On discrete exponentiation

David Pierce

2006.02.17

Some of these remarks might be incorporated into my notes for Math 111, or an article on induction.

An **inductive** structure is one in which proof by induction is possible: so it is a structure that has a distinguished element and a singulary operation, but has no proper substructures. Usually the distinguished element is 0, and the operation is $x \mapsto x + 1$. On such a structure, the operations of addition and multiplication can be defined.

Let \mathfrak{A} be an inductive structure. Then there is a homomorphism h from $(\omega, ', 0)$ into \mathfrak{A} . If A is infinite, then h is an isomorphism. If A is finite, then \mathfrak{A} has two (finite) cardinal invariants, which determine its isomorphism class:

- (1) $\min\{x \in \omega : \exists y \ h(x+y+1) = h(x)\};\$
- (2) $\min\{y \in \omega : \exists x \ h(x+y+1) = h(x)\}.$

Indeed, call these numbers k and n; then A has k + n + 1 elements, say

$$0, 1, \ldots, k, k+1, \ldots, k+n;$$

and $s^{\mathfrak{A}}(x) = x + 1$, if $x \neq k + n$, but $s^{\mathfrak{A}}(k+n) = k$. If k = 0, then the structure is isomorphic to $\mathbb{Z}/(n+1)$.

Exponentiation on inductive structures is an operation

$$(x,y) \longmapsto x^y$$

such that

$$x^0 = 1;$$
$$x^{y+1} = x^y \cdot x.$$

The value of 0^y is unimportant and can be left undefined.

Naïvely, but wrongly, one might argue that expontiation exists by induction: For, x^0 is defined, and if x^y is defined, then x^{y+1} is defined.

A correct way to proceed would be to define a family of functions f_x , where $x \neq 0$, such that

$$f_x(0) = 1;$$

$$f_x(y+1) = f_x(y) \cdot x.$$

One may define f_1 as $y \mapsto 1$; then one attempts to define f_{x+1} in terms of f_x . But the attempt must fail, since if the structure is $\mathbb{Z}/(3)$, then $2^0 = 1$, $2^1 = 2$, $2^2 = 4 = 1$, so $2^3 = 2$; but also $2^3 = 2^0 = 1$, so 2 = 1, which is absurd.

However, exponentiation is well-defined as a function from

$$\mathbb{F}_p^{\times} \times \mathbb{Z}/(p-1)$$

into

$$\mathbb{F}_p$$

This is by the Fermat theorem

$$x^{p-1} \equiv 1 \pmod{p}.$$

Also, \mathbb{F}_p^{\times} has a generator, α . Then we have the inductive structure

$$(\mathbb{F}_p^{\times}, s, 1).$$

where s is $x \mapsto x \cdot \alpha$. We also have an isomorphism f_{α} from $\mathbb{Z}/(p-1)$ into this structure, namely

$$y \longmapsto \alpha^y$$

Let f_1 be $y \mapsto 1$ as before, and given f_x as desired, define

$$f_{s(x)}(y) = f_x(y) \cdot f_\alpha(y).$$

Then $f_{s(x)}(0) = 1$, and

$$f_{s(x)}(y+1) = f_x(y+1) \cdot f_\alpha(y+1)$$

= $f_x(y) \cdot x \cdot f_\alpha(y) \cdot \alpha$
= $f_x(y) \cdot f_\alpha(y) \cdot x \cdot \alpha$
= $f_{s(x)}(y) \cdot s(x).$