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. Introduction

These notes are about the plane curves known as conic sections. The mathematical
presentation is mainly in the ‘analytic’ style whose origins are sometimes said to be the
Geometry [] of René Descartes. However, the features of conic sections presented in § 
below were apparently known to mathematicians of the eastern Mediterranean in ancient
times. Accordingly, §  below contains a review what I have been able to find out about
the ancient knowledge. I try to give references to the original texts (or translations of
them). Meanwhile, I list some relevant approximate dates; the ancient dates are selected
from [, pp.  f.]:

−: Menaechmus on conic sections;
−: Euclid, Elements;

−: Apollonius, Conics;

−: death of Archimedes;
+: Pappus, Mathematical Collections;

+: Eutocius, commentaries on Archimedes;
+: Descartes, Geometry.

The reader of these notes may agree that the conic sections are worthy of study, in-
dependently of any application. However, Isaac Newton (–), for example, could
not have developed his theory of gravitation [] without knowing what the Ancients knew
about conic sections.

. Background

.. Definitions. A cone and its associated conic surface are determined by the fol-
lowing data:

() a circle, called the base of the cone;
() a point, called the vertex of the cone and the conic surface; the vertex must not

lie in the plane of the base.

The conic surface consists of the points on the lines that pass through the vertex and the
circumference of the base. The cone itself is the solid figure bounded by the surface and
the base. See Figure .
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Figure . A conic surface and cone
An inverse-square law of gravitation causes planetary orbits to be conic sections. Newton showed

this, apparently using such knowledge as can be found in Apollonius. It may be that Newton inferred,
from ancient secondary sources, that the ancient scientists themselves were aware of an inverse-square
law of gravity [, § .].
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The definitions of cone and conic surface can be found at the beginning of the treatise
On Conic Sections [, , , ], by Apollonius of Perga. The axis of the cone is the
line joining the vertex to the center of the base. There is no assumption that the axis is
perpendicular to the base; if it is, then the cone is right; otherwise, the cone is oblique.

A conic section is the intersection of a plane with a conic surface. The discovery
of conic sections (as objects worthy of study) is generally attributed to Apollonius’s
predecessor Menaechmus. However, there are three kinds of conic sections: the ellipse,

the parabola, and the hyperbola. According to Eutocius [, pp. –], Apollonius
was the first mathematician to show that each kind of conic section can be obtained from
every conic surface. Indeed, the names of the three kinds of conic sections appear [,
p.  f., n. a] to be due to Apollonius as well. The names are meaningful in Greek and
reflect the different geometric properties of the sections, in a way shown in § .

.. Motivation. Menaechmus used conic sections to solve the problem of duplicating

the cube. Suppose a cube is given, with volume V ; how can a cube be constructed with
volume 2V ? We can give a symbolic answer: If the side of the original cube has length
s, then the new cube must have side of length s 3

√
2. But how can a side of that length

be constructed?

The corresponding problem for squares can be solved as follows. Suppose AB is a
diameter of a circle, and C is on AB, and D is on the circumference of the circle, and
CD ⊥ AB. Then the square on CD is equal in area to the rectangle whose sides are AC
and BC. More symbolically, if lengths are as in Figure , then

a

x
=
x

b
, or ab = x2, ()

so that
x2

a2
=
b

a
. ()

In particular, if b/a = 2, then a square with side of length x has area twice that of a
square with side of length a.
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Figure . The method of finding a mean proportional

Suppose instead we have
a

x
=
x

y
=
y

b
. ()

Then
x3

a3
=
x

a
· y
x
· b
y

=
b

a
. ()

Perga or Perge was near what is now Antalya; its remains are well worth a visit.
See for example [, p.  f., n. a] or [, p. ].
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If b/a = 2, then a cube with side of length x has volume twice that of a cube with side
of length a. In any case, the several lengths can be arranged as in Figure . There, angle
ACB is right, and BCD and ACE are diameters of the indicated circles.
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Figure . Two mean proportionals

The problem is, How can D and E be chosen on the extensions of BC and AC so that
the circles intersect as in Figure ? The solution of Menaechmus (along with many other
solutions) is given in the commentary [, pp. -] by Eutocius on the second volume
On the Sphere and the Cylinder by Archimedes. In Figure , if CDFE is a rectangle,
then F determines x and y. But by Equations (), rearranged, x and y must satisfy two
equations,

ay = x2, bx = y2. ()

Each of these equations determines a curve, and F is the intersection of the two curves.
The curves turn out to be conic sections, namely parabolas. Points on the curve given
by ay = x2 can be plotted as in Figure .
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Figure . Construction of points of the parabola

If one imagines that the circles in Figure  are not all in the same plane, but serve as
parallel bases of cones bounded by the same conic surface, then one may be able to see
how the curve arises as a section of that surface. However, an alternative approach to
the conic sections was given by Pappus of Alexandria [, p. –]; it may have been
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due originally to Euclid of Alexandria, although his works on conic sections are lost. We
can take the alternative approach as follows.

. Equations

.. Focus and directrix. A conic section ζ is determined by the following data:

() a line d, called the directrix of ζ;
() a point F (not on d), called the focus of ζ;
() a positive real number (or distance) e, called the eccentricity of ζ.

Then ζ comprises the points P (in the plane of d and F ) such that

|PF | = e · |Pd|. ()

Some examples are in Figure , with the same directrix and focus, but various eccen-
tricities. The examples are drawn (by computer) by means of () below. (See also
Figure .)
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Figure . Conic sections of different eccentricities

Suppose we assign a rectangular coordinate system to the plane of ζ in which F has
the coordinates (h, k), and d is defined by

Ax +By + C = 0 ()
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(where A 6= 0 or B 6= 0). Then ζ is defined by

√

(x− h)2 + (y − k)2 = e · |Ax+By + C|√
A2 +B2

, ()

hence also by

(x− h)2 + (y − k)2 = e2 · (Ax+By + C)2

A2 +B2
. ()

This equation is not very useful for showing the shape of ζ. By choosing the rectangular
coordinate system appropriately, we can ensure

(h, k) = (0, 0), B = 0, A = 1, C > 0. ()

Then C is the distance between the focus and the directrix, and () becomes

x2 + y2 = e2(x+ C)2. ()

.. The polar equation. Equation () is nicer than (), but is still not the most
useful rectangular equation for ζ. However, () becomes more useful when converted to
polar form. Recall the conversion-equations:

{

x = r cos θ,

y = r sin θ;







r2 = x2 + y2,

tan θ =
y

x
.

()

So the polar form of () is

r2 = e2(r cos θ + C)2, ()

which is equivalent to

±r = e(r cos θ + C). ()

The plus-or-minus sign here is needed, unless we know that r always has the sign of
r cos θ + C, or always has the opposite sign. It does not.

However, note well that the same point can have different polar coordinates; in partic-
ular, the same point has polar coordinates (r, θ) and (−r, θ + π). We shall use this fact
frequently. The equation

−r = e(r cos θ + C) ()

is equivalent to

−r = e(−r cos(θ + π) + C). ()

Hence, if (s, ϕ) satisfies (), then (−s, ϕ + π) satisfies

r = e(r cos θ + C). ()

So we can take either () or () as the polar equation for ζ. We can also derive ()
directly from the original definition of ζ; see Figure .

We can rewrite () as

r = er cos θ + eC, ()

r − er cos θ = eC, ()

r(1 − e cos θ) = eC. ()

Since eC 6= 0, the factor 1 − e cos θ will never be 0, so we can divide by it, obtaining

r =
eC

1 − e cos θ
. ()
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r = |e(C + r cos θ)|

Figure . Derivation of the polar equation of a conic section

If we rewrite () the same way, we get

r =
eC

−1 − e cos θ
. ()

Again, either () or () by itself defines ζ.
The line through the focus and parallel to the directrix is defined by θ = π/2. By ()

(or from the original definition of ζ), this line meets ζ in two points, L0 and L1, whose
coordinates are (eC, π/2) and (eC,−π/2). It will be convenient to denote the distance
|L0L1| by 2`: this means defining

` = eC. ()

Then (), () and () can be rewritten as

r = er cos θ + `, ()

r =
`

1 − e cos θ
()

r =
`

−1 − e cos θ
. ()

.. Lines through the focus. By (), each line θ = ϕ through the origin meets ζ in
two points, namely

(

`

1 − e cosϕ
, ϕ

)

and

(

`

1 + e cosϕ
, ϕ+ π

)

, ()

unless e cosϕ = ±1. There are three possibilities, corresponding the three kinds of conic
sections:

() If 0 < e < 1, then |e cos θ| is never 1, so every line through the origin meets ζ at
two points, and these points are on opposite sides of the origin; ζ is an ellipse.

See Figure .
() If e = 1, then every line through the origin meets ζ at two points, which are are

on opposite sides of the origin, unless the line is θ = 0: This line meets ζ only at
(`/2, π), halfway between the focus and the directrix. Now ζ is a parabola. See
Figure .
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, θ + π
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Figure . The ellipse
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Figure . The parabola

() Suppose e > 1. then cosα = 1/e for some α such that 0 < α < π/2. If
α < ϕ < 2π − α, then the line θ = ϕ meets ζ at two points, on opposite sides of
the origin, as in the ellipse and parabola. If −α < ϕ < α, then the line θ = ϕ
meets ζ at two points, on the same side of the origin. Each of the lines θ = α and
θ = −α meets ζ once, at (`/2, π+α) or (`/2, π−α). Here ζ is an hyperbola. It
is really two curves:

• ζ0, given by (), where α < θ < 2π − α;
• ζ1, given by (), where −α < θ < α; or by (), where π − α < θ < π + α.

See Figure .

.. Distances. The line through the focus F perpendicular to the directrix d is the axis

of ζ. Then ζ is symmetric about its axis, because of the original definition, or by ().
A point of ζ that lies on the axis is a vertex of ζ. Again, there are three cases:

() Say 0 < e < 1, so ζ is an ellipse. Then ζ has a vertex V , with coordinates
(`/(1 + e), π), and a vertex V ′, given by (`/(1 − e), 0). Since

0 < 1 − e 6 1 − e cos θ 6 1 + e, ()

we have
`

1 + e
6

`

1 − e cos θ
6

`

1 − e
. ()
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e cos θ = 1

e cos θ = 1

L0

L1

(

`

1 − e cosϕ
, ϕ

)

(

`

1 + e cosϕ
, ϕ+ π

)

(

`

1 − e cosϕ
, ϕ

)

(

`

−1 − e cosψ
, ψ

)

VV ′

d

ζ0

ζ1

Figure . The hyperbola

By () then, V is the point of ζ that is closest to the focus, and V ′ is the point
furthest from F . Also,

|V V ′| =
`

1 + e
+

`

1 − e
=

2`

1 − e2
. ()

See Figure .

  
V F V ′ � �V F

Figure . Extreme points in the ellipse and parabola

() Say e = 1, so ζ is a parabola. Then it has a unique vertex, V , with coordinates
(`/2, π). As in the case of the ellipse, so in the parabola, V is the point of ζ closest
to the focus; but there is no furthest point. Again, see Figure .

() Say e > 1, so ζ is an hyperbola. Then it has two vertices, V and V ′, with
coordinates (`/(e+1), π) and (`/(e−1), π) respectively. As before, suppose cosα =
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1/e, where 0 < α < π/2. If −α < θ < α, then

1

e
< cos θ 6 1, ()

1 < e cos θ 6 e, ()

0 < e cos θ − 1 6 e− 1, ()

0 <
`

e− 1
6

`

e cos θ − 1
; ()

so V ′ is the point of ζ1 closest to the focus. If α < θ < 2π − α, then

−1 6 cos θ <
1

e
, ()

−e 6 e cos θ < 1, ()

−1 < −e cos θ 6 e, ()

0 < 1 − e cos θ 6 e+ 1, ()

`

e + 1
6

`

1 − e cos θ
; ()

so V is the point of ζ0 closest to the focus. Finally,

|V V ′| =
`

e− 1
− `

e+ 1
=

2`

e2 − 1
. ()

See Figure .

� � �
V ′ V F

Figure . Extreme points in the hyperbola

In both the ellipse and the hyperbola then, the distance between the two vertices is
2`/|e2 − 1|; this may also be denoted by 2a, so that

a =
`

|e2 − 1| . ()
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.. Areas. Let P be an arbitrary point with coordinates (r, θ) on ζ, and let the foot of
the perpendicular from P to the axis of ζ be Q (as in Figure ). Then Q has coordinates
(r cos θ, 0). We consider the position of Q with respect to the vertices:

() If 0 < e < 1, then by () and ()

`

1 + e
6 r 6

`

1 − e
, ()

`

1 + e
6 er cos θ + ` 6

`

1 − e
, ()

− `e

1 + e
6 er cos θ 6

`e

1 − e
, ()

− `

1 + e
6 r cos θ 6

`

1 − e
; ()

so Q is between V and V ′, and

|V Q| = r cos θ +
`

1 + e
, ()

|V ′Q| =
`

1 − e
− r cos θ. ()

() If e = 1, then

`

2
6 r = r cos θ + `, ()

− `
2

6 r cos θ, ()

|V Q| = r cos θ +
`

2
. ()

() If e > 1, then there are two cases:
(a) if P is on ζ0, then

`

1 + e
6 r = er cos θ + `, ()

− `e

1 + e
6 er cos θ, ()

− `

1 + e
6 r cos θ, ()

|V Q| = r cos θ +
`

e + 1
, ()

|V ′Q| = r cos θ +
`

e− 1
; ()
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(b) if P is on ζ1, then

`

e− 1
6 r = −(er cos θ + `), ()

`e

e− 1
6 −er cos θ, ()

`

e− 1
6 −r cos θ, ()

|V Q| = −
(

r cos θ +
`

e+ 1

)

, ()

|V ′Q| = −
(

r cos θ +
`

e− 1

)

. ()

In either case, Q is not between V and V ′.

Now we can compute:

|PQ|2 = r2 sin2 θ ()

= r2 − r2 cos2 θ ()

= (er cos θ + `)2 − r2 cos2 θ ()

= (r[e+ 1] cos θ + `)(r[e− 1] cos θ + `). ()

There are two cases:

• If e = 1, then this equation becomes

|PQ|2 = (2r cos θ + `) · ` = 2` · |V Q|. ()

• If e 6= 1, then

|PQ|2 = (e2 − 1)

(

r cos θ +
`

e + 1

)(

r cos θ +
`

e− 1

)

()

= |e2 − 1| · |V Q| · |V ′Q| ()

= 2` · |V
′Q|

|V V ′| · |V Q|. ()

Let V R be drawn perpendicular to the axis of ζ so that |V R| = 2`. This line segment
is called the latus rectum of ζ. This is the term commonly used in English, although
it is the Latin translation of the original Greek found in Apollonius; however, the literal
English translation, ‘upright side,’ is used in []. Then the square with side PQ

• is the area of the rectangle with sides V Q and V R, if ζ is a parabola;
• falls short of this area, if ζ is an ellipse;
• exceeds this area, if ζ is an hyperbola.

This is what is suggested by the Greek names of the curves. See Figure .

.. The rectangular equations. For the parabola, choose a rectangular coordinate
system in which V is the origin and the X-axis is the axis of ζ. Then () becomes

y2 = 2`x. ()

This is the standard rectangular equation for a parabola. The focus is at (`/2, 0), and
the directrix is given by x + `/2 = 0.
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Figure . Conic sections as determined by equations of areas

For the ellipse and the hyperbola, let the origin of a rectangular coordinate system be
the midpoint O of V V ′: this is the center of the conic section. Let the X-axis contain the
vertices. Then the vertices will have coordinates (±a, 0). By (), the curve is symmetric
about the new Y -axis. In particular, the curve has, not just one focus, but two foci;
hence it has, not just one directrix, but two directrices, one for each focus. The curve is
now given by

y2 = |e2 − 1| · |x− a| · |x+ a| = |e2 − 1| · |x2 − a2|. ()

Moreover, by the previous subsection, in the ellipse, e2 − 1 and x2 −a2 are both negative;
in the hyperbola, positive. Hence () can be written

y2 = (e2 − 1)(x2 − a2), ()

y2

a2(e2 − 1)
=
x2

a2
− 1, ()

x2

a2
+

y2

a2(1 − e2)
= 1. ()

Recalling (), we can write

x2

a2
± y2

a`
= 1, ()

where the upper sign is for the ellipse, and the lower is for the hyperbola. We may let b
be the positive number such that

b2 = a`, ()

so that () becomes

x2

a2
± y2

b2
= 1. ()

The Y -intercepts of the ellipse are (0,±b); the hyperbola has no Y -intercepts. By ()
and (),

e =

√

1 ∓ b2

a2
; ()
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where again the upper sign is for the ellipse. Also,

|FO| = a∓ `

1 + e
= a− a(1 − e2)

1 + e
= a− a(1 − e) = ae; ()

so the foci are at (±ae, 0). Likewise,

|dO| = ae± `

e
= ae+

a(1 − e2)

e
=
a

e
; ()

so the directrices are given by x± a/e = 0.
Finally, the hyperbola given by () does not meet the two lines given by

x2

a2
− y2

b2
= 0. ()

These lines—given also by ay ± bx = 0—are the asymptotes of the hyperbola. Their
slopes are ±b/a. In general, a line through O meets the hyperbola if and only if the slope
of the line is less than b/a in absolute value. Indeed, the equations







y = mx,
x2

a2
− y2

b2
= 1,

()

if solved simultaneously, yield

x2

a2
− m2x2

b2
= 1, ()

b2

a2
−m2 =

b2

x2
, ()

b2

a2
−m2 > 0, ()

m2 <
b2

a2
, ()

|m| < b

a
; ()

and if the last inequality holds, then there is a simultaneous solution, obtainable from ()
and then ().

The two hyperbolas x2/a2−y2/b2 = ±1 have the same asymptotes. Also, their foci are
at the same distance from the center, namely

√
a2 + b2. Such hyperbolas are conjugate.

The ellipse x2/a2 + y2/b2 = 1 is tangent to them at their vertices. See Figure .
The segment joining the two vertices of an ellipse is the major axis of the ellipse; the

minor axis passes through the center, but is perpendicular to the major axis.
A circle can be described as an ellipse of eccentricity 0. Strictly, however, a circle is

not a conic section by the definition given in § .. The circle does not have a directrix.
However, the circle is a kind of ‘limit’ of the ellipses with the same focus and latus rectum,
as the directrix moves indefinitely far away (which means the eccentricity tends to 0).
See Figure .
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Figure . The circle as a limit of conics
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