a, this function has the value c0, by definition. The function may, but need
not, be well-defined at other points. Nice results are obtained if the coefficients
cn and the point a (as well as the argument z) are allowed to be complex
numbers.

Theorem 4.8. The vector-space R2 becomes a field when equipped with the
multiplication given by

(a, b)(c, d) = (ac− bd, ad+ bc).

In this field, the multiplicative identity is (1, 0), and

(a, b)−1 =
1

a2 + b2
(a,−b).

The field in the theorem is denoted C; its elements are complex numbers.
For the complex numbers (1, 0) and (0, 1), we may write

1 and i

respectively; then the complex number (a, b)—that is, a(1, 0) + b(0, 1)—can be
written a+ bi. Note that i2 = −1.

Theorem 4.9. If z, w ∈ C, then |zw| = |z| |w|.

If z ∈ C, then |z| is called the absolute value or modulus of z. We have
the triangle inequality, |z + w| 6 |z| + |w|. Much of what we have done with
sequences of real numbers applies to complex numbers as well. In particular,

• the definition of absolute convergence is meaningful for series of complex
numbers;

• the tests for absolute convergence work for such series (since absolute
convergence is still convergence of a certain series of real numbers);

• the proof that absolute convergence implies convergence is still valid for
such series.

Let ρ = lim supn→∞
n
√
|cn|. Then

lim sup
n→∞

n
√
|cn(z − a)n| = lim sup

n→∞
n
√
|cn| |(z − a)n| =

lim sup
n→∞

(|z − a| n
√
|cn|) = |z − a| ρ.

If ρ > 0, then the series
∑
cn(z − a)n:
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• converges absolutely, if |z − a| < 1/ρ;

• diverges, if |z − a| > 1/ρ.

The number 1/ρ (if it exists) is the radius of convergence of the series; the ball
B(a; 1/ρ) is the disc of convergence. (If ρ = 0, then the radius of convergence
is ∞; if ρ =∞, then the radius of convergence is 0.)

Theorem 4.10. Every power series is continuous on its disc of convergence.

Proof. Let R be the radius of convergence of
∑
cn(z − a)n, and suppose w ∈

B(a;R). Let δ = (R−|w − a|)/2, and let F = {z ∈ C : |z − w| 6 δ}. Then F is
a neighborhood of w, so it is enough to show that the series is continuous on F .
For this, since z 7→ cn(z − a)n is continous, it is enough to show that the series
converges uniformly on F . But F is compact, so some point b of F is furthest
from a; that is, if z ∈ F , then

|cn(z − a)n| = |cn| |z − a|n 6 |cn| |b− a|n .

Since |b− a| < R, we know
∑ |cn| |b− a|n converges; hence, by the M -test, the

series converges uniformly on F .

Since C is a field, the definition of the derivative of a function from R to R
is meaningful for functions from C to C. We shall show that any power se-
ries is differentiable on its disc of convergence, with derivative the sum of the
derivatives of the terms.

Lemma 4.11.
∑∞
n=0 cn(z−a)n and

∑∞
n=1 ncn(z−a)n−1 have the same radius

of convergence.

Proof. The second series is convergent if and only if
∑∞
n=1 ncn(z − a)n is con-

vergent. Since limn→∞ n
√
n = 1, this series has the same radius of convergence

as the first.

Lemma 4.12. |zn − wn| 6 n |z − w| (|w|+ |z − w|)n−1 if n > 0.

Proof. The claim is trivial if w = 0. Assume w 6= 0, and let t = (z − w)/w.
Then we have to prove

|(1 + t)n − 1| 6 n |t| (1 + |t|)n−1.

If t is a non-negative real number, then the inequality holds, since then

(1 + t)n − 1 = n

∫ t

0

(1 + x)n−1 dx 6 nt(1 + t)n−1.

For arbitrary t in C, we have

|(1 + t)n − 1| =
∣∣∣∣∣
n∑

k=1

(
n

k

)
tk

∣∣∣∣∣ 6
n∑

k=1

(
n

k

)
|t|k = (1 + |t|)n − 1,

which, combined with the previous inequality, yields the claim.
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Note that, by interchanging z and w, we can write the inequality of the lemma
as

|zn − wn| 6 n |z − w| (|z|+ |z − w|)n−1.

Theorem 4.13. If
∑∞
n=0 cn(z − a)n has a positive radius of convergence, then

the function is differentiable on its disc of convergence, and its derivative is∑∞
n=1 ncn(z − a)n−1.

Proof. Write f(z) for
∑∞
n=0 cn(z − a)n. Let ζ be an element of the disc of

convergence; we shall compute f ′(ζ). For all elements w of this disc distinct
from ζ,

f(ζ)− f(w)

ζ − w =
∞∑

n=1

cn
(ζ − a)n − (w − a)n

ζ − w .

We want to make the difference between this and
∑∞
n=1 ncn(ζ − a)n−1 small.

To do this, we break this difference into two pieces, and make each piece small.
For any positive integer M ,

∣∣∣∣∣
f(ζ)− f(w)

ζ − w −
∞∑

n=1

ncn(ζ − a)n−1

∣∣∣∣∣ 6

M∑

n=1

|cn|
∣∣∣∣
(ζ − a)n − (w − a)n

ζ − w − n(ζ − a)n−1

∣∣∣∣+

∞∑

n=M+1

cn

(∣∣∣∣
(ζ − a)n − (w − a)n

ζ − w

∣∣∣∣+ n |ζ − a|n−1

)
6

M∑

n=1

|cn|
∣∣∣∣
(ζ − a)n − (w − a)n

ζ − w − n(ζ − a)n−1

∣∣∣∣+

∞∑

n=M+1

n |cn|
(

(|ζ − a|+ |ζ − w|)n−1 + |ζ − a|n−1
)

by Lemma 4.12. Let R be the radius of convergence of f , and let δ0 = (R −
|ζ − a|)/2. Suppose 0 < |ζ − w| < δ0. Then

∣∣∣∣∣
f(ζ)− f(w)

ζ − w −
∞∑

n=1

ncn(ζ − a)n−1

∣∣∣∣∣ 6

M∑

n=1

|cn|
∣∣∣∣
(ζ − a)n − (w − a)n

ζ − w − n(ζ − a)n−1

∣∣∣∣+

2

∞∑

n=M+1

ncn(|ζ − a|+ δ0)n−1.

Say ε > 0. By Lemma 4.11, we can choose M large enough that

2
∞∑

n=M+1

ncn(|ζ − a|+ δ0)n−1 < ε/2.
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But for each positive n, the derivative of z 7→ (z − a)n is z 7→ n(z − a)n−1;
hence, for the chosen M , we can find δ1 such that, if 0 < |ζ − w| < δ1, then

M∑

n=1

|cn|
∣∣∣∣
(ζ − a)n − (w − a)n

ζ − w − n(ζ − a)n−1

∣∣∣∣ <
ε

2
.

Therefore, if 0 < |ζ − w| < min{δ0, δ1}, then

∣∣∣∣∣
f(ζ)− f(w)

ζ − w −
∞∑

n=1

ncn(ζ − a)n−1

∣∣∣∣∣ 6 ε;

this proves the claim.

Corollary 4.14. If f(z) =
∑∞
n=0 cn(z−a)n, and R is the radius of convergence

of the series, then f is infinitely differentiable on B(a;R), and

cn =
f (n)(a)

n!
.

Proof. Repeated application of the theorem yields

f (k)(z) =

∞∑

n=k

n(n− 1) . . . (n− k + 1)cn(z − a)n−k =

∞∑

n=k

n!

(n− k)!
cn(z − a)n−k,

hence f (k)(a) = k!ck.

For which functions f , defined on a neighborhood of a, can we conclude

f(z) =
∞∑

n=0

f (n)(a)

n!
(z − a)n (v)

on some neighborhood of a? If a ∈ C, then it is enough for f to be once-
differentiable (but we won’t prove this). If a ∈ R, then it is not even enough to
know that f is infinitely differentiable:

Example 4.15. Let f(x) =

{
exp(−x−2), if x 6= 0;

0, if x = 0.
Then f (n)(0) = 0 for all

n; so Equation (v) fails when a = 0.

We can come up with a condition under which a function f satisfies Equation (v):

Lemma 4.16 (Generalized Mean-Value Theorem). Let F and G be real-
valued functions continuous on [a, b] and differentiable on (a, b). Then

F ′(c)[G(b)−G(a)] = G′(c)[F (b)− F (a)]

for some c in (a, b).

Proof. Apply Rolle’s Theorem to x 7→ F (x)[G(b)−G(a)]−G(x)[F (b)−F (a)].
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Theorem 4.17. Suppose f (n−1) and g(n−1) are continuous on [a, b] and dif-
ferentiable on (a, b). Then for any distinct c and x in [a, b] there is y, strictly
between them, such that

f (n)(y)

[
g(x)−

n−1∑

k=0

g(k)(c)

k!
(x− c)k

]
= g(n)(y)

[
f(x)−

n−1∑

k=0

f (k)(c)

k!
(x− c)k

]
.

Proof. Use the Generalized Mean-Value Theorem, with [c, x] (or [x, c]) in place
of [a, b], with F as the function

t 7→
n−1∑

k=0

f (k)(t)

k!
(x− t)k,

and with G as a similar function in terms of g. In particular, G(x) = g(x), so

G(x)−G(c) = g(x)−
n−1∑

k=0

g(k)(c)

k!
(x− c)k;

also,

F ′(t) = f ′(t) +
n−1∑

k=1

[
f (k+1)(t)

k!
(x− t)k − f (k)(t)

(k − 1)!
(x− t)k−1

]
,

a telescoping sum, so F ′(t) = f (n)(t)(x− t)n−1/(n− 1)!.

Corollary 4.18 (Taylor’s Theorem). Suppose f (n−1) is continuous on [a, b]
and differentiable on (a, b). Then for any distinct c and x in [a, b] there is y,
strictly between them, such that

f(x) =
n−1∑

k=0

f (k)(c)

k!
(x− c)k +

f (n)(y)

k!
(x− c)n.

Proof. In the theorem, let g be t 7→ (t− c)n. We have

g(k)(t) =
n!

(n− k)!
(t− c)n−k,

so the theorem gives

f (n)(y)(x− c)n = n!

[
f(x)−

n−1∑

k=0

f (k)(c)

k!
(x− c)k

]
,

whence the claim.

Lemma 4.19. Suppose f has derivatives of all orders on some neighborhood of
c, and for some M , each f (n) is bounded by Mn on that neighborhood; then on
that neighborhood, Equation (v) holds.

Proof. For any positive a, we have limn→∞(an/n!) = 0, since
∑

(an/n!) con-
verges by the ratio test.
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5 Differentiation in several dimensions

Suppose in this section that f is a function from Rn to Rm, and a is a point of
Rn. We want to investigate the possibilities for differentiating f at a . We can
write f as (f0, . . . , fm−1), where each fi is a function from Rn to R; so if n = 1,
then we can form (f ′0, . . . , f

′
m−1).

In the general case, we can take partial derivatives: Define a function δ : N×N→
{0, 1} by

δi j =

{
1, if i = j;

0, if i 6= j.

Let ei be the element (δi 0, . . . , δi n−1) of Rn. Let Dif be the function defined
by

Dif(a) = lim
h→0

f(a + hei)− f(a)

h
;

this function (where it is well-defined) is the partial derivative of f with
respect to the ith coordinate. Note that Difj(a) is the ordinary derivative
at 0 of the function

x 7→ fj(a + xei).

Example 5.1. Let f : R2 → R be given by

f(x, y) =

{
xy/(x2 + y2), if (x, y) 6= (0, 0);

0, if (x, y) = (0, 0).

Then D0f(0, 0) = 0 = D1f(0, 0), but f is not continuous at (0, 0).

For a stronger property than having partial derivatives, we define the general-
ization called the directional derivative: If u ∈ Rn, then

f ′(a; u) = lim
h→0

f(a + hu)− f(a)

h
.

Thus f ′(a; ei) = Dif(a). In Example 5.1, not all directional derivatives at (0, 0)
exist.

Example 5.2. Let f : R2 → R be given by

f(x, y) =

{
xy2/(x2 + y4), if x 6= 0;

0, if x = 0.

Then all directional derivatives at 0 exist, since

f(hu, hv)− f(0, 0)

h
=

uv2

u2 + h2v4
,

which has a limit as h goes to 0, whether or not u = 0. However, f(y2, y) = 1/2,
unless y = 0; so f is not continuous at (0, 0).
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If n = 1, then f is differentiable at a if and only if there is a number, called
f ′(a), such that

lim
h→0

f(a+ h)− f(a)− f ′(a) · h
h

= 0.

The function h 7→ f ′(a) ·h : R→ R is linear; call it λ. (A function T : Rn → Rm
is linear if T (au + bv) = aT (u) + bT (v) in all cases.) Then the function
x 7→ f(a) + λ(x− a) is an approximation to f near a.

The function f : Rn → Rm is said to be differentiable at a if there is a linear
function λ : Rn → Rm such that

lim
h→0

|f(a + h)− f(a)− λ(h)|
|h| = 0.

In this case, λ is the total derivative of f at a and is denoted Df(a). Note
well that this is a function; however, we have to check that it is unique:

Theorem 5.3. If Df(a) exists, then Df(a)(u) = f ′(a; u) for all u in Rn; so
the total derivative is uniquely determined by the directional derivatives.

Proof. If Df(a) exists, and u 6= 0, then

0 = lim
h→0

|f(a + hu)− f(a)−Df(a)(hu)|
|hu| = 0;

but Df(a)(hu) = hDf(a)(u); hence the claim.

Corollary 5.4. Df(a)(u) =
∑
i<n uiDif(a) for all u.

Proof. It’s true when u = ei; hence it is true in general, by linearity.

Lemma 5.5. For any linear function T : Rn → Rm there is a number M such
that

|T (h)| 6M |h|
for all h in Rn. Hence T is continuous at 0.

Proof. |T (x)| =
∣∣∑

i<n xiT (ei)
∣∣ 6∑i<n |xi| |T (ei)| 6 |x|

∑
i<n |T (ei)|.

Theorem 5.6. Differentiability implies continuity.

Proof. If Df(a) exists, then

lim
h→0

(f(a + h)− f(a)−Df(a)(h)) = 0;

but also limh→0Df(a)(h) = 0, by Lemma 5.5; hence

lim
h→0

f(a + h) = f(a),

whence the claim.



June 20, 2003, Analysis II notes 31

The sum of products in Corollary 5.4 can be written as a matrix product:

Df(a)(u) =
[
D0f(a) · · · Dn−1(a)

]



u0

...
un−1.




As u, so can each partial derivative Dif(a) be written as a column-vector. Thus
Df(a)(u) is the matrix product u · f ′(a), where

f ′(a) =




D0f0(a) · · · Dn−1f0(a)
...

. . .
...

D0fm−1(a) · · · Dn−1fm−1(a)


 .

This matrix f ′(a) is the Jacobian matrix of f at a.

Theorem 5.7 (Chain-Rule). If the functions f : Rn → Rm and g : Rm → Rp
are differentiable at a and f(a) respectively, then g ◦f is differentiable at a, and

D(g ◦ f)(a) = Dg(f(a)) ◦Df(a),

whence (g ◦ f)′(a) = g′(f(a)) · f ′(a).

Proof. We have to prove

lim
h→0

g(f(a + h))− g(f(a))−Dg(f(a))(Df(a)(h))

|h| = 0.

The numerator of the fraction can be written as the sum of

g(f(a + h))− g(f(a))−Dg(f(a))(f(a + h)− f(a))

and
Dg(f(a))(f(a + h)− f(a)−Df(a)(h)).

Write these summands respectively as

ψ(f(a + h)) and Dg(f(a))(φ(h)).

We shall show:

(0) lim
h→0

|ψ(f(a + h))|
|h| = 0;

(1) lim
h→0

|Dg(f(a))(φ(h))|
|h| = 0.

By Lemma 5.5, there is M such that, for all h,

|Dg(f(a))(φ(h))| 6M |φ(h)| ;

since limh→0 |φ(h)| / |h| = 0, this proves (1). For (0), note that

lim
k→0

|ψ(f(a) + k)|
|k| = 0;
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also, if f(a + h) = f(a), then ψ(f(a + h)) = 0. If f(a + h) 6= f(a), then we
have

|ψ(f(a + h))|
|h| =

|ψ(f(a + h))|
|f(a + h)− f(a)| ·

|f(a + h)− f(a)|
|h| .

The second factor here is
|φ(h) +Df(a)(h)|

h
;

hence there is N such that

|f(a + h)− f(a)|
|h| 6 |φ(h)|

h
+N.

Suppose ε > 0. There are positive numbers δ0, δ1 and δ2 such that

0 < |h| < δ0 =⇒ |φ(h)|
|h| < 1;

0 < |k| < δ1 =⇒ |ψ(f(a) + k)|
|k| <

ε

N + 1
;

0 < |h| < δ2 =⇒ |f(a + h)− f(a)| < δ2.

Let δ = min{δ0, δ2}; then
|ψ(f(a + h))|

|h| < ε

whenever 0 < |h| < δ.

Lemma 5.8. If the partial derivatives Dif are defined on a neighborhood of a
and are continuous at a, then f is differentiable at a, that is, the total derivative
Df(a) exists.

Proof. We may assume m = 1. The Dif must be defined on an open interval I
that contains a. (Note then that I is I0 × · · · × In−1 for some open intervals Ii
of R such that ai ∈ Ii.) We shall show that Df(a) exists by showing that

lim
h→0

∣∣f(a + h)− f(a)−∑i<nDif(a) · hi
∣∣

|h| = 0.

Suppose h ∈ I r {a}. We have

f(a + h)− f(a)

= f(a + h0e0)− f(a)

+ f(a + h0e0 + h1e1)− f(a + h0e0)

+ · · ·
+ f(a + h0e0 + · · ·+ hn−1en−1)− f(a + h0e0 + · · ·+ hn−2en−2)

=
∑

i<n

(f(a +
∑

j<i+1

hjej)− f(a +
∑

j<i

hjej)) =
∑

i<n

Dif(bi) · hi,

where bi = a+
∑

j<i hjej+ciei for some ci between 0 and hi, by the Mean-Value
Theorem as applied to the function

x 7→ f(a +
∑

i<j

hjej + xei).
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In particular, bi ∈ I. We now have

0 6
∣∣f(a + h)− f(a)−∑i<nDif(a) · hi

∣∣
|h|

=

∣∣∑
i<n(Dif(bi)−Dif(a)) · hi

∣∣
|h|

6
∑

i<n

|Dif(bi)−Dif(a)| · |hi|
|h|

6
∑

i<n

|Dif(bi)−Dif(a)| .

If ε > 0, then, by the continuity of the Dif at a, there is a ball B(a; δ) around
a such that, if x is in this ball, then

|Dif(x)−Dif(a)| 6 ε

n
.

If h is B(a; δ), then so are the bi, which means
∣∣f(a + h)− f(a)−∑i<nDif(a) · hi

∣∣
|h| < ε.

The claim now follows.

The sufficient condition for differentiability of f at a given by the theorem is
that f be continuously differentiable at a.

To the Chain-Rule, we can now state a:

Corollary 5.9. If f is continuously differentiable at a, and the function g :
Rm → R is differentiable at f(a), then g ◦ f is differentiable at a, and

Di(g ◦ f)(a) =
∑

j<m

Djg(f(a)) ·Difj(a)

for each i less than n.

Proof. By the Chain-Rule,

[
D0(g ◦ f)(a) · · · Dn−1(g ◦ f)(a)

]
= (g ◦ f)′(a) = g′(f(a)) · f ′(a)

=
[
D0g(f(a)) · · · Dm−1g(f(a))

]
·




D0f0(a) · · · Dn−1f0(a)
...

. . .
...

D0fm−1(a) · · · Dn−1fm−1(a)


 .

Consideration of the i-th entry of the first and last members of the equation
yields the result.

Theorem 5.10 (Inverse Function). Suppose m = n, and f is continu-
ously differentiable on a neighborhood of a, and Df(a) is invertible, that is,
det(f ′(a)) 6= 0. Then there are neighborhoods V of a and W of f(a) such that
f is a bijection from V to W with a differentiable inverse f−1 satisfying

D(f−1)(f(x)) = Df(x)−1 (vi)



34 David Pierce, June 20, 2003

for all x in V , equivalently,

(f−1)′(f(x)) = (f ′(x))−1.

Proof. (0) For any function f : Rn → Rn, let Φ(f) be the statement,

If f is continuously differentiable near a, then a and f(a) have neigh-
borhoods V and W respectively such that f is a bijection from V to
W with differentiable inverse.

Now, any linear function on Rn is its own derivative everywhere. In particular,
let id be the identity on Rn. Then

D(id)(x) = id

for all x in Rn. If Φ(f), then f−1 ◦ f = id on V , so

Df−1(f(x)) ◦Df(x) = id,

whence (vi). It remains for us to show simply that Φ(f) whenever Df(a) is
invertible.

(1) If Φ(f), and T : Rn → Rn is invertible and linear, then Φ(T ◦ f). In
particular, if Df(a) is invertible, and Φ(Df(a)−1 ◦ f), then Φ(f). But

D(Df(a)−1 ◦ f)(a) = id,

by the Chain-Rule. So it is enough for us to show that Φ(f) whenever

Df(a) = id. (vii)

(2) Let us now assume that f is continuously differentiable near a, and that
(vii) holds. Then

lim
h→0

|f(a + h)− f(a)− h|
|h| = 0.

But we also have

|f(a + h)− f(a)− h|
|h| >

∣∣∣∣
|f(a + h)− f(a)|

|h| − 1

∣∣∣∣ .

Therefore

lim
h→0

|f(a + h)− f(a)|
|h| = 1,

which means in particular that, a has a neighborhood U such that

f(x) = f(a) =⇒ x = a (viii)

for all x in U .

(3) We can make certain additional assumptions about U . We may assume that
U is a closed ball,

U = {x ∈ Rn : |x− a| 6 r}.
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Since f is continuously differentiable near a, the function x 7→ det(f ′(x)) is
continuous near a, and therefore we may assume that Df(x) is invertible for all
x in U ; we may also assume

|Difj(x)−Difj(a)| 6 1

2n2
(ix)

for each i and j.

By (vii), Difj(a) = δi j . Let g be the function x 7→ f(x)− x; then

Digj(a) = Difj(x)− δi j = Difj(x)−Difj(a). (x)

For all x and u in U , we have

|u− x| − |f(u)− f(x)| 6 |g(u)− g(x)| 6
∑

i<n

|gi(u)− gi(x)|

6
∑

i<n

∑

j<n

∣∣∣∣∣∣
g(

j∑

k=0

ukek +

n−1∑

k=j+1

xkek)− g(

j−1∑

k=0

ukek +

n−1∑

k=j

xkek)

∣∣∣∣∣∣

6
∑

i<n

∑

j<n

1

2n2
· |uj − xj | 6

∑

i,j<n

1

2n2
· |u− x| 6 1

2
· |u− x|

by the Mean-Value Theorem, (ix) and (x), and therefore

|u− x| 6 2 · |f(u)− f(x)| . (xi)

Hence f is injective on U , and f−1 is well-defined and continuous on f(U).

It remains to prove that f(U) is in fact a neighborhood of f(a) and that f−1 is
differentiable on some neighborhood of f(a).

(4) The boundary of U can be denoted ∂U and is the compact set

{x ∈ U : |x− a| = r}.

Note then that
U r ∂U = B(a; r).

The continuous function x → |f(x)− f(a)| : ∂U → R must attain a minimum
value d, which must be positive, by (viii). Now define

W = B(f(a); d/2),

the open ball with center f(a) and radius d/2. If y ∈W , and u ∈ ∂U , then

d 6 |f(u)− f(a)| 6 |f(u)− y|+ |y − f(a)| ;

since also |y − f(a)| < d/2, we have

|y − f(a)| < |f(u)− y| . (xii)

(5) We shall now show that

W ⊆ f(U r ∂U).
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Then we can define
V = (U r ∂U) ∩ f−1(W ),

so that V is an open neighborhood of a, and f is a continuous bijection between
this and the open neighborhood W of f(a).

Let y ∈ W ; we shall find x in U r ∂U such that f(x) = y. Let h be the
continuously differentiable function

u 7→ |y − f(u)|2 : U → R.

By (xii), we have
u ∈ ∂U =⇒ h(a) < h(u).

Since U is compact, h attains a minimum at some x, which must therefore be
in U r ∂U . Then Dh(x) is the zero-function. Now, h is the composition of
u 7→ y − f(u) and z 7→∑

i<n z
2
i . By the Chain-Rule, we find

2
[
y0 − f0(x) · · · yn−1 − fn−1(x)

]
· f ′(x) =

[
0 · · · 0

]
.

The invertibility of f ′(x) yields f(x) = y, as desired.

(6) It remains to show that if x ∈ V , then D(f−1)(f(x)) exists. It will be
enough to show

lim
k→0

∣∣f−1(f(x) + k)− x−Df(x)−1(k)
∣∣

|k| = 0.

By Lemma 5.5, it will therefore be enough to show

lim
k→0

∣∣Df(x)(f−1(f(x) + k)− x−Df(x)−1(k))
∣∣

|k| = 0. (xiii)

We re-write this, first defining

h(k) = f−1(f(x) + k)− x,

so that
k = f(x + h(k))− f(x).

Then

∣∣Df(x)(f−1(f(x) + k)− x−Df(x)−1(k))
∣∣

|k|

=

∣∣Df(x)(h(k)−Df(x)−1(k))
∣∣

|k| =
|k−Df(x)(h(k))|

|k|

=
|f(x + h(k))− f(x)−Df(x)(h(k))|

|k|

=
|f(x + h(k))− f(x)−Df(x)(h(k))|

|h(k)| · |h(k)|
|k| .

By (ix), the second factor here is bounded by 2; and the first factor has limit 0
at 0, since limk→0 h(k) = 0. Therefore (xiii), which completes the proof.
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Corollary 5.11 (Implicit Function Theorem). Suppose a ∈ Rn and b ∈ Rm
and f : Rn×Rm → Rm is continuously differentiable in a neighborhood of (a,b).
Let

f ′(a,b) =
[
A B

]
,

where B is a square matrix. If f(a,b) = 0, and detB 6= 0, then there is a
function g : Rn → Rm such that g(a) = b, and f(x, g(x)) = 0 for all x in a
neighborhood of a, and g is differentiable on this neighborhood.

Proof. Let F be the function

(x,y) 7→ (x, f(x,y)) : Rn × Rm → Rn × Rm.

Then

F ′(a,b) =

[
I 0
A B

]
,

so det(F ′(a,b)) = detB 6= 0. Hence (a,b) and (a,0) have neighborhoods
U × V and W respectively such that F is a bijection from U × V to W with a
differentiable inverse. We can write this inverse as

(x,y) 7→ (x, h(x,y)),

where h is the appropriate function from W to V . Then

(x,y) = F (x, h(x,y)) = (x, f(x, h(x,y))),

which means
y = f(x, h(x,y)),

when (x,y) ∈W . Hence, in particular,

0 = f(x, h(x,0)).

So we may let g be x 7→ h(x,0).

6 Integration in several dimensions

A compact interval of Rn is a subset

I0 × . . . In−1,

where each Ij is a closed, bounded interval of R. Every compact interval I has
a measure, denoted µ(I) and defined recursively by:

• µ([a, b]) = b− a;

• µ(I × I ′) = µ(I) · µ(I ′).

Let I be the compact interval I0 × . . . In−1. A partition of I is a product

P0 × · · · × Pn−1,
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where each Pj is a partition of Ij . Let the partition of I be P . If each Pj has
mj+1 elements, then P determines m0 · · ·mn−1 sub-intervals of I in an obvious
way. Let J range over the set of these sub-intervals. If tJ ∈ J for each J , and
f is a function from I to R, then f has a Riemann sum

∑

J

f(tJ) · µ(J)

for the partition P . Then f is Riemann-integrable on I if there is a number
A such that, for all positive numbers ε, there is a partition of I such that, for
all finer partitions of I into sub-intervals J , for all choices of tJ in J ,

∣∣∣∣∣
∑

J

f(tJ) · µ(J)−A
∣∣∣∣∣ < ε.

In this case, A is unique and can be denoted
∫

I

f.

As in the special case where I ⊂ R, so in the general case, integrability is
equivalent to a condition known as Riemann’s Condition.

Suppose S is a bounded subset of Rn, and f is a real-valued function on S.
Define the characteristic function of S to be χS : Rn → R, where

χS(x) =

{
1, if x ∈ S;

0, if x /∈ S.

Then f · χS is a well-defined function on Rn, with value 0 on Rn r S. If I
and I ′ are two compact intervals including S, and

∫
I
f · χS exists, then so does∫

I′ f ·χS , and the two intervals are equal; we can then define this common value
to be the integral ∫

S

f.

We may ask two questions:

• How can we tell whether integrals
∫
S
f exist?

• If they exist, how can they be computed?

The set S has measure zero if for all positive ε there is a countable set {Ij :
j ∈ N} of intervals such that

S ⊆
⋃

j∈N
Ij and

∞∑

j=0

µ(Ij) 6 ε.

Let us say that x is a discontinuity of f if f is not continuous at x.

Theorem 6.1 (Lebesgue Criterion). Let f be a bounded real-valued func-
tion on a compact interval I of R. Then

∫
I
f exists if and only if the set of

discontinuities of f has measure zero.
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Example 6.2. Q has measure zero. Indeed, Q can be written as {xj : j ∈ N}.
If ε > 0, let

Ij =
[
xj −

ε

2j+2
, xj +

ε

2j+2

]
.

Then ∞∑

j=0

µ(Ij) =
∞∑

j=0

ε

2j+1
= ε,

and xj ∈ Ij . Let f : R→ R be given by

f(x) =

{
0, if x /∈ Q;

1/ |n| , if x = m/n in lowest terms.

Then the set of discontinuities of f is precisely Q, so f is integrable on every
compact interval, and each of the integrals is 0.

The boundary of a subset S of Rn is the set ∂S of points x of Rn such that
every ball with center x contains points of both S and RnrS. If S is bounded,
then S is said to be Jordan-measurable if ∂S has measure zero.

Theorem 6.3. Let S be a bounded, Jordan-measurable subset of Rn, and let
f be a real-valued function on S. Then

∫
S
f exists if and only if the set of

discontinuities of f on S has measure zero.


