
Exam 2 solutions

Math 116: Finashin, Pamuk, Pierce, Solak

Tuesday, May 3, 2011

Instructions: Please, be accurate and show clearly the logic of your solutions. Only
the answers are not enough: indicate your calculations and arguments.

Problem 1. (9 pts) Of the set {1, 2, 3, 4, 5, 6, 7, 9}, let σ ∈ S9 be the permutation[
1 2 3 4 5 6 7 8 9
3 7 4 1 6 8 2 9 5

]
.

(a) Write σ as a product of disjoint cycles.

Solution. σ = (134)(27)(5689).

(b) Find σ100. (Hint: find the order of σ).

Solution. The length of σ is the least common multiple of the length of the disjoint
cycles. Hence |σ| = lcm(3, 2, 4) = 12. Thus

σ100 = σ96σ4 = σ4 = (134).

(c) Determine whether permutation σ is even or odd.

Solution. Since we can write σ = (14)(13)(27)(59)(58)(56) as a product of even
number of transpositions, σ is an even permutation.

Problem 2. (6 pts) Consider transpositions α = (12), β = (23), γ = (34) in S4.

(a) Find the product αβγ.

Solution. αβγ = (12)(23)(34) = (1234).

(b) Find g ∈ S4 such that β = gαg−1.

Solution. Note that g is not unique. Since g(1) = 2 and g(2) = 3 we may write
g as

g = (12)(23) = (123)

.
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Problem 3. (8 pts)

(a) Find the number of cosets for subgroups 3Z ⊂ Z and Z ⊂ Q. In the first case, give
an explicit list of these cosets.

Solution. The cosets of 3Z in Z are 3Z, 1 + 3Z, and 2 + 3Z: there are three of
them.

Z has infinitely many cosets in Q [since if a and b are distinct elements of Q between
0 and 1, then a+ Z and b+ Z are distinct cosets].

(b) Find the group multiplication table of Z/3Z (pay attention that the group operation
is addition).

Solution. 3Z 1 + 3Z 2 + 3Z
3Z 3Z 1 + 3Z 2 + 3Z

1 + 3Z 1 + 3Z 2 + 3Z 3Z
2 + 3Z 2 + 3Z 3Z 1 + 3Z

(c) Prove that every element of Q/Z has finite order.

Solution. Every element of Q/Z is k/n+Z for some k and n in Z such that n > 0.
Then n(k/n+ Z) = k + Z = Z, the identity in Q/Z. Thus the order of k/n+ Z is
less than or equal to n: in particular, it is finite.

Problem 4. (7 pts) Assume that G is a group of prime order p.

(a) What can be the order of an element g ∈ G ? (Explain !)

Solution. By the Lagrange Theorem, the order of an element divides the order of
a group. In particular, the order of an element of G divides p; so the order is 0 or
1.

(b) Prove that G is a cyclic group.

Solution. The only element of G of order 1 is the identity, e. If a ∈ Gr {e}, then
the order of a is p, by part (a). So the cyclic subgroup 〈a〉 of G has the same order
as G itself; so that cyclic subgroup is G.
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Problem 5. (10 pts) Suppose that H and N are subgroups of a group G. Assume that
subgroup N is normal, and let K = H ∩N .

(a) Prove that K is a normal subgroup of H.

Solution. Since H,N are subgroups of G then e ∈ H and e ∈ N , so e ∈ H∩N = K
i.e. K is non-empty. Let a, b ∈ K consider ab−1, since a, b ∈ H and a, b ∈ N and
they are subgroups of G then ab−1 ∈ H and ab−1 ∈ N , so ab−1 ∈ K. Therefore,
K is a subgroup of H.
Let h ∈ H and a ∈ K, then a ∈ H and a ∈ N , so hah−1 ∈ H and since
N is normal hah−1 = n for some n ∈ N which means hah−1 ∈ N , therefore
hah−1 ∈ H ∩N = K. Hence, K is a normal subgroup of H.(OR: ha = bh for some
b ∈ N since N is normal, but b = hah−1 which is in H as well, so b ∈ K, hence
hK = Kh for all h ∈ H.)

(b) Let A = {x ∈ G : xK = Kx}. Prove that H ⊆ A.

Solution. By part (a)K is normal in H, so we know that hK = Kh for all h ∈ H,
but then h ∈ A for all h ∈ H. Hence H ⊆ A.

(c) Prove that A is a subgroup of G.

Solution. (i) Since eK = K = Ke, we have e ∈ A.

(ii) If x ∈ A, so that xK = Kx, then K = x−1xK = x−1Kx, so Kx−1 =
x−1Kxx−1 = x−1K, and so x−1 ∈ A.

(iii) If x, y ∈ A, then xK = Kx and yK = Ky, so xyK = xKy = Kxy, hence
xy ∈ A.

Problem 6. (5 pts) Let H and K be normal subgroups of G such that G/H has order
5, and G/K has order 3. Prove that for any g ∈ G, g15 ∈ K ∩H.

Solution. Let g ∈ G, consider the element gH ∈ G/H. Since G/H has order 5 then by
Lagrange Thm. o(gH)|5 by problem 4(a) o(gH) = 5 or o(gH) = 1.
If o(gH) = 1 then gH = eH = H ⇒ g ∈ H ⇒ g5 ∈ H. If o(gH) = 5 then since H is a
normal subgroup of G

eH = (gH)5 = gHgHgHgHgH = gHgHgHggH = · · · = g5H

which means g5 ∈ H.

Similarly, o(gK)|3 then o(gK) = 3 or o(gK) = 1. If o(gK) = 1 then g3 ∈ K. If
o(gK) = 3 then since K is a normal subgroup of G eK = (gK)3 = g3K which means
g3 ∈ K.

Now, since g15 = (g5)3 ∈ H and g15 = (g3)5 ∈ K then g15 ∈ K ∩H.
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Problem 7. (6 pts) Consider subsets 4Z ⊂ Z, {0} ⊂ Z, ∅ ⊂ Z, Z ⊂ Q, (0,∞) ⊂ R,
{[0], [1], [2], [4]} ⊂ Z6, M2(Z) ⊂M2(R).

(a) Which of the above examples are NOT subrings? Why they are not subrings ?

Solution. ∅ ⊂ Z, because a subring should be non-empty,

(0,∞) ⊂ R, because for number x ∈ (0,∞) its opposite, −x, does not belong to
(0,∞),

{[0], [1], [2], [4]} ⊂ Z6, because [1] + [2] = [3] /∈ {[0], [1], [2], [4]}.

(b) Which ones are NOT ideals? Why not ?

Solution. An ideal is a subring, thus, the three examples in part (a) which are
not rings are also not ideals. There are two more examples:

Z ⊂ Q (the product of a rational and an integers may be NOT an integer), and

M2(Z) ⊂M2(R) (the product of an integer matrix with a real matrix may be NOT
an integer matrix).

(So, the only examples of ideals here are 4Z ⊂ Z, and {0} ⊂ Z.)

Problem 8. (9 pts) In each of the following two subrings of Z12, find a unity or show
that there is no unity (multiplicative identity).

(a) 2Z12 = {[0], [2], [4], [6], [8], [10]}

Solution. If [2n] is the unity, then [2][2n] = [2], that is 4n = 2 mod 12. But
4n− 2 is not divisible by 4, and thus, by 12. So, there is no unity in 2Z12.

(b) 3Z12 = {[0], [3], [6], [9]}

Solution. [9] is the unity in 2Z12, because [9][0] = [0], [9][3] = [27] = [3], [9][6] =
[54] = [6], [9][9] = [81] = [9].

(c) Find all the zero divisors in the ring Z12.

Solution. The zero divisors are [2], [3], [4], [6], [8], [9], [10], because in Z12, we have

[2][6] = [3][4] = [8][9] = [10][6] = [0].
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