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Some of these remarks might be incorporated into my notes for Math 111, or
an article on induction.

An inductive structure is one in which proof by induction is possible: so it
is a structure that has a distinguished element and a singulary operation, but
has no proper substructures. Usually the distinguished element is 0, and the
operation is x 7→ x + 1. On such a structure, the operations of addition and
multiplication can be defined.

Let A be an inductive structure. Then there is a homomorphism h from (ω, ′, 0)
into A. If A is infinite, then h is an isomorphism. If A is finite, then A has two
(finite) cardinal invariants, which determine its isomorphism class:

(1) min{x ∈ ω : ∃y h(x+ y + 1) = h(x)};
(2) min{y ∈ ω : ∃x h(x+ y + 1) = h(x)}.

Indeed, call these numbers k and n; then A has k + n+ 1 elements, say

0, 1, . . . , k, k + 1, . . . , k + n;

and sA(x) = x+ 1, if x 6= k+n, but sA(k+n) = k. If k = 0, then the structure
is isomorphic to Z/(n+ 1).

Exponentiation on inductive structures is an operation

(x, y) 7−→ xy

such that

x0 = 1;

xy+1 = xy · x.

The value of 0y is unimportant and can be left undefined.

Näıvely, but wrongly, one might argue that expontiation exists by induction:
For, x0 is defined, and if xy is defined, then xy+1 is defined.

A correct way to proceed would be to define a family of functions fx, where
x 6= 0, such that

fx(0) = 1;
fx(y + 1) = fx(y) · x.
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One may define f1 as y 7→ 1; then one attempts to define fx+1 in terms of fx.
But the attempt must fail, since if the structure is Z/(3), then 20 = 1, 21 = 2,
22 = 4 = 1, so 23 = 2; but also 23 = 20 = 1, so 2 = 1, which is absurd.

However, exponentiation is well-defined as a function from

Fp× × Z/(p− 1)

into
Fp.

This is by the Fermat theorem

xp−1 ≡ 1 (mod p).

Also, Fp× has a generator, α. Then we have the inductive structure

(Fp×, s, 1).

where s is x 7→ x · α. We also have an isomorphism fα from Z/(p− 1) into this
structure, namely

y 7−→ αy.

Let f1 be y 7→ 1 as before, and given fx as desired, define

fs(x)(y) = fx(y) · fα(y).

Then fs(x)(0) = 1, and

fs(x)(y + 1) = fx(y + 1) · fα(y + 1)
= fx(y) · x · fα(y) · α
= fx(y) · fα(y) · x · α
= fs(x)(y) · s(x).
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