Exam 2 solutions

Math 116: Finashin, Pamuk, Pierce, Solak

Tuesday, May 3, 2011

Instructions: Please, be accurate and show clearly the logic of your solutions. Only
the answers are not enough: indicate your calculations and arguments.

Problem 1. (9 pts) Of the set {1,2,3,4,5,6,7,9}, let 0 € Sy be the permutation

123 456 789
3 7416 8 29 5|

(a) Write o as a product of disjoint cycles.

Solution. o = (134)(27)(5689).

(b) Find o'°°. (Hint: find the order of o).

Solution. The length of o is the least common multiple of the length of the disjoint
cycles. Hence |o| =lem(3,2,4) = 12. Thus

o100 = %51 = o1 = (134).

(¢) Determine whether permutation o is even or odd.

Solution. Since we can write o = (14)(13)(27)(59)(58)(56) as a product of even
number of transpositions, ¢ is an even permutation.

Problem 2. (6 pts) Consider transpositions o = (12), f = (23), v = (34) in Sy.
(a) Find the product af37.
Solution. afy = (12)(23)(34) = (1234).

(b) Find g € Sy such that 8 = gag™!.

Solution. Note that g is not unique. Since g(1) = 2 and ¢(2) = 3 we may write
g as
g = (12)(23) = (123)



Problem 3. (8 pts)

(a)

(b)

(¢)

Find the number of cosets for subgroups 3Z C Z and Z C Q. In the first case, give
an explicit list of these cosets.

Solution. The cosets of 3Z in Z are 3Z, 1 + 37Z, and 2 + 3Z: there are three of
them.

Z has infinitely many cosets in Q [since if @ and b are distinct elements of Q between
0 and 1, then a + Z and b+ Z are distinct cosets].

Find the group multiplication table of Z/37Z (pay attention that the group operation
is addition).
Solution. | 3Z 1+43Z 2+3%Z

37 372 1437Z 2+3%Z
1+3Z | 1+3Z 2+ 3% 37
2+ 37 |2+ 37Z 37 1437

Prove that every element of Q/Z has finite order.

Solution. Every element of Q/Z is k/n+Z for some k and n in Z such that n > 0.
Then n(k/n+7Z) = k + Z = Z, the identity in Q/Z. Thus the order of k/n + Z is
less than or equal to n: in particular, it is finite.

Problem 4. (7 pts) Assume that G is a group of prime order p.

(a) What can be the order of an element g € G ¢ (Explain !)

Solution. By the Lagrange Theorem, the order of an element divides the order of
a group. In particular, the order of an element of G divides p; so the order is 0 or
1.

(b) Prove that G is a cyclic group.

Solution. The only element of G of order 1 is the identity, e. If a € G\ {e}, then
the order of a is p, by part (a). So the cyclic subgroup (a) of G has the same order
as G itself; so that cyclic subgroup s G.



Problem 5. (10 pts) Suppose that H and N are subgroups of a group G. Assume that
subgroup N is normal, and let K = HN N.

(a) Prove that K is a normal subgroup of H.

Solution. Since H, N are subgroups of Gthene € Hande € N,soe e HOWN = K
i.e. K is non-empty. Let a,b € K consider ab™!, since a,b € H and a,b € N and
they are subgroups of G then ab~! € H and ab~! € N, so ab~! € K. Therefore,
K is a subgroup of H.

Let h € H and a € K, then a € H and a € N, so hah™' € H and since
N is normal hah™! = n for some n € N which means hah™' € N, therefore
hah~' € HNN = K. Hence, K is a normal subgroup of H.(OR: ha = bh for some
b € N since N is normal, but b = hah™!' which is in H as well, so b € K, hence
hK = Kh for all h € H.)

(b) Let A={x € G: zK = Kx}. Prove that H C A.

Solution. By part (a)K is normal in H, so we know that hK = Kh for all h € H,
but then h € A for all h € H. Hence H C A.

(¢) Prove that A is a subgroup of G.

Solution. (i) Since eK = K = Ke, we have e € A.

(i) If € A, so that tK = Kz, then K = 272K = 7 'Kz, so Kz~ =
z ' Kza~ ' =27 1K, and so 27! € A.

(iii) If z,y € A, then 2K = Kz and yK = Ky, so zyK = xKy = Kuxy, hence
xy € A.

Problem 6. (5 pts) Let H and K be normal subgroups of G such that G/H has order
5, and G/K has order 3. Prove that for any g € G, g*> € KN H.

Solution. Let g € G, consider the element gH € G/H. Since G/H has order 5 then by
Lagrange Thm. o(gH)|5 by problem 4(a) o(gH) =5 or o(gH) = 1.

If o(gH) = 1 then gH = eH = H = g€ H = ¢g° € H. If o(gH) = 5 then since H is a
normal subgroup of G

eH = (gH)® = gHgHgHgHgH = gHgHgHggH = --- = ¢°H

which means ¢° € H.
Similarly, o(gK)|3 then o(gK) = 3 or o(gK) = 1. If o(gK) = 1 then ¢ € K. If
0(gK) = 3 then since K is a normal subgroup of G eK = (gK)3 = ¢g®K which means
3
g° € K.

Now, since ¢'5 = (¢°)® € H and ¢'5 = (¢®)° € K then ¢'5 € KN H.



Problem 7. (6 pts) Consider subsets 47 C Z, {0} C Z, @ C Z, Z C Q, (0,00) C R,
{[0], (1, [2], [4]} € Ze, M2(Z) C Ma(R).

(a) Which of the above examples are NOT subrings? Why they are not subrings ?

Solution. @ C Z, because a subring should be non-empty,

(0,00) C R, because for number z € (0,00) its opposite, —x, does not belong to
(0, 00),

{[0], [1], [2], [4]} < Zg, because [1] + [2] = [3] ¢ {[0], [1], [2], [4]}-

(b) Which ones are NOT ideals? Why not ¢

Solution. An ideal is a subring, thus, the three examples in part (a) which are
not rings are also not ideals. There are two more examples:

Z C Q (the product of a rational and an integers may be NOT an integer), and

Ms(Z) C M>(R) (the product of an integer matrix with a real matrix may be NOT
an integer matrix).

(So, the only examples of ideals here are 47 C Z, and {0} C Z.)

Problem 8. (9 pts) In each of the following two subrings of Zi12, find a unity or show
that there is no unity (multiplicative identity).

(a) 2212 = {[0], [2], [4], [6], [8], [10]}
Solution. If [2n] is the unity, then [2][2n] = [2], that is 4n = 2 mod 12. But
4n — 2 is not divisible by 4, and thus, by 12. So, there is no unity in 2Zs.

(b) 3Z12 = {[0], 3], [6], [9]}
Solution. [9] is the unity in 2Z;2, because [9][0] = [0], [9][3] = [27] = [3], [9][6] =
[54] = [6], [9][9] = [81] = [9].

(¢) Find all the zero divisors in the ring Z1s.

Solution. The zero divisors are (2], [3], [4], [6], [8], [9], [10], because in Z2, we have
[21[6] = [3][4] = [8][9] = [10][6] = [0].



