Final Exam solutions

Math 116: Finashin, Pamuk, Pierce, Solak

June 7, 2011, 13:30–15:30 (120 minutes)

Instructions. Work carefully. Your methods should be clear to the reader.

Problem 1 (12 points). Is $x^3 + x + 1$ reducible over:

- (a) \mathbb{Q} ?
- (b) \mathbb{Z}_3 ?
- (c) \mathbb{Z}_5 ?

Solution. Since the polynomial (call it f) has degree 3, it is reducible if and only if it has a root.

- (a) If p/q is a root, then p and q divide 1, so $p/q = \pm 1$. But f(1) = 3 and f(-1) = -1, so f has no roots and is irreducible over \mathbb{Q} .
- (b) f(1) = 0, so f is reducible over \mathbb{Z}_3 (divisible by (x 1)).
- (c) f(0) = 1, f(1) = 3, f(2) = 11, f(3) = 31, f(4) = 69; so f is irreducible over \mathbb{Z}_5 .

Problem 2 (8 points). Letting $f(x) = 3x^4 + 5x^3 + x^2 + 5x - 2$, write f(x) as a product of irreducible polynomials over \mathbb{Q} .

Solution. If p/q is a root of f, then $p \mid 2$ and $q \mid 3$, so $p \in \{\pm 1, \pm 2\}$ and $q \in \{\pm 1, \pm 3\}$, hence $p/q \in \{\pm 1, \pm 2, \pm \frac{1}{3}, \pm \frac{2}{3}\}$.

$$f(1) = 3 + 5 + 1 + 5 - 2 \neq 0,$$

$$f(-1) = 3 - 5 + 1 - 5 - 2 \neq 0,$$

$$f(2) = 48 + 40 + 4 + 10 - 2 \neq 0,$$

$$f(-2) = 48 - 40 + 4 - 10 - 2 = 0$$

Since -2 is a root, f(x) is divisible by (x+2). Using the division algorithm,

$$f(x) = (x+2)(3x^3 - x^2 + 3x - 1).$$

Also 1/3 is a root of $3x^3 - x^2 + 3x - 1$, and

$$3x^3 - x^2 + 3x - 1 = (3x - 1)(x^2 + 1).$$

Therefore $f(x) = (x+2)(3x-1)(x^2+1)$. Since (x+2) and (3x-1) have degree 1, they are irreducible. Since $x^2 + 1 > 0$ for all x in \mathbb{Q} , it has no rational roots and is therefore irreducible.

Problem 3 (5 points). Is every integral domain a field? Explain.

Solution. No, consider the ring of integers $(\mathbb{Z}, +, \cdot)$ which is an integral domain, since it has no zero divisors. But it is not a field, since the non-zero elements except ± 1 do not have multiplicative inverses.

Problem 4 (15 points). Find a polynomial f(x) of least positive degree with the given properties. (Your answer should show the coefficients of f(x).)

- (a) f(x) is over \mathbb{C} , and f(2i) = 0 = f(1+i).
- (b) f(x) is over \mathbb{R} , and 2i and 1 + i are zeros of it.
- (c) f(x) is over \mathbb{Z}_2 , and 1 (that is, [1]) is a zero of multiplicity 4.

Answers.

- (a) $f(x) = (x 2i)(x 1 i) = x^2 (1 + 3i)x + 2i 2$ over \mathbb{C} .
- (b) $f(x) = (x 2i)(x + 2i)(x 1 i)(x 1 + i) = (x^2 + 4)(x^2 2x + 2) = x^4 2x^3 + 6x^2 8x + 8$ over \mathbb{R} .
- (c) $f(x) = (x-1)^4 = x^4 4x^3 + 6x^2 4x + 1 = x^4 + 1$ over \mathbb{Z}_2 .

Problem 5 (5 points). Over a field K, suppose f(x) is a polynomial with no zeros in K. Must f(x) be irreducible over K? Explain.

Solution. No. For example, the polynomial $x^4 + 2x^2 + 1$ over \mathbb{R} has no zeros in \mathbb{R} but it is reducible over \mathbb{R} .

Problem 6 (15 points). Working over \mathbb{Z}_3 , letting

$$f(x) = x^5 + x + 1,$$
 $g(x) = x^2 + 1,$

find s(x) and t(x) such that $f(x) \cdot s(x) + g(x) \cdot t(x) = 1$.

Solution.

$$f(x) = x^{5} + x + 1 = g(x) \cdot (x^{2} + 2x) + 2x + 1$$
$$g(x) = x^{2} + 1 = (2x + 1) \cdot (2x + 2) + 2.$$

Then

$$2 = g(x) - (2x + 1)(2x + 2)$$

= $g(x) - [f(x) - g(x)(x^3 + 2x)](2x + 2)$
= $f(x)(x + 1) + g(x)[1 + (x^3 + 2x)(2x + 2)]$
= $f(x)(x + 1) + g(x)(2x^4 + 2x^3 + x^2 + x + 1)$

Hence,

$$1 = f(x)(2x+2) + g(x)(x^4 + x^3 + 2x^2 + 2x + 2).$$

So,

$$s(x) = 2x + 2,$$
 $t(x) = x^4 + x^3 + 2x^2 + 2x + 2.$

Problem 7 (20 points). Let R be the subring $\{x + yi: x, y \in \mathbb{Z}\}$ of \mathbb{C} , and let I be the ideal $\{x + yi: x, y \in 2\mathbb{Z}\}$ of R.

- (a) How many additive cosets has I in R? List them clearly.
- (b) Is the quotient R/I cyclic as an additive group? Explain.
- (c) Show that the function ϕ from R to \mathbb{Z}_2 given by

$$\phi(x+y\mathbf{i}) = [x+y] \tag{(*)}$$

is a ring homomorphism.

(d) Does the same formula (*) define a ring homomorphism from R to \mathbb{Z}_3 ? Explain.

Solution.

- (a) Four cosets: I, 1 + I, i + I, and 1 + i + I.
- (b) No: R/I has order 4, but each element has order 1 or 2.

(c)

$$\phi((a+bi) + (x+yi)) = \phi(a+x+(b+y)i)$$

$$= [a+x+b+y]$$

$$= [a+b] + [x+y]$$

$$= \phi(a+bi) + \phi(x+yi),$$

$$\phi((a+bi) \cdot (x+yi)) = \phi(ax-by+(ay+bx)i)$$

$$= [ax-by+ay+bx]$$

$$= [ax+by+ay+bx]$$

$$= [a+b] \cdot [x+y]$$

$$= \phi(a+bi) \cdot \phi(x+yi).$$

(d) No, since
$$\phi(i^2) = \phi(-1) = [-1] = [2]$$
, while $\phi(i)^2 = [1]^2 = [1]$.

Remark. For part (d), many people observed that the computations of (c) for multiplication were not justified *modulo* 3. This is correct, but one must show that the system of equations *fails* in at least one case. (In fact the system is correct when $3 \mid by$, but fails in all other cases.)