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Preface

These notes concern the foundations of mathematics in two ways:

(*) these notes are about concepts and techniques that all mathematicians
use, implicitly or explicitly;

(1) these notes (or parts of them) are intended for use in a first university-level
mathematics course.

More precisely, these notes are originally written for a course called Fundamen-
tals of Mathematics, given at Middle East Technical University in Ankara under
the designation Math 111.! The notes also offer additional reading for those in-
terested in the topics they discuss. In particular, the notes may be useful for
Math 320 (Set Theory) and Math 406 (Introduction to Mathematical Logic and
Model Theory) at METU.

What are foundations? A wooden house may by built on a stone foundation.
A mason lays down the stones; then a carpenter erects the house on top. The
carpenter cannot construct the walls and floors of the house before the stone-
mason creates a place to set those floors and walls; but the stone-mason cannot
create this foundation without knowing what the carpenter intends to place
there.

So it is with the foundations of mathematics. You cannot do mathematics with-
out a place to start; but you cannot create the starting-point without knowing
the mathematics that will proceed from it. This is a paradox—a seeming con-
tradiction. It is not a real contradiction; but it does suggest that the nascent
mathematician (the first-year student) cannot read these notes page after page
as if they constituted an easy novel. They might constitute a difficult novel with
lots of interrelated events. (However, not every novel has an index or a list of
symbols like this one.) Not every section of these notes should be studied in se-
quence during the reader’s first encounter. Even if an earlier section is required
for a later section, still, that earlier section may not be fully comprehensible
without some knowledge of the later section.

What can the reader do? Read slowly, but jump ahead; reread what you have
already read; think the whole time, but do not think too much without really

IThe catalogue description of Math 111 is:

Symbolic logic. Set theory. Cartesian product. Relations. Functions. Injective,
surjective and bijective functions. Composition of functions. Equipotent sets.
Countability of sets. More about relations: equivalence relations, equivalence
classes and partitions. Quotient sets. Order relations: Partial order, Total order,
Well ordering. Mathematical induction and recursive definitions of functions.
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knowing what you are thinking about. Talk to classmates; talk to teachers.
Read with a pencil. Summarize passages in your own words. Invent your
own symbolism (while remembering that communicating with others requires a
common symbolism). Read other books on the same subjects.

Also: do exercises. Create your own exercises. Most sections of these notes end
with exercises. The student who is in a hurry will find out from a teacher which
exercises to work on and will then try to do them immediately, looking back into
the sections as necessary for examples. A difficulty in this approach is that most
exercises here do not have unique correct answers; they have solutions, some
of which are better than others. Finding the best solutions—even acceptable
solutions—will require reading, thinking, and experience. Still, many of the
exercises can be approached as puzzles: they do not need deep insight into the
nature of things, but aim only to develop facility with some basic ideas.

Most exercises here could not very well be cast as multiple-choice questions. In
a multiple-choice question, if you can somehow figure out the correct answer,
even without being able to say how you did it, your answer is still 100% correct.
Here, correct solutions to problems will carry within themselves the reasons why
they are correct.

There are no answers at the back of the book. Problems here can have more than
one correct solution; you should be able to tell whether a particular solution is
correct. It is true that you may fail to notice some mistakes; the only way to
avoid this is experience, not desire or will.

Somebody who does not know a language very well will not avoid mistakes just
by trying hard: s/he? must practice. Likewise with games: even if you memorize
all of the moves of chess and think real hard, you will not play a good chess-
game at first. Depending on how seriously you take mathematics, you can see
these notes as lessons in a language or a game.

It would be worthwhile for the reader to have a look at Euclid’s FElements.
(Heath’s English translation from the Greek is [14]—see the bibliography at
the end of these notes. This translation is available in print and in various
places around the Web.) The present notes do not share much content with the
Elements; but Euclid’s work does establish a sort of foundation or prototype
for the mathematics of his and all succeeding generations, including our own.

Euclid wrote the Elements, the original textbook of mathematics, some 2300
years ago.? This textbook is still in use in some classrooms today. It consists
of 13 books. You are not likely to read all of them; as with the present work,
you will jump around, reading what you are interested in, perhaps with the
guidance of a teacher. Indeed, probably Euclid expected few people to read his

2The construction s/he can be pronounced as she or he (or as he or she). English has not
evolved a generally accepted singular pronoun that refers to humans of either sex: it lacks
the o(n) of Turkish. In the fourteenth century, according to the OED [28], the second-person
plural pronoun you began to be used respectfully in place of the singular pronoun thou, just as
the Turkish siz replaces sen. In the same way, currently, some people use they with a singular
sense. Other people are bothered by this usage, and they may insist that he can refer to
humans of unknown sex. The original OED does not recognize this usage, although it does
claim that she comes from a different base than he, because the feminine form derived from
the base of he was too much like the masculine form.

3Buclid practiced mathematics in Alexandria around 300 BCE, probably having learned
mathematics in Athens from the students of Plato [14, vol. I, pp. 1 f.].
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work unaided. His work does bring the reader instantly into real mathematics;
but it also sets a standard for spareness of mathematical composition.

The Elements contains no commentary, no guidance for the reader. After a
few definitions and axioms, the work consists solely of propositions and their
proofs. Fuclid doesn’t tell you, but he shows you what proofs of propositions
are.

The present notes contain more than just propositions and their proofs; but they
do contain these. Each proof here is labelled as such, and ends with a little box.
(The first example is on p. 9.) The propositions and proofs in these notes consist
of sentences of ordinary language, with some abbreviative symbolism (as well
as the symbolism required by what the proofs are about). Such proofs might be
called informal, because ordinary language is itself informal. Grammatical rules
for English or Turkish or any other human language can indeed be formulated,
and the conscientious speaker or writer will try to follow them; but it seems
impossible to formulate grammatical rules that are obeyed by everything that
one wants to say.

Informal proofs are to be distinguished from formal proofs (or deductions).
Again, the notion of proof itself—informal proof—is over two thousand years
old; but the notion of a formal proof dates only from the 1920s.* These notes
tell you, as well as show you, what formal proofs are. Briefly described, a formal
proof is a list of sentences of an artificial language; but such a list must satisfy
certain requirements. The last sentence on the list is what the formal proof
is a proof of: it is what the proof proves. A machine could check whether a
given list of sentences is a formal proof. To establish the truth of an interesting
proposition, a formal proof is practically never called for. However, if it is held
to the highest standard, an informal proof of some proposition P can be seen
as an argument that a formal proof of P could in principle be written.

It will be an exercise in these notes to write some formal proofs; but the ultimate
goal is the ability to check the validity of informal proofs (like Euclid’s, or any
later mathematician’s), and the ability to write one’s own (informal) proofs.

I assume that you, the reader, have some experience with high-school algebra,
and specifically with the algebra of the integers. Then you can prove an identity
like

2’ +y’ = (2 +y)(2® — 2y +y?) (0.1)

(by multiplying out the right member and combining like terms). The algebra
of the integers serves as a pattern for Boolean algebra, which I shall introduce
as the algebra of the numbers 0 and 1 alone. If one considers these numbers
to represent falsity and truth, then Boolean algebra determines an algebra of
propositions, or a propositional logic.

After we have propositional logic, we can say something about predicate logic.
This logic provides for the analysis of propositions into parts, some of which
are not propositions. (Some parts of propositions will be predicates: hence the
name of the logic.) We can’t define everything precisely until we have the notion
of a relation. Relations are certain sets; they are subsets of Cartesian products
of sets. So all of these things will need to be discussed.

4Perhaps the invention can be attributed to Hilbert [7, §07, n. 110].
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A function can be defined as a kind of relation. Functions give us a way to say
when two sets ‘have the same size,” or are equipollent (or ‘equipotent’). The set
of integers has the same size as the set of even integers; both sets are countably
infinite; but there are strictly larger, uncountable sets, such as the set of real
numbers.

The predicate logic given here is more precisely called first-order predicate logic.
Functions also allow us to give an account of first-order logic in general.

The integers have an ordering. This is a kind of relation. There is a generaliza-
tion called a partial ordering. We shall prove a representation theorem, namely
the proposition that every partial ordering behaves like the subset-relation (in
a clearly defined way).

Equality is also a relation and is the motivating example of an equivalence-
relation. The standard sorts of numbers—integers, rational numbers, real
numbers, complex numbers—can be formally defined in terms of equivalence-
relations, once one has the natural numbers 0, 1, 2, 3, ... The idea of these notes
is that we do not really have these numbers, mathematically, until we can give
a logical account of them. These notes end with such an account.

The topics of these notes are so interrelated that in any discussion of them, it
is hard to avoid the appearance of circularity. This circularity is a part of the
foundational aspect of these notes. As I say, I assume that the reader is familiar
with the integers; but I also say that we do not officially have the integers
until the end of the notes. Yet my supposedly rigorous account of the integers
depends on all of the machinery that the notes develop first, with the aid of a
familiarity with...the integers.

Our path will have been, not circular, but spiral or rather helical, as if along a
winding staircase. We start from the integers, and then we return to them, but
at a higher (or deeper) level than where we started.

Typography

These printed words are assembled by means of the collection of typesetting
programs and packages known as ANS-IATEX. Here, TEX is in Greek letters®;
the same three letters will appear below, in § 1.0, in the full Greek name of
logic. In the Latin alphabet, the letters are written tech, as in technical. The
AMS is the American Mathematical Society. The original TEX program was
expanded into MTEX and independently into AzS-TEX; then the benefits of
both expansions were combined into AAS-ETEX.

The original TEX program distinguishes between ordinary text and mathemat-
ical text. In ordinary text, in these notes, words are italicized for the usual
sorts of reasons: they (or rather their meanings) are being emphasized, they are
titles, they are not in the language of the surrounding text, and so forth. I am
also making some further distinctions. Technical terms are in bold-face when
they are being defined, explicitly or implicitly. Technical terms might simply
be slanted if their precise definitions will come later or are simply not needed.

5See [24, p. 1].



Words that are being talked about or mentioned (and not simply being used)®
are in sanserif. However, I may not have always been consistent in making these
distinctions.

Footnotes here are intended to contain only material that is not essential to the
main point. They may contain historical information that I have happened to
discover, although much of the history of what I am discussing is still unknown
to me. Footnotes may also contain forward references.

The ITEX program provides an easy way to make numbered lists. So as not to
have too many numerals around, I often replace the usual list

1 2 3 45 6 7 89

with the alternative

S I T [ S

that is provided in BTEX. Another reason to use these symbols” is to avoid the
suggestion of ranking. I may start numbered lists with 0 instead of 1.

Labelled proofs here end with boxes, as noted above; labelled examples end with
bullets (the first is on p. 31).
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OPEN YOUR OWN TREASURE HOUSE

Daiju visited the master Baso in China. Baso asked: “What do you
seek?”

“Enlightenment,” replied Daiju.

“You have your own treasure house. Why do you search outside?”
Baso asked.

Daiju inquired: “Where is my treasure house?”
Baso answered: “What you are asking is your treasure house.”

Daiju was enlightened! Ever after he urged his friends: “Open your
own treasure house and use those treasures.” (33, p. 55]
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Chapter 1

Introduction

1.0 Logic

The name of logic comes ultimately from the (ancient) Greek adjective hoyux?,
which is short for 1) hoyuer) téyvn. This phrase can be rendered in English as the
rational art, or the art of reason. I shall not attempt to define reason. In Latin
letters, the Greek phrase is he logike techne. But knowing the Greek alphabet is
worthwhile, if only because mathematicians use it as a source of symbols. See
Figure 1.1 below.

Logic as a field of study can be counted as a part of philosophy. One can do
logic with ordinary language alone. Aristotle (384-322 BCE [3, pp. vii-ix]) is
classically considered the originator of logic, and his texts are in ordinary Greek,
albeit with some use of (Greek) letters to stand for parts of sentences. I shall
take him as a source for some fundamental ideas: see §§ 1.1 and 1.8, as well as
Appendix A.

Symbolic logic consciously develops a special notation for the notions that
logic examines. Some two thousand years after Aristotle, George Boole describes
the process at the beginning of The Laws of Thought [4, [1], p. 1], first published
in 1854:

The design of the following treatise is to investigate the fundamental
laws of those operations of the mind by which reasoning is performed;
to give expression to them in the symbolic language of a Calculus,’
and upon this foundation to establish the science of Logic and con-
struct its method; to make the method itself the basis of a general
method for the application of the mathematical doctrine of Prob-
abilities; and, finally, to collect from the various elements of truth
brought to view in the course of these inquiries some probable inti-
mations concerning the nature and constitution of the human mind.

1This is calculus in the sense of a method of calculating; it has little to do with the
infinitesimal calculus, which is the subject now called just calculus. What is referred to in
these notes as propositional logic can also be called propositional calculus.
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A o alpha Hn eta Nv nu Tt tau
BB beta © 1% theta 2&  xi T u  upsilon
I'y gamma | I. iota Oo omicron | ® ¢ phi
A d delta K x kappa IIr pi Xy chi
Ee epsilon | AN lambda | Pp rho V(¢ psi
7T zeta My mu Y o/c sigma Q w oOmega

Figure 1.1: The Greek alphabet. Mathematicians use (some of) these letters all
the time. In this table, the first letter or two of the (Latin) name for a Greek
letter provides a transliteration for that letter. In texts, the rough-breathing
mark ° over an initial vowel (or p) is transcribed as a preceeding (or following)
h; the smooth-breathing mark *~ and the three tonal accents can be ignored.

Boole’s project is grander than mine. My interest here is almost entirely math-
ematical. The introduction of symbolism to logic allows logical notions to be
examined as if they were numbers or geometric figures. In short, symbolism
makes mathematical logic possible. This, then—mathematical logic—is one
subject of these notes.

Section 1.1 makes a preliminary approach to the notion of a proposition, in-
troducing the terminology of axioms and theorems. Section 1.2 introduces the
basic terminology of sets and natural numbers; some of this terminology is used
in the review of arithmetic in § 1.3. Arithmetic will be familiar to everybody
from school; the main purpose here is to develop a point of view, a way of
looking at mathematics that we shall then apply to logic. Also, the notion of
arithmetic term introduced in § 1.3 will provide an example of a proof by induc-
tion. Finally, arithmetic is the setting for some ancient mathematical proofs;
these are given as examples in § 1.4. (Further investigation into these examples
isin § 1.5.) In §§ 1.6 and 1.7, some operations on the set {0,1} are introduced
by means of, and by analogy with, the usual arithmetic operations. What these
correspond to in ordinary language is discussed in § 1.8; further logical analysis
of language is in § 1.9.

The operations on {0,1} are essential to the study of mathematical logic as
such, which begins in Chapter 2.

1.1 Language and propositions

We are using language. We divide up language into sentences. Some sentences,
but not all, can be described as true or false. At least, some sentences are true
or false when placed in a situation or context. Let us refer to such sentences as
statements or propositions.? For example, the sentence

| went to Van last year

2We could make a distinction here: we could let a statement be a bit of language of a
certain grammatical form, letting a proposition be the meaning of a statement. See [7, p. 26].
I am not going to try to make such a distinction.
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is a statement (or a proposition). Whether it is true or false depends on who
says it and when: the speaker and the time would be the context in which the
sentence is true or false.?

We shall mainly be interested in mathematical propositions. Such propositions
are timeless and personless: their truth or falsity does not change with time or
with the person who utters them. Still, in § 3.5, we shall see a way in which,
strictly, a mathematical proposition must still be placed in a context in order
to become true or false.

The belief that a mathematical proposition is true or false may change with
time. Certain mathematical propositions have been accepted as true for many
years, only to be found false. For example, Proposition 1.16 of Euclid’s Elements
can be called false, even in its context, since its proof relies on unstated and
therefore unjustified assumptions; but this falsehood was not recognized* until
the nineteenth century. However, the philosopher R. G. Collingwood writes in
his autobiography [8, pp. 31-33]:

[Y]ou cannot find out what a man means by simply studying his
spoken or written statements, even though he has spoken or written
with perfect command of language and perfect truthful intention. In
order to find out his meaning you must also know what the question
was (a question in his own mind, and presumed by him to be in
yours) to which the thing he has said or written was meant as an
answer. . . If the meaning of a proposition is relative to the question
it answers, its truth must be relative to the same thing.

If we translate Euclid’s work into the kind of formal proofs that will be de-
veloped in these notes, then indeed we shall find errors or gaps in the proofs.
Euclid himself was not writing formal proofs; there was no notion of such a
thing for over two thousand years. However, Euclid was doing mathematics,
and correctly, I would say; but this is for you to judge, after reading Euclid
himself and understanding his purpose—after understanding the questions he
was answering.

Euclid’s work begins with five propositions that we call axioms or postulates.
(He, apparently [44, p. 442], called them aitApota, that is, requests, demands,
or assumptions.) An axiom is usually a proposition that satisfies two criteria:

(%) it is self-evident;
(1) it is useful for proving other propositions.

In common usage, the first criterion is probably more important; in mathemat-
ical usage, the second.

A self-evident proposition is self-evidently true: that is, obviously true without
any need of appeal to some other authority. A classical use of the compound
word self-evident is found in a certain revolutionary manifesto® of the Eighteenth
Century. I transcribe from [18, p. 15], with my own formatting:

3The context can also include the listener, as when the sentence is You went to Van last
year.

4See Heath [14, vol. 1, p. 280] for some commentary.

5Namely, the Declaration of Independence of the United States of America, written in 1776
by Thomas Jefferson, who, with other signers of the document, possessed other human beings
as slaves. In 1945, Vietnamese revolutionaries led by Ho Chi Minh issued a Declaration of
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We hold these truths to be self-evident,

(%) that all men are created equal,

(t) that they are endowed by their Creator with certain unalienable
rights,

(1) that among these are life, liberty and the pursuit of happiness.

(§) That to secure these rights, governments are instituted among
men, deriving their just powers from the consent of the gov-
erned.

() That whenever any form of government becomes destructive of
these ends, it is the right of the people to alter or abolish it,
and to institute new government, laying its foundation on such
principles and organizing its powers in such form, as to them
shall seem most likely to effect their safety and happiness.

Two thousand years earlier, before Euclid even, in the collection of books now
known as the Metaphysics [3], Aristotle writes of axioms, using the Greek source
of our word axiom, namely &&iduo. This word has the root meaning of something
worthy, or an honor. Aristotle seems to use axiom almost as a synonym of
principle (&py¥) or common notion (xowf 86&a). His writing is elliptical, in the
style of lecture-notes—which is probably just what his works are [3, pp. xxv &
xxxi|; I translate accordingly below, with seemingly missing words supplied in
brackets. (Some of the original Greek words in parentheses are the sources of
modern technical terms.)

In Book B of the Metaphysics, Aristotle introduces some questions:

Yet indeed, concerning the demonstrative (dmodewxtixdc) principles,
whether they belong to one science (¢motAun) or more (mhewwyv) is
debatable. I call demonstrative the common notions from which ev-
erybody proves (8eixvuut) [propositions], for example, it is necessary
to affirm or deny everything®, or it is impossible to be and not be
at the same time”, and however many other such premisses.

These so-called common notions are discussed further in Book I', which opens
with a statement of the general subject, which we call metaphysics, but Aris-
totle called first philosophy:

[1003 a 20] There is a science (émothun) that looks at (Yewpel) being
as such (10 0v fj 6v) and what applies to it (t& toVOTe UndpyovTX)
according to itself (xo)” abt6).®

Independence that enunciated some of the truths of the American declaration [50, ch. 18]; this
did not prevent a later American invasion.

678y dvayxaiov 7} pdvon 7} drogdva.

Ta80vartov dua elvon xol pf) eivar.

8The whole Greek sentence, as given in [3], is "Eotv émothun Tic # Yewpel 16 v f v xol &
T0UTE Lndpyovta xod’ abtd. The Greek 8v (stem &vt-) is the neuter participle corresponding
to the Engish being and the Turkish olan; it appears in modern technical terms like ontology.
The feminine stem of the participle is olo-; from this is derived the abstract noun ovoia,
which I translate below as beingness, although a traditional (and misleading) translation is
substance.
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A Turkish version of this passage, from [1], is

Varlik olmak bakimindan varligi ve ona 6zii geregi ait olan ana nite-
likleri inceleyen bir bilim vardir.

Later in Book I, in ch. 3, Aristotle takes up axioms; but he understands them as
something more general than the subject of a particular field like mathematics
or physics. First he seems to repeat the question raised in Book B:

[1005 a 19] It must be said whether [the inquiry] concerning the so-
called axioms (&€iduata) of mathematics, and concerning beingness
(N ovola), belongs to one science (Emothun) or another (Etépa).

It is evident (pavepdv) that the inquiry (oxedic) concerning these
belongs to one [science], namely that of the philosopher (ghocbgoc).

For, [the axioms] apply to all beings, not just to some particular
class (yévoc) apart from the others.

Also, all [scientists] use [the axioms|—because they are of being as
such—while each class [has] being.

To whatever extent is appropriate for them, to that extent they use
[the axioms]—that is, to the extent of the class concerning which
they carry out their proofs (drode(eic).

So, because it is clear (dn\év) that [the axioms] apply to all things
as beings—for this [namely, being] is common to them—the theory
(Yewplar) concerning them belongs to those who are gaining knowl-
edge (yvwpilovtol) concerning being as such.

Therefore, none of those making particular investigations (ol xotd
uépog Emoxonolvtol) tries to say something concerning them,—if
[they] are true or not—not the geometer (yewuétenc), not the arith-
metician (dprdunuxdc).

But some of the physicists (puowxot)? [were] doing this appropriately
(eixdtwe).

For, they thought they alone were doing research (oxomneiv) concern-
ing all nature (1) @Uoic) and concerning being.

But since there is somebody even higher (dvwtépw) than the physi-
cist—for nature is [just] some one class of being—the inquiry con-
cerning these would belong to the theoretician (Yewpnuindc) of gen-
erality (xa96lou) and first [or primary] beingness (f npdtn oloia).

Physics (1} puowxn) is a kind of wisdom (cogia), but not the first [or
foremost] (mpdtn).

Presently we come to what were called common notions in Book B, then axioms,
and now principles:

9 Aristotle’s ‘physicists’ are such pre-Socratic philosophers as Thales of Miletus, who are
discussed in Book A of the Metaphysics.
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[1005 b 8] It is proper for the one who knows best each class [of
things] to be able to state the most certain principles (dpyoai) of the
thing (rpdypa):

So that the one [who knows best] being as such [can state] the most
certain [principles] of all [things]. This is the philosopher.

The most certain principle of all is that about which being mistaken
is impossible.

This principle is the Law of Contradiction, which Aristotle now states more
precisely than in Book B :

[1005 b 19] For the same [predicate] to apply and not apply at the
same time to the same [subject] in the same [respect] is impossible.?

The grammatical notions of subject and predicate are discussed briefly in § 1.2
below. Meanwhile, a Turkish rendition of Aristotle’s formulation of the Law of
Contradiction, again from [1], is

Ayni niteligin, ayni1 zamanda, aym 6zneye, ayni bakimindan hem ait
olmasi, hem de olmamasi imkansizdir.

After a long discussion of the Law of Contradiction and those who question it,
Aristotle gives the Law of the Excluded Middle, again with slightly different
wording from Book B:

Neither does [any]thing admit to being between a contradiction, but
it is necessary either to affirm or deny one of one, whatever.!!

Ote yandan celigik 6nermeler arasinda bir aracinin olmasi da imkan-
sizdir. Bir 6zne hakkinda tek bir yiiklemi—hangi yiiklem olursa
olsun—, zorunlu olarak ya tasdik etmek veya inkar etmek gerekir.

The continuation of this passage is in § 1.8. If we follow Aristotle, it seems that,
as mathematicians, we need not concern ourselves with the Laws of Contradic-
tion and the Excluded Middle; we can just accept these principles and use them,;
it is the philosopher’s job to identify and enunciate them. But the logician is
also a philosopher. In any case, we shall use these principles explicitly in the
next section; but we shall also see an apparent violation of one of them. There
we shall also begin to state axioms in our mathematical sense.

A theorem today is usually considered just as a noteworthy proposition with
a proof from axioms. The first example is Theorem 1.2.2 in the next section.
The word theorem itself comes from the Greek dedenua, and it is related to the
verb with the meaning of look at. (This verb is found at the beginning of Book
T of the Metaphysics as quoted above.) In former times, finer distinctions were
considered. Writes Pappus of Alexandria, a few centuries after Aristotle:!2

104 yoip adTd dua Hndpyey te %ol ui Dndpyey G8OVOTOV T8 wlTE xol xouTd TO AVTH.

AN gy 0088 petald dvtipdoeng evdéyeton glvar otdéy, AN dvdyxn # @dvor 7 dropdven
gv xod’ Evoc 6To0V.

12Pappus may have been born during the reign of Theodosius I, 379-395 BCE, or he may
have flourished earlier, during the reign of Diocletian, 284-305 BCE. The possibilities are
discussed in [45, pp. 564-567], where also are found the text and translation from which the
quotation is adapted.
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Those who favor a more technical terminology in geometrical re-
search use problem (mpéfnua) to mean a [proposition'?] in which it
is proposed to do or construct [something]; and theorem, a [proposi-
tion] in which the consequences and necessary implications of certain
hypotheses are investigated; but among the ancients some described
them all as problems, some as theorems.

A lemma is a proposition proved mainly for the sake of proving other propo-
sitions; the first example will be Lemma 1.4.2. (The Greek Aéppo means that
which is peeled off, and is from the verb, Aérnw, with the meaning of peel.) A
corollary to a theorem is a proposition that follows almost immediately from
the theorem; the first example will be Corollary 1.4.6.

1.2 Classes, sets, and numbers

In Chapter 3, we shall have a lot to say about sets; but it will be useful to have
the basic notion available from the beginning.

A set is many things, made into one. There are many special cases of sets:
Two matching earrings make a pair; several football-players make a team; the
pigeons descending on bread-crumbs in the park make a flock. Words like pair,
team and flock are collective nouns. In mathematics, the word set is the most
general collective noun—except for the word class.!*

In the previous section, I translated Aristotle’s word yévoc as class, but that
does not mean that our understanding will be the same as Aristotle’s. For
us, every set is a class, but not every class is a set. A class is made up of
elements or members. In the context of classes, there is no mathematical
difference between the words element and member. (However, in an equation,
such as (0.1) above or (1.1) below, the expressions on either side of the sign of
equality (that is, =) can be called members of the equation.)

A class is determined by a property. There is no precise definition of property;
I shall just say that, for every property, there is a class whose members are
precisely the things that have that property. This does not mean that a class is
necessarily a thing that can itself be a member of classes.

A set is a class that is a member of some classes, though it may fail to be a
member of others. If A is a set, and C is a class, then the sentence

A is a member of C

is true or false—it is a proposition. Later in this section, there is an example of
a class that is not a set. (The recognition of a distinction between classes and
sets is only about a hundred years old.)

A class can be indicated in writing by braces around its members. So, if we
have, say, three objects,
a? b7 C7

13Tvor Thomas [45, p. 567] uses inquiry here; but there is no word in the Greek original
corresponding to this or proposition.
One writer [26] seems to use collection more generally even than class.
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then we can form the single object

{a,b,c}.
This single object is a class. In fact, it is a set. In particular, this set contains
a, b, and ¢ (and nothing else) as elements.

Elements of a class are in the class. If C is a class, then we have several ways
of saying the same thing:

(*) C contains d;
() dis an element of C;
(1) dis a member of C;
(§) disin C.
Any of these can be expressed by the symbolism

deC.

Here the symbol € is derived from the Greek e, which corresponds to the first
letter of the Latin ELEMENTVM. To deny that d € C, we can write

d¢C,

which can be read as d is not in C.

One can say that a class comprises its elements, and the elements compose
the class. Unfortunately, the words comprise and compose are often confused by
native English-speakers. Alternatively, a set consists of its elements.

Words like collection, aggregate and family are sometimes used as synonyms for
set (or perhaps for class). I say that a set is many things, made into one; but I
am using the word many more generally than is usual in ordinary language. A
set might have two elements or one element. A set might have no element at
all: such a set is

67

the empty set. I shall also assume that sets can have infinitely many elements,
and that, in particular, the natural numbers compose such a set, namely

{0,1,2,3,4,...}.

In Chapter 4 also, we shall define infinite and finite. Meanwhile, the distinction
between the finite and the infinite will be used in Theorem 1.4.1.

A class C is included in a class D if every element of C is an element of D.

In this case, we can write
C CD,

and we can say also!® that D includes C or that C is a subset of D. If C is
not a subset of D, we can write

C ¢ D.

15Some people would say here that D contains C; but I think it is desirable to read C C D
differently from ¢ € D.
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The first axiom of set-theory is that sets are determined by their elements, so
that if two sets have the same elements, then the sets themselves are the same,
that is, equal. We can express this more symbolically:

1.2.1 Axiom (Extension). If A and B are sets such that A C B and B C A,
then
A= B. (1.1)

Instead of A C B, some people write
AC B;

but I prefer to use this to mean that A is a proper subset of B: that is, A C B,
but A # B.

I say above that a class is determined by a property. A property can be sym-
bolized by a predicate. A predicate ‘says something’ about a subject. (See the
Law of Contradiction, in the previous section, as translated from Aristotle.) If
P is a predicate, then the corresponding class can be denoted

{z: Px}; (1.2)

this is read as the class of = such that P [applies to] x; here, the variable = takes
the place of a grammatical subject of P.

Often, in place of Pz, we have to write something that features « more than
once. For example, there is a property of not being a member of oneself. In
words, the corresponding predicate is something like

is not a member of -self, (1.3)

with two spaces left for a subject. The phrase is not a member of is also sym-
bolized by ¢&; so the given property determines the class

{z:z ¢z} (1.4)

This is the historically first'® example of a class that is not a set:

1.2.2 Theorem. The class {x: x ¢ x} is not a set.

Proof. Call this class R, and suppose it is a set. Then R is a member of itself, or
not, by the Law of the Excluded Middle, because by definition, sets are the sorts
of things that can be members of classes. If R € R, then this very proposition
(R € R) shows that R fails to have the defining property of members of R,
and so R ¢ R. In short, if R € R, then R ¢ R. Therefore R ¢ R. This
proposition (R ¢ R) means R does have the defining property of members of
R, so R € R. Thus R is and is not a member of itself, which violates the Law
of Contradiction. Therefore the assumption that R is a set must be mistaken,
so R is not a set (by the Law of the Excluded Middle). O

16From 1903; see for example [26, 1.2.3, p. 6], where both Russell and Zermelo are attributed.
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The proof ends with a box,'” as noted on p. iii. The proof shows that there is a
class to which the predicate in Line (1.3) neither applies nor fails to apply. So
there is a violation of the Law of the Excluded Middle—or rather, there is an
example of a class that is not a real thing.

A way to avoid creating classes that are not sets is the following. Suppose U is
some set, and P is a predicate. Another axiom'® of set-theory is that the class
of elements of U with the property symbolized by P is a set:

1.2.3 Axiom (Separation). The class {x € U : Pz} is a set.

The letter U here stands for universe; but the set could be anything. For a
mundane example, we could let U be the set of human beings living now, and
let P be is over two meters tall. Then {x € U : Pz} is the set of people now
taller than two meters.

Mathematical examples of sets of the form {x € U : Pz} will come up through-
out these notes.

In the mathematical study of sets, it turns out that there is no need to consider
classes that contain anything other than sets. Here is why:

If A and B are sets, then they have a union, which is the set comprising every
element of A or B (or both); this union is denoted

AUB.

(See § 3.0.) We do have one set, namely the empty set. If A is a set, then we
suppose that we can form the set

{4},

which contains only A. Such a set, with a unique element, is called a singleton.
(See § 3.2.) Hence, from any set A, we can form the union

AU{A};
this is the (set-theoretic) successor of A and can be denoted
Al

This idea of successsors can be used to give the following inductive definition
of the natural numbers:

First, we declare that the number zero is just the empty set:
0=02.

Then we define the natural numbers by two rules:
(%) 0 1is a natural number;

(1) if n is a natural number and is a set, then n’ is a natural number.

170Other writers use a different symbol, or none at all. An old-fashioned termination of a
proof is QED, for the Latin QVOD ERAT DEMONSTRANDVM, with the meaning of which was to
be demonstrated.

18The following Axiom of Separation is also called the Axiom of Comprehension.
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If n is a set, then n’ is a set. Hence, every natural number obtained by one of
the two rules is a set. Therefore, all natural numbers are sets, and every natural
number has a successor, which is a natural number.

The definition of the natural numbers is inductive, because it allows proof by
induction in the following sense. Suppose P names a possible property of
natural numbers, and:

(x) PO;
(1) if Pn, then P(n’), for every natural number n.

Then every natural number must have the property (named by) P. Here, Pn is
the inductive hypothesis. The method of proof by induction is first used
in Lemma 1.2.5 below. In general, an inductive proof consists of two steps:

() the base step, in which PO is proved;

(1) the inductive step, in which P(n’) is proved from the inductive hypoth-
esis Pn.

It is perhaps not obvious that there is even a class consisting of the natural
numbers: what property do these numbers share? Well, they share the property
that they can be obtained by starting with @ and taking successors. The class
of natural numbers is then denoted

w.

Note well that this symbol is not a w, a double u; it is an omega. To remember
this, observe that mega means big, so an omega is a big o—rather, a double o,
or oo, which, if written quickly, may come out looking like w.

As we have just defined them, the natural numbers can be called more precisely
the von-Neumann'? natural numbers. The first five von-Neumann natural
numbers are:

0, {0}, {0,{0}}, {0,{0},{0,{0}}}, {0,{0},{0,{0}},{0,{0},{0,{0}}}}.

We have the following standard symbols for some successors:

[3|4]5]6]7]|8
9

11213451617
213|4|5|6|7|8
Also, we may write

n+1

for n/. If m and n are in w, and m C n, then we usually write
m < n.

The class w has two more properties, besides being inductive: these are given
by the next two theorems:

1.2.4 Theorem. 0 is not the successor of any natural number.

Proof. By definition, every successor of a natural number contains that number;
but 0 is empty. O

9Tn fact, the definition is traced to Zermelo in 1916 in [26, I11.3.8, p. 54].



12 CHAPTER 1. INTRODUCTION

1.2.5 Lemma. FEvery von-Neumann natural number includes all of its elements.

Proof. Let P be the predicate
includes all of its elements.

Since 0 has no elements, it includes all of its elements, so P0. This completes
the base step of our proof.

For the inductive step, suppose Pn (as an inductive hypothesis). Say k € n'.
Since n’ = n U {n}, either k € n, or k € {n}. If k € n, then k¥ C n by inductive
hypothesis. If k € {n}, then k = n, so k C n. In either case, k C n. But n C n'.
Hence k C n'/. (This conclusion will be part of Lemma 3.1.3.) Therefore P(n’).
This completes the induction. O

1.2.6 Theorem. Natural numbers with the same successor are the same.

Proof. Suppose k and n are natural numbers, and k' = n/. Then
kU{k} =nuU{n}.

In particular, k € nU {n} and n € kU {k}. If k = n, we are done. If k # n,
then we must have k € n and n € k, hence £k C n and n C k by the previous
lemma, and therefore & = n by the Axiom of Extension, 1.2.1. O

We can call n the immediate predecessor of n’. If n is a natural number
different from 0, then n itself has an immediate predecessor; we have just shown
that this predecessor is unique, and we can denote it by

n— 1.

The von-Neumann definition of the natural numbers is convenient, because
according to this definition, each natural number n is just the set that can be
denoted

{0,...,n—1}.

(If n = 0, then this is the empty set.) If we do not happen to care about whether
each natural number is such a set, then we can denote the set of natural numbers
by

N;
this is the usual notation when one is not that interested in set-theory. Then
N is just a class that contains an element 0, and whose every element n has a

successor, which can be denoted
nt (1.5)

or n + 1, such that:
() 0 is not the successor of any element of N;
(1) elements of N with the same successor are the same;

(1) N is included in every class that contains 0 and that contains n't if it
contains some 7 in N.

We shall show in Chapter 4 that all properties of N follow from these.
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1.3 Algebra of the integers

Now that we have, in the previous section, a precise definition of the natural
numbers, I want to review some things we know about them from school. We
cannot yet define all of these things precisely, or prove them: this will happen
in Chapter 4. Meanwhile, we just have the set N, whose members form the list

(0,1,2,3,...).

As we have seen, every natural number n has a successor, which usually denoted
n+ 1. Some mathematicians start the list of natural numbers at 1 instead of 0;
but I shall just say that the members of the set {1,2,3,...} are the positive
natural numbers.

The number 0 does not have an immediate predecessor that is a natural number;
but it does have the immediate predecessor called —1. This is not a natural
number, but it is an integer. The set of integers comprises every natural
number, along with a negative, denoted —n, for each positive natural number
n. Then —n has the successor —(n—1) and the immediate predecessor —(n+1).
The integers that are not natural numbers are also called negative integers.
Every integer n has a negative, denoted —n, although this number is itself
negative only if n is positive.

The set of integers is commonly denoted?®
Z.

This set is equipped with three operations, namely addition, additive inver-
sion, and multiplication. (Operations are functions; functions in general and
operations in particular are defined formally in § 3.3.) In particular, if x and y
are integers, then so are

(*) « +y (the sum of = and y, which here are addends),
(t) —z (minus-z, the additive inverse or negative of z), and
(1) -y (the product of the factors x and y).

By convention, multiplication is also indicated by juxtaposition; that is, the
product x - y is also denoted

xy.

Something like the symbol for additive inversion is also used for a fourth op-
eration, subtraction, which can be defined in terms of the other operations.

20Here the letter zed or zee stands for the German 3ahl, number. In English, the integers are
also called whole numbers. In fact, the English word integer comes from the Latin INTEGER,
which means whole. This Latin word developed in France into the French word entier, which
entered English and became entire. Thus two English words—integer and entire—represent
the same Latin word. People interested in such matters may refer to such pairs of words as
doublets.
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Subtracting®' y from z produces a difference, which is denoted
T—y

and which is just the sum of x and —y. Note that x — y is not generally the
same as y — x. If we want to assign names, then, in the difference x — y, we can
call  the minuend (from the Latin, with the meaning of that which is to be
diminished), and we can call y the subtrahend (that which is to be subtracted).

Subtraction is thus a composition of two other operations. The process of
computing x — y can be indicated by a tree,?? thus:

x| Y
More complicated compositions and trees are possible. For example, the tree

\ o

indicates the sum of x and the product of minus-y and the sum of z and w.
Usually this sum is written on one line, as

x4+ —y- (24 w). (1.6)

I shall refer to such a string of symbols as an arithmetic term?® (The Greek
word?* for number is dprdpdc, which is ARITHMOS in Latin letters. Our general
definition?® of term comes in § 3.5.)

Officially, arithmetic terms will be certain strings composed of

e the symbols +, — and - (a dot);

21The English verb subtract is sometimes pronounced as if it were substract. The English
verb comes from a participle of the Latin verb whose infinitive is SUBTRAHERE. This verb is in
turn built up from TRAHERE (meaning draw or carry) and the preposition SUB (meaning from
below or away). According to the OED [28], in medieval times, an s was inserted between SUB
and TRAHERE, yielding SUBSTRAHERE, from which came substract in English; but this formation
is considered incorrect. The English word abstract is from the Latin ABSTRAHERE, but here
the s belongs properly to the preposition ABS, although the preposition is more commonly
seen as AB or even A.

22Trees as such are covered in a later course, Math 112.

23Here the word arithmetic is an adjective and is pronounced with the stress on the penul-
timate (next-to-last) syllable.

248Strictly, the Greek word dpwdudc refers to a number of things, in particular, more than
one;—certainly not zero or ‘fewer’ than zero. See [22].

25In another context, Aristotle’s definition of term is in Appendix A.
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e variables, such?® as z, y and z;

e symbols for certain integers, such as 12, 0 and —137—such symbols can
be called numerals?” or (numeral) constants?®;

e the parentheses ( and ).

The formal definition of arithmetic terms is inductive, in the sense of the pre-
vious section:

() every variable is an arithmetic term;

(1) every numeral is an arithmetic term;

(1) if t is an arithmetic term, then so is —t;

(§) if tg and t; are arithmetic terms, then so are (to + ¢1) and (to - t1).
Some writers add another condition to this definition:

(9) nothing else is an arithmetic term.

However, I understand such a condition to be implicit in every inductive defini-
tion.

Our definition of arithmetic terms is inductive in the following way. Suppose A
is some set of strings of symbols such that:

() every variable is in A;

(1) every numeral is in A;

(1) if tisin A, then —t is in A;

(§) if tg and t; are in A, then so are (tg + ¢1) and (to - t1).

Then A contains all arithmetic terms. Therefore, proof by induction on arith-
metic terms is possible; here is an example:

1.3.1 Proposition. FEvery arithmetic term has as many left parentheses as
right parentheses.

Proof. Let A be the set of arithmetic terms with as many left parentheses as
right parentheses. Then A contains all variables and constants (since these
have no parentheses). Suppose A contains t. Then ¢ has as many left as right
parentheses (just because it is in A), so the same is true of —t. This means —t
is in A. Similarly, if ¢ and t; are in A, then each of them has as many left as
right parentheses, so the same is true of (¢g + ¢1) and (o - t1); this means these
terms are also in A. By the inductive definition of arithmetic terms, every term
is in A. O

26The convention of using letters from the end of the Latin alphabet for ‘unknown quantities’
dates back to Descartes; see [10]. Since we don’t want any limit on the number of variables
we can use, and yet we want to define things precisely, we could declare officially that our
variables must come from the list g, 1, 22 and so forth, except that we can’t precisely
explain the words and so forth yet.

271t is probably simplest to think of a numeral as a single symbol, even though, typo-
graphically, it may be a string of digits, possibly preceeded by a minus-sign. For example,
the numeral —137 might be thought of as the single symbol c¢_j37 (that’s ¢ with the sub-
script —137). Our decimal convention for writing numerals is just that, a convention; it has
no essential relation to our definition of arithmetic terms. See also Footnote 31 below.

28 etters from the front of the Latin alphabet are used to denote such constants; again the
convention is found in Descartes. Used in this way, the letters can be called literal constants,
where the word literal is just the adjectival form of letter. But for us, literal constants are not
literally parts of terms; they just stand for parts of terms—namely, numerals.
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By the formal definition of arithmetic terms, the string on Line (1.6) above is
not a term; to satisfy the definition, the term should be written as

(4 (—y- (= +w))).

By convention, we can leave out the dot between —y and (z + w), and we can
remove some of the parentheses. But we can do this only because we have a
conventional order of operations in terms. By this convention, expressions
in brackets are evaluated before all else, and then multiplication is performed
before addition (and subtraction), but otherwise operations are performed as
they are read from left to right. So, (z + y)z means something different from
x + yz: the former is an informal version of the term ((z + y) - 2); the latter, of
(z+ (y-2))-

The formal definition of arithmetic terms should ensure that each term indicates
uniquely how to calculate an integer, once integral values are assigned to the
variables. In short, arithmetic terms should be uniquely readable. That our
terms are uniquely readable has a proof like that of Theorem 2.1.4 below.

An arithmetic term is not exactly the same thing as a polynomial. For example,
the terms (z - (y + 2)) and ((z -y) + (x - 2)) are different. However, they always
yield the same number if z, y and z are respectively replaced by the same three
integers. We therefore write

z(y+ 2) = zy + xz, (1.7)

and we shall say that the two members of this equation represent the same
polynomial. Also, Equation (1.7) is called an (arithmetic) identity.

An equation of arithmetic terms can be called a Diophantine equation, in
memory of the ancient Alexandrian mathematician Diophantus, who studied
such equations.?? A Diophantine equation is an example of an (arithmetic)
formula. For example, the equation

v =4x3 —ax —b (1.8)

(where a and b are understood to be integers) is an arithmetic formula. Its
solutions are those pairs of integers that satisfy the equation: those pairs
(¢,d) of integers such that d> = 4¢® — ac — b. Formula (1.8) is not an identity,
because not every pair of integers satisfies it. (For example, if (¢,d) and (¢, d’)
satisfy it, then we must have d’ = +d; there is no other possibility. )3’

By our definition, a polynomial is an abstraction from the notion of a term.
It is an equivalence-class of terms, in the sense of § 3.7. You can think of a

29Diophantus wrote the Arithmetica, in thirteen books, of which six have come down to us
[45, pp. 516, n. a]. One problem that he considers, for example, is, in our notation, to find
rational solutions to the pair

8x +4 =12,
6z +4 =1y
of equations [45, pp. 526-535].
30Equations like (1.8) are of ongoing interest to number-theorists. It is a twentieth-century
result that the equation y? = z3 4 17 has two solutions, (—2,3) and (2,5), from which all

rational solutions can be found by certain rules; and only eight of these solutions are integral
[37, Example I11.2.4, pp. 59 f.].
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polynomial as an operation. Then a term is a set of instructions—a recipe for
how to perform the operation. The point then is that the same operation can
be performed in different ways. This is why different terms can represent the
same polynomial.

For example, the term =+ y says, ‘Start with x, and add y’; the term y+ = says,
‘To y, add x.” These are different activities, but they yield the same result; so
we write x +y =y + .

How can you tell when two terms represent the same polynomial? It is easy to
show when they represent different polynomials. For example, 22 (that is, zx)
represents a different polynomial from x, since (—1)? # —1. But how do we know
that the two members of Equation (1.7) represent the same polynomial? As an
identity, the equation expresses the distributive property of multiplication over
addition. So how do we know that multiplication has this property with respect
to addition? We can check it for certain integers, say = 5 and y = 17 and
z=—14:

5(17+—14) = 5- 3 = 15;
5-1745-—14 =85 — 70 = 15.

But we can’t check the property for all integers, since there are infinitely many.

Strictly speaking, if one wants to use the distributive property with full un-
derstanding, then one should give precise definitions of the integers and their
operations, and then one should prove the distributive property. We shall be
able to do this in Chapter 4: see Theorem 4.2.4. However, we didn’t need to
know all of the properties like the distributive property, just to be able to define
the notion of a polynomial.

As we have discussed them so far, the integers form the structure
(Za+7_a')' (19)

Structures are defined generally in §§ 3.2 and 3.5. The structure on Line (1.9) is
the set Z equipped with certain specified operations, namely addition, additive
inversion and multiplication. Now, Z also has the named?! elements 0 and 1.
Moreover, Z is equipped with the relation < called ‘less-than’. (Relations are
defined generally in § 3.2.) So we may think of the integers as composing the
structure

(Za+777’70717<)' (110)

We now have some new arithmetic formulas, the simplest being
<Y,

read as x is less than y. There are some ‘derivative’ relations:
e x >y is read as x is greater than y, and means y < z;

e r < ymeans z < yorzx=y: that is, x < y is satisfied by those (a,b) such
that a < b or a =b;

31In fact, every integer can be given a name in decimal notation. Alternatively we can just
write every positive integer as the appropriate sum 14 1+ --- 4 1, write zero as 0, and write
every negative integer as —(1+ .-+ +1).
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e r >y is read as x is greater than or equal to y, and means y < z.
These are all (arithmetic) inequalities; as such, they are new examples of arith-
metic formulas. In general, an inequality is an expression

to*tl,

where ty and ¢; are terms, and * is one of the symbols, <, >, < and >. In this
context, we may also speak of the inequation

to # t1,

which is satisfied by just those integers that do not satisfy the equation tg = t;.

The positive integers are just the positive natural numbers; symbolically, these
are the integers that satisfy the inequality 0 < x. The negative integers are
those integers that satisfy x < 0. The non-negative integersnon-negative —
satisfy 0 < z and are the natural numbers, composing the set N as we said in
§1.2.

An integer z is a factor or divisor of the integer y if xz = y for some integer z. In
this case, if z # 0, then z is unique; we may then say that z is the quotient y/x.

In general, for any integer y and non-zero integer x, there is a quotient y/x, but
this quotient may only be an element of the set of rational numbers; it may
not be an integer. The set of rational numbers is denoted

Q&
but I prefer to work only with integers for now.

If x is a divisor of y, we write
x|y,

and we say that x divides y. So the symbol | denotes a relation, just as <
denotes a relation.

A positive integer is called prime if its only positive factors are 1 and itself,
and these are distinct. So 1 itself is not prime. A positive integer that is not 1
and is not prime is composite. The list of prime numbers begins:

2,3,5,7,11,13,17, 19, 23,29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

Does the list end? That the list does not end is Proposition IX.20 of Euclid’s
Elements; we shall give a version of Euclid’s proof in the next section.

Exercises

(1) Is there a way to define arithmetic terms without using brackets? (See § 2.1
for some ideas.)

(2) Which of the following equations are arithmetic identities?

(a) zy = yz,
(b) z(yz) = wyz,
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(¢) (x+y)?—2zy —y* =22,
(d) 22 +3 =4,
(e) 2z + 3y = 4,
(f) a* +y* = 2zy,
)
)

1.4 Some proofs

We have two proofs so far, officially: of Theorem 1.2.2 and of Proposition 1.3.1.
What constitutes a proof in general? It is hard to say. By means of reason
alone, a proof should persuade any (sufficiently knowledgeable) reader that a
certain proposition is true. This is the ideal. In practice, the standards for what
is ‘reasonable’ in a proof can vary.

I said in the last section that we should be able to prove the distributive property
of the integers. By some standards—ultimately, the standards of these notes—
such basic properties of the integers were not proved until about a century ago.
On the other hand, by taking for granted these basic properties, mathematicians
have known for over two thousand years how to prove important propositions
about the integers. Many of these propositions are stated and proved in Euclid’s
Elements [14].

Here I shall offer proofs of three of these propositions, namely:
(*) that there are infinitely many prime numbers;

(1) that the diagonal and side of a (geometrical) square have no common
measure;

(1) that there is a method for determining the greatest common divisor of two
positive integers.

The proofs of these propositions rely on claims that should be plausible, but
that we have not yet fully justified. A goal of this entire collection of notes is
to provide some of the justification.

Of the three propositions named, the first two might be called theorems, and
the last, a problem, in the ancient sense described in § 1.1.

Infinity of primes

Without more ado, we can state and prove:

1.4.1 Proposition. There are infinitely many prime numbers.>?

32Fuclid puts it a bit differently: Oi mpdtot dprdpol mheioug eiol mavtdc tol npotedévtog
mAfdoue TpdTtwy derdudv: ‘The prime numbers are more than any given multitude of prime
numbers.” If for multitude we understand set, then, for Euclid, there is no such thing as an
infinite set; in particular, there is no set such as we have called N.
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Proof. Suppose there were only finitely many prime numbers. Say there were n
primes (where n € N). Then we could list the primes thus:

Po,P1y---sPn—1-

The product pgp; - - - pr—1 would be divisible by each prime p; on our list, and
therefore the sum

1+ pop1-- Pn-t

would be indivisible by each prime p;. Therefore this sum would have a prime
factor not on our list of primes. This would contradict our assumption that our
list contained all primes. Therefore there are infinitely many primes. O

Are you satisfied with the proof of Proposition 1.4.17 What details does it
leave out? We have not proved that every positive integer (besides 1) has prime
factors. (However, this fact is Euclid’s Proposition VII.32; it is also given in
§ 4.5 below.) Nor have we defined what ‘infinitely many’ means. (We shall in
§ 4.0.)

Still, by some standards, we have given a proof.?> The proof is by the technique

of contradiction. (So was the proof of Theorem 1.2.2.) To prove a certain
statement by contradiction, one assumes that the statement is false, and then
one shows that this assumption leads to absurdity.

Incommensurability of diagonal and side
The next proposition is also proved by contradiction. We first need a definition
and some lemmas.

An integer is even if 2 divides it; otherwise, the integer is odd.

1.4.2 Lemma. The product of two integers is
(%) even, if one of the integers is even;

() odd, otherwise.

Proof. Let the two integers be a and b. If a is even, so that 2 | a, then a = 2¢ for
some integer ¢, so ab = 2¢cb, which means ab is even. If @ and b are odd, then they
are 2c¢ + 1 and 2d + 1 for some integers ¢ and d, so that ab= (2¢+1)(2d+1) =
ded +2¢+2d + 1 = 2(2¢d + ¢+ d) + 1, which is odd. O

The following is a fundamental property>* of N; we shall use it here and there
before proving it in Chapter 4. (It is a consequence of the properties at the end
of § 1.2, but it cannot be proved by induction alone.)

33 A proof with a similar level of detail is offered to the general reader in [17, §12].

34Born around 1601, Pierre Fermat developed the method of infinite descent to prove such
theorems as that no right triangle whose sides are integral has square-integral area: If there
were such a triangle, then there would be a smaller one, and so on. See [49, ILIX, pp. 75 ff.].
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1.4.3 Lemma (Infinite Descent). Every strictly decreasing sequence of posi-
tive integers must be finite: that is, if there is a sequence (ag,a1,az2,as,...) of
positive integers such that

ap > ap > ag > a3 > -,

then the sequence must stop—must have a final entry a, for some n.

Proof. The claim follows because N is well-ordered, which means that every
non-empty subset of N has a least element; we shall discuss this in § 4.7. The

set of terms in a strictly decreasing sequence (ag,aq,...) of positive integers
must have a least element, a,; then there can be no term after this, since it
would be less than a,,. O]

We can now state and prove the following. Its geometric interpretation is that
there is no unit length into which the diagonal and side of a square can be
divided. Aristotle3® alludes to a proof similar to ours.

1.4.4 Proposition. The Diophantine equation
r? = 2y° (1.11)
has no non-zero integral solution.

Proof. Suppose, if possible, that (ag, a;) satisfies the equation, where ag and a;
are non-zero integers. In particular then,

ap? = 2a,°. (1.12)

Hence ag? is even, so ag is even by Lemma 1.4.2 (since if ag were odd, then
ap? would be odd); say ag = 2as. Then ag? = 4as?; this with Equation (1.12)
implies?® 24,2 = 4a22, hence

a12 = 2a22.

Thus (a1, az) is also a solution of Equation (1.11). In short, given the solution
(ao,a1), we can find a solution (a1, as). Continuing, we can find an integer as
such that as? = 2a32, and so forth. That is, there is an infinite sequence

agp, @1,02,0a3, ...

of integers ay such that (aj,ar4+1) is a solution of Equation (1.11) for each
natural number k. (Strictly, the existence of such a sequence is only justified by
the Recursion Theorem, which is 4.1.1 below.) But we may also assume (why?)
that each integer ay is positive, so that

ap > ap > az > a3z > ---,

which is absurd: no such sequence can be infinite, by Lemma 1.4.3. Therefore
such ag and a; cannot exist. O

35In the Prior Analytics; the passage is quoted and discussed at [44, pp. 110 f.].
36The properties of equality that allow this conclusion are discussed in detail in [43, Ch. ITI,
pp. 54-67].
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Euclidean algorithm

An alternative proof of the last proposition is given in § 1.5 in terms of the
Euclidean algorithm for finding the greatest common divisor of two positive
integers:

Suppose a and b are positive integers. Then there is a unique natural number
k such that
ka <b< (k+1a. (1.13)

We say that k is the number of times that a goes into b. Then b — ka is the
remainder after division of b by a. Let us denote this remainder by

rem(b, a).

So we have b = ka + rem(b, a) for some integer k, and 0 < rem(b,a) < a, and
these rules determine rem(b, a).

For the sake of completeness, we can extend this analysis to arbitrary integers.
Every integer a has an absolute value, which is denoted |a| and is given by

the following rule:
a, if 0 < a;
la| =

—a, ifa<0O.

If a # 0, and b is any integer, then there is a unique natural number rem(b, a)
satisfying two requirements:

(x) 0 <rem(b,a) < |af;
(f) b= ka+ rem(b,a) for some integer k.

Here k is also uniquely determined. If @ and b are positive, then rem(b, a) and
k are as before. We can now say that a | b just in case rem(b, a) = 0.

The following is similar to Euclid’s Proposition VII.2. The proof omits some
details; supplying them is an exercise for the reader.

1.4.5 Proposition. Any two integers have a greatest common divisor (unless
both integers are zero). This divisor is found by alternately replacing each num-
ber with its remainder after division by the other, until one of the numbers
becomes 0; then the other number is the greatest common divisor.

Proof. Let a and b be integers, not both zero. We may also assume |a| > |b|. We
recursively define a sequence of natural numbers in the following way. (Recursive
definitions in general are defined precisely in § 4.1.) Let ag = |a| and a1 = |b|.
Suppose ag, . .., a;+1 have been defined. Then let
— rem(a;, a;y1), if a1 # 0;

i+2 = .

o O, if Ai4+1 = 0.
The sequence is strictly decreasing until it reaches 0; therefore, by Lemma 1.4.3,
the sequence must reach 0. Let ¢ be its last non-zero entry. Then c is positive
and divides each a;; in particular, it divides a and b. Also, if d | @ and d | b,

then d divides each a;; so d | ¢. Thus c is the greatest of the common divisors
of a and b. O
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The greatest common divisor of @ and b can be denoted
ged(a, b).

The technique of Proposition 1.4.5 for calculating this number is the Euclidean
algorithm.3” A modern formulation of this algorithm is found in [12]:

i 0
scd(a, b) = b, i rem(.a7 b) =0;
ged(b, rem(a, b)), otherwise;

assuming 0 < b < a.

There is a set of real numbers, denoted
R,

that contains all of the integers and rational numbers and more. The real
numbers can be thought of as corresponding to points on a geometrical line,
once distinct points corresponding to 0 and 1 are chosen. Richard Dedekind
[9, p. 2] claims to have discovered a rigorous formulation of this correspondence
only in 1858; in § 4.6 below is a formal definition of the real numbers based
ultimately on Dedekind’s work. One of the real numbers is a positive number,
denoted??
V2,

whose square, (v/2)2, is 2. Real numbers that are not rational are irrational.
From Proposition 1.4.4 then, we have the following consequence.

1.4.6 Corollary. The real number /2 is irrational.

I proposed in § 1.1 that propositions are sentences that, in context, are either
true or false. In Chapter 2, we shall develop a formal way to work with propo-
sitions, merely with regard to whether they are true or false. (We have already
worked with them informally in this way, as when we defined < on p. 17.) Our
formal method will be to think of a true proposition as having the value 1, and
to think of a false proposition as having the value 0. Then we shall be able to do
computations involving these values; we shall have a propositional calculus.

This is a reason why we looked at the structure (Z,+,—,-). In § 1.7, we shall
develop a similar structure, based on the set {0, 1} instead of Z.

1.5 Excursus on anthyphaeresis

We have now proved three important propositions about integers. In this op-
tional section, an alternative proof of Proposition 1.4.4 is developed; a version of

37The word algorithm is an ‘erroneous refashioning’ [28], apparently influenced by derduée,
of the earlier English algorism, which was adapted from al-Kowarasmi, the surname of Abu
Ja’far Mohammed Ben Musa, whose work in algebra gave the so-called Arabic numerals to
Europe.

38This number is also written y/2. However, the symbol v/ is strictly made up of two parts:
a radical, v/, and a vinculum, . The vinculum serves merely as a grouping-symbol. So
writing v/2 is like writing 1/(2); that is, the vinculum is unnecessary. Note the properly omitted
vincula in the facsimile from a 1637 publication at [10, p. 77]. Note also that /(4 + 5) =

VA+5=3, whilevV4+5=T1.
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this proof may have been known in ancient times, even before the proof above.
Suppose a, b, ¢ and d are integers such that ad = bc. Let us then write3?

a:buc:d
and say that a is to b as c is to d. This expresses the relation called propor-
tionality among the four numbers.

1.5.1 Lemma. Ifa:b: c:d, and k is an integer, then a : b::a— kc:b— kd.

Proof. If a :b:: c:d, then ad = be, so ab — kad = ab — kbc, that is,

a(b — kd) = b(a — kc),
soa:b:a—kec:b—kd. O
1.5.2 Lemma. Suppose a, b, ¢ and d are positive integers such that a : b :: ¢ : d.

Then b goes into a just as many times as d goes into c.

Proof. The assumption is that ad = be. Then nad = nbe, that is,
a(nd) = (nb)c,

for all natural numbers n. Hence a < nb if and only if ¢ < nd, and nb < a if
and only if nd < ¢. Consideration of the Inequality (1.13) yields the claim. O

1.5.3 Proposition. There are no positive integers a and b such that

b:a:a:rem(b,a).

Proof. Suppose ap and a; are positive integers, and let as = rem(ap, a;); we
shall show that there is no proportion

ap:ay:aj:as. (1.14)

Now, az < a1, so we may assume a; < ag (otherwise (1.14) is false). We
may also assume as # 0. Suppose now, if possible, that (1.14) is true. By
Lemma 1.5.2, if ap = kaj + a9, then ay = kas + a3, where ag = rem(aq,as);
hence, by Lemma 1.5.1,

aj :ag iaz:as.

Thus, applying the Euclidean algorithm yields a strictly decreasing sequence ayg,
a1, ag, ...such that ag : a1 :: a, : an41 for all natural numbers n; this is absurd.
Therefore Proportion (1.14) fails. O
For another proof of Proposition 1.4.4, suppose 2a? = b?. Then a? = b? —a? =
(b+a)(b—a), so

b+a:a:a:b—a.

But also, a < b < 2a; so a goes into a + b exactly twice, leaving the remainder
b — a. This contradicts the last proposition.

39Why not write a/b = ¢/d? Just because I prefer to work only with integers for now.
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This proof of the irrationality of v/2 can be recast as a positive result. Suppose
we take two positive real numbers ag and a;; we can apply a version of the
Euclidean algorithm to them (as Euclid himself does in his Propositions X.2
and 3). Then a; goes into ag some number ng (possibly zero) of times, leaving
a remainder ag; s0 0 < az < a1. If as is not 0, then it goes into a; some number
ny of times, leaving a remainder ag; so 0 < ag < az. We can continue this pro-
cess of alternating subtraction or anthyphaeresis,*° generating a sequence
ag, a1, asz, . . ., possibly finite, of non-negative real numbers, and a corresponding
sequence ng,ni,... of natural numbers. Call the latter sequence the anthy-
phaeretic sequence of (ag,a1). Then we have shown that the anthyphaeretic
sequence of (1 4++/2,1) is 2,2,2,..., never ending.

That the Ancients found interest in such sequences can be inferred from certain
old texts: see the brief discussion at [44, pp. 508 f.]. In modern notation, we
have

A = Nk - Qg+1 + Ak+2,

475 _nk+ak+2 . 1
- - b)
Ak+1 Ak+1 (ak+1>

Q42

Qg 1

P 1

1
ni +
1
no 4+ —

Thus we can express quotients of real numbers as continued fractions. In

particular, we have
1
V2=1l4 —o-

2+
1

2+
1
24+ —

although we can’t here say exactly what this means.

Exercises

(1) Using Lemma 1.4.3 (and standard facts about (Z, <)), prove that every
integer different from 1 and —1 has prime factors.

2) Suppose = and p are integers, and p is prime. If p | z, prove that pt 1+ z.

3) Use the Euclidean algorithm to find ged (136, —192).

5

(2)

3)

(4) Prove that /3 is irrational.

(5) Prove that \/p is irrational, whenever p is prime.
(6)

6) Prove that v/n is irrational, unless n is a square.

204v9udaipeoic; see [44, pp. 504-509)].
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(7) Prove that %/2 is irrational.

(8) Give a geometrical argument for the incommensurability of the diagonal
and side of a square. (One way to start is to let ABC'D be a square. Draw
a circle with center A and radius AC. Extend AB to meet the circle at
E; extend BA to meet the circle at F. Then F'B: BC :: BC' : BE.)

(9) The expression for v/2 as a continued fraction determines a sequence of
rational numbers that approaches v/2 as a limit. Calculate a few terms of
this sequence.

1.6 Parity

Here we develop one possible approach to the so-called Boolean connectives,
which will be defined in § 1.7. We also give a warning about how not to write
a proof.

Every integer has a parity, which is 0 if the integer is even, and 1 if it is odd.
Let the parity of the integer x be denoted

p(z).
Some basic facts about evenness and oddness can be expressed in terms of this:

1.6.1 Lemma. The equation p(z + 2) = p(z) is an identity.

Proof. 1If a is even, then so is a + 2, so each member of the equation is 0. If a is
odd, then so is a + 2, so each member of the equation is 1. Hence the equation
is satisfied by all integers. O

The taking of parities respects multiplication in the following sense:

1.6.2 Lemma. The equation p(zy) = p(z) p(y) is an identity.
Proof. Exercise. O

Parity respects addition too, but in a more complicated sense:

1.6.3 Lemma. The equation p(x + y) = p(p(z) + p(y)) is an identity.

Proof. Exercise. O
Finally, applying the parity-operation twice is the same as applying it once:*!

1.6.4 Lemma. The equation p(p(z)) = p(z) is an identity.

Proof. Exercise. O

41T herefore parity can be called idempotent.
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We have introduced parity so as to be able to define two new operations on Z
in the following way. By definition of the operations ® and &, the following
equations are identities:

z©y = p(zy),

T @y =Dp(x+y)

Next, we define two more operations. The following are also identities, by
definition:

cr=xd1, (1.15)
Uy =(r0y) ®(aY). (1.16)
For U, an alternative (but equivalent) definition is possible:

1.6.5 Theorem. The equation
rUy=06(0z 6 oy) (1.17)
s an identity.

Proof. There are two ways we can proceed. One is to reduce everything to the
ordinary arithmetic operations. By the definitions and Lemma 1.6.3, we have
the following chain of identities:

(oY) ® (DY)
p((z©y) + (z®y))
p(p

(p(zy) +p(z +y))
=plzy +z +y).

rUy = (x

Similarly,

oerzoey)=(zal)oyal)al

=pp(pz+1)ply+1)+1)
=plpp((z+1)(y+1)+1) [by Lemma 1.6.2]
=pp((z+1)(y+1))+1) [by Lemma 1.6.4]
=p(p((z+1)(y+1))+p1))
=p((z+1)(y+1)+1) [by Lemma 1.6.3]
=play+r+y+2) [by arithmetic]
=pley+z+y) [by Lemma 1.6.1].

Our computations show that Uy and &(6&x @ ©y) are equal to the same thing
(namely p(zy + = + y)); so they are equal to each other. This completes one
possible proof.

Alternatively, by definition of @& and by Lemma 1.6.3, we have
p(z) ®p(y) = p(p(z) +p(Y)) =Pz +y) =2 S Y.
By definition of ® and by Lemmas 1.6.2 and 1.6.4, we have

p(z) © p(y) = p(p(z) p(y)) = p(p(zy)) = p(zy) =T O Y.
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Therefore, to verify any identity involving only ® and @ (and operations derived
from them, like © and L), it suffices to replace each variable with its parity. More
precisely, to verify (1.17), it is enough to check the four possibilities when x and
y are chosen from the set {0,1}. We have the following computations:

z|yleoy|zay|zUy| oz | oy | ooy | oGzeoy)
01]0 0 0 0 1 1 1 0
110 0 1 1 0 1 0 1
011 0 1 1 1 0 0 1
1|1 1 0 1 0 0 0 1

The columns headed by the two members of Equation (1.17) are identical, so
this equation is an identity. O

Either of the two proofs just offered should be sufficient to establish the theorem
as true. Note well the format of the first proof. The aim was to arrive at
Equation (1.17). The proof did not begin with this equation; it began with one
of the members of the equation and showed that it was equal to a new term.
Then the other member of Equation (1.17) was shown to be equal to the same
term. To write the proof as follows would not be good style:

?
zUy =06(0r 0 oy),
?

Foy)o@ay =(zal)oyel)al,
p((@ ©y) + (@@ y)) = oD@+ 1) ply+1) + 1), (1.18)

?
== c ey

plzy +z+y) =plry +z +y).

Do not write proofs this way! What’s wrong with this style of writing? It does
not show the connexion between consecutive lines. The Equations (1.18) don’t
tell the reader, for example, that ©(6z @ oy) = (z®1)© (y® 1)) ® 1. In fact,
the equations tell us nothing that can be assumed to be correct.

Think of the following example:

-1=1
(_1)2 ; (1)2 (1.19)
1=1.

It certainly does not show that —1 = 1.

If you is searching for a proof of (1.17), then you might possibly write something
like the Equations (1.18). Then, after you have found a correct line of argument,
you should rewrite your findings before presenting them to somebody else as a
proof. The next chapter will make this point again with the notion of formal
proof: What one writes down when looking for a formal proof is generally a lot
different from the formal proof itself.
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Exercises

(1) Prove Lemmas 1.6.2, 1.6.3 and 1.6.4.

(2) Explain why the Equations (1.19) do not constitute a valid proof of the
equation —1 = 1.

(3) Suppose ~ is a new arithmetic operation defined on the set {0,1} as
follows:

)—lO»—A»—li

Find an arithmetic term ¢ such that the equation p(t) = p(z) ~ p(y) is
an identity.

1.7 Boolean connectives

In memory of George Boole,*? let us refer to the set {0,1} as B. In the last
section, we defined some operations that convert integers into elements of B.
Considering the elements of B as integers, we shall now restrict those operations
on 7Z so as to apply only to elements of B. In so doing, we shall change their
names:

0nZ:‘®‘@‘@‘U
onB:‘/\‘%‘—"\/

We shall not use the four operations ®, @, © and U any more. Operations on
B can be called (Boolean) connectives. Specific English names can be given
as follows:

(*) A is conjunction;

(1) — is negation;

(1) Vis (inclusive) disjunction;

(§) «» is exclusive disjunction or (material) non-equivalence.

Since B is finite, the definitions of connectives can be given in tables like the
table in the last subsection:

P|lQ|PAQ|PVQ|P+»Q

01]o0 0 0 0 P -P
110 0 1 1 0 1
0|1 0 1 1 1 0
11 1 1 0

It will be convenient to have two more connectives, namely:

42Gee for example [4, 111.12, [47], p. 51].
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(9) (material) implication or the conditional: —;
() (material) equivalence or the biconditional: <.

Again the definitions can be given in a table:

PlQ|P=Q|P=Q

1
0
1
1

Certain identities should be evident: For example, P < () seems to mean the
same thing as =(P < Q). Here though, we shall not put a sign of equality
between the two expressions. Rather, as will be discussed more fully in § 2.2,
we shall write

_— o = O
-0 O
— o orl]

PwQn~—(PeQ), (1.20)

using the sign ~ rather than the sign of equality. Why? First, by analogy with
the definition of arithmetic terms in § 1.3, we define Boolean terms inductively
as follows. First, Boolean terms are certain strings containing (some of) the
following symbols:

e A, —,V, ¢ — < (or other connectives, should we choose to define them);
e the constants 0 and 1;
variable from the list Py, Py, Ps, ...;

e the parentheses ( and ).
Then the Boolean terms are determined by the following rules:
(x) variables and constants are Boolean terms;
(t) if F is a Boolean term, then so is —F;

(1) if F and G are Boolean terms, then so is (P x @)), where x is one of the
connectives A, V, <, —, <.

Note that the constants 0 and 1 can also be considered as Boolean connectives,
since they give values (namely, themselves) in B.

We could now define Boolean polynomials and form from them what me might
call Boolean polynomial equations; these would be examples of so-called Boolean
formulas. We shall not use such expressions however, since our main interest
will lie in Boolean terms as such. To suggest this, we shall refer to Boolean
terms mainly as (propositional) formulas.

As with arithmetic terms, so with propositional formulas, we can establish a
conventional order of operations so as to avoid writing too many parentheses.
We can always leave out an outer pair of parentheses.

e — has priority over all other connectives;
e A and V have priority over —, <, and «»;

e in case of two instances of —, the one on the right has priority*3;

43We shall use this convention, because propositional formulas like (Py — (P — P3)) are
more common than ((Py — Pi) — P»); so it will be convenient to let Py — P; — P> stand
for the former.
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e in case of two instances of A or of V or of <+, the one on the right has
priority.*4

Also, instead of writing variables Py, we may use P, () and R instead. Similarly,
we may use letters like F, G and H to stand for formulas.*?

1.7.1 Examples. By the order of operations,
() the Boolean term denoted by P — Q V R is (P — (Q V R));
(1) ~PAQis (P) AQ);

() P A QV R is ambiguous; the writer must say whether (P A Q) V R or
P A (QV R) is intended;

(5 PAQARIs (PA(QAR))
() PAQA RV P is ambiguous;

() P—~Q—Ris P— (Q— R);

(x%) P<» @+ Ris (P« (Q <« R));

() P> QAR—Sis (P— ((QAR) = 5)). .

A propositional formula like 0 — 1 can be called closed, because it has no
variables. By definition of the connective —, this formula 0 — 1 has the value 1.
The formulas 0 — 1 and 1 are not equal as formulas; but the former can be
considered as a name for the latter (considered as an element of B).

Propositional formulas are so defined that every closed formula is the name of a
unique element of B. We shall prove this in § 2.1; meanwhile, some applications
are in the following exercises:

Exercises

(1) Which Boolean terms, if any, are denoted by the following?—
(a) PA—-Q < RV P;
(b) P—Q« R;
(c) Po— P1 — Py — Ps;

(2) The following closed formulas are names of which elements of B?—

(f) (1vO0)ADO0,
(g) (1Vv(0AO0).

44We could just as well give priority to the one on the left; we just want to allow ourselves
to let strings like P A @ A R denote Boolean terms.

45The symbols Py, P1 and so on are the variables that can appear officially in Boolean
terms. The symbols P, @ and so on are variables that we use to talk about Boolean terms:
they are syntactical variables in the sense of [7, § 08]. Likewise, F' and so on are not literally
formulas; we use them as syntactical variables for formulas.
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1.8 Propositional formulas and language

In one sense of the word, a model is a representation or description of something
that one wants to build or understand. Think of an architect’s model, or an
orrery (a model of the solar system). In this sense, symbolic logic can be seen as
a model of ordinary language. In propositional logic, the Boolean connectives
represent, the parts of speech called conjunctions.

In traditional grammar, of English at any rate,* conjunctions are coordinating
or subordinating. An example of a subordinating conjunction is the word if.
Coordinating conjunctions might be called cumulative, disjunctive,*” adversa-
tive, or transitional; examples of such conjunctions, are, respectively, and, or,
but and then.

Our main interest here is in how conjunctions affect the truth of statements,
especially statements in mathematics. Aristotle defines truth in the Metaphysics
(IV, vii, 1: 1011 b 26). A literal translation of his words*® is:

To declare the being not to be, or the not being to be, is false;—the
being to be, and the not being not to be, is true.

Alternatively, ‘It is false to say that what is, isn’t, or what isn’t, is; it is true to
say that what is, is, and what is not, is not.’

I propose (inspired by Tarski [42]) to refine this definition as follows: Let A be
a statement. Then:

A is true if A, and A is false if not A.

This is a definition; implicitly then, A is true only if A, and A is false only if
not A.

The definition is obscure. It becomes slightly less cryptic in an example where
we can use the typographical convention established in the Preface:

Grass is green is true if grass is green;
Grass is green is false if grass is not green.

Note what happens when we translate this:

Cimen yesilse, Grass is green dogrudur;
¢imen yesil degilse, Grass is green yanhstir.

We can now analyse certain compound statements. Let A and B be statements.
Then the statement A and B is true if and only if A and B; hence A and B is true
if and only if A is true and B is true. Compare this with the observation that
P A Q takes the value 1 if and only if P takes the value 1 and @ takes the value 1.
If 1 represents truth, then the connective A represents the conjunction and. The
proposition A and B and the propositional formula F' A G can alike be called

46T have consulted [21] in making these observations.
470r alternative.
48The text is in [3].
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conjunctions. Note well, however, that the proposition A and B belongs to
our ordinary language, while the formula F' A G belongs to propositional logic.

Similarly, A or B is true if and only if A is true or B is true. Also, PV @ takes
the value 1 if and only if P takes the value 1, or @) takes the value 1. So the
connective V represents the conjunction or. The proposition A or B and the
propositional formula F'V G can alike be called disjunctions.

More precisely, V represents or in its inclusive sense. The exclusive sense of or
is intended in a sentence like You may have tea or coffee after your meal, if this
means that you are allowed to have tea, and you are allowed to have coffee,
but you are not allowed to have both. The exclusive or is represented by the
connective .

The sentence Not-A is true if and only if A is false; and —P takes the value 1
if and only if P takes the value 0. If now 0 represents falsity, then — represents
not. Both Not-A and —F can be called negations. (In fact the negation of an
English statement is almost never formed simply by the prefixing of the word
not; the not goes inside, perhaps with some other changes.)

Mathematics often involves ignoring certain distinctions. From the propositions
A and B, we can form several compound propositions:

Aand B
A, but B
A; B

Each of these may have its own rhetorical coloration, but we shall take them all
to have the same truth-value. We may use for any of them the abbreviation

A & B.

One could write also A A B; but I prefer to reserve A for use in propositional
formulas as defined in the previous section. The sentence A & B here is not a
propositional formula; it is just a proposition or sentence of ordinary language.

We can form some more compounds:

If A, then B
When A, then B
A implies B
Bif A
Aonlyif B

These can be called implications and conditional statements. Each of them
has the antecedent A and the consequent B. We shall understand the com-
pounds to be true if B is true or A is false (or both); otherwise, the compounds
are false. We may use the abbreviation

A — B

The propositional formula P — @ can be analysed similarly, and we can apply
the same terminology.
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In ordinary language, the sentence If A, then B suggests causation. If you drop
that Iznik vase, then it will break—you will cause the vase to break by dropping
it. In mathematics though, If A, then B means no more than B is true or A is
false. This is why we referred to — as material implication®”: Here material
is opposed to formal. The idea is that, in the sentence about a vase, there is a
‘formal’ connexion between antecedent and consequent: they both refer to the
same vase, for example. Such a connexion is missing in a sentence like If water
is wet, then Constantine founded Constantinople; but we count the sentence as
‘materially’ true if we accept the consequent as true. (In this case, it is irrelevant
that the antecedent is true.)

There is a saying in English, If wishes were horses, then beggars would ride. We
can’t analyse this as a material implication, simply because the antecedent and
consequent are not propositions. We can try to recast the sentence as, If wishes
are horses, then beggars ride. Then we can argue that the sentence is true, simply
because the antecedent is false: wishes are not horses. This observation says
nothing about the truth of the original saying.

In some mathematical writing, one sees statements like
A= B = C.
This should be understood as an abbreviation for
(A= B) & (B = (C).
This conjunction is not the same statement as the implication
A = (B = 0),

even though we understand the formula ' — G — H as an abbreviation for the
formula F — (G — H).

In ordinary language, we can write indifferently

A if and only if B
A just in case B

These are equivalences and biconditional statements, and for them we can
use the abbreviation
A < B.

The formula P < @ has a similar analysis and description.

Some fundamental rules of reasoning can be abbreviated thus:

A& (A = B) = B; (1.21)

not-(A = B) <= A & not-B. (1.22)

(We are using a convention like that established in § 1.7: the & has priority
over = and < .)

The operations of conversion and contraposition can be performed on im-
plications:

49Gee the discussions in [7, § 05, n. 89, pp. 37f.] or [43, §§ 8, 9].
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(%) The converse of A = Bis B = A;
(1) the contrapositive of A = B is not-B = not-A.

The contrapositive of an implication is true if and only if the original implication
is true:
(A = B) <= (not-B = not-A).

This observation is of great value in the proving of mathematical propositions.

Exercises

(1) Find a true implication whose converse is true.

(2) Find a true implication whose converse is false.

1.9 Quantifiers

As the Boolean connectives are used to model the conjunctions of ordinary lan-
guage, so the symbols called quantifiers can be used to model certain adjectives,
especially all and some. Quantifiers are a part of predicate logic. To see how
good this logic is as a model of ordinary language, I propose first to look at
ordinary adjectives in general, as they are used in English.

I here understand an adjective to be a word or phrase found in association with
a noun—a noun that the adjective is said to modify. For example, I understand
the definite article, the, and the indefinite article, a/an, to be adjectives.
While the can be used with singular and plural nouns, a is used only with
singular nouns. The articles are of use in establishing a fourfold classification
of adjectives:

(*) Most adjectives in the dictionary are descriptive, like green, good, better,
first, second, ..., single, double, ..., contradictory and numerous. Any of
these can be preceded by an article: the green grass; a second opinion.
A descriptive adjective describes—mnames a property or quality of—the
object or objects named by the associated noun: Green grass is grass
with the property of being green. The property named by a descriptive
adjective may fail to belong strictly to the object or objects named by
the associated noun; it may belong to the relation of these objects with
others: A second opinion can be second only if there is also a first opinion.

(1) The demonstrative adjectives include this/these, that/those, which, the
and the same. Note that this/these and that/those are peculiar, as adjec-
tives, for having distinct singular and plural forms. The demonstrative
adjectives indicate that a certain, a particular, a definite object is named
by the associated noun. They cannot be preceded by an article: We cannot
refer to the this tree or a the mountain.

(1) The quantitative adjectives include zero, one, two, ..., few, several, many,
little, much. The name quantitative seems appropriate for these adjectives,
although they will not be symbolized by the so-called quantifiers. Some
of the quantitative adjectives are symbolized by the numerals 0, 1, 2, ...
A quantitative adjective can be preceded by the definite article, but not
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H dual \ manifold

negative | sing. || neither | no
pl. no

existential | sing. || either a/an, any, some
pl. some, a few, a little, a great many

universal | sing. || either | a/an, any, each, every
pl. both all

Figure 1.2: Logical adjectives. The labels sing. and pl. indicate whether an
adjective on that line is associated with a singular or a plural noun. The labels
dual and manifold indicate whether the noun associated with an adjective in that
column names an element (or elements) of a set of size two or more than two.

by the indefinite article: We can refer to the two opinions, but not to a
one opinion. We can mention a few opinions; but I put a few in the final
class:

(§) The logical adjectives are the remaining: neither, no, either, a/an, any,
some, both, a few, a little, a great many, each, every, all. They cannot be
preceded by an article.

Some grammarians®® refer to the demonstrative, quantitative and logical ad-
jectives as determiners. Determiners are distinguished from other adjectives by
being more fundamental parts of language—and by never being preceded by the
indefinite article.

The logical adjectives can be arranged as in Figure 1.2. The main point to note
is that there are three kinds of logical adjectives, which I am calling negative,
existential and universal.

In a section of the ‘X'VII. Meditation’ of his Devotions upon Emergent Occasions
of 1624, the clergyman and metaphysical poet John Donne uses three logical
adjectives in addition to the indefinite article. The Meditation begins as follows
(and here I preserve Donne’s original spelling and typography, as found in [11,
pp. 440f.]): ‘PERCHANCE hee for whom this Bell tolls, may be so ill, as that he
knowes not it tolls for him;’ later, the Meditation continues:

No man is an Iland, intire of it selfe; every man is a peece of the
Continent, a part of the maine; if a Clod bee washed away by the
Sea, Furope is the lesse, as well as if a Promontorie were, as well as
if a Mannor of thy friends or of thine owne were; any mans death
diminishes me, because I am involved in Mankinde; And therefore
never send to know for whom the bell tolls; It tolls for thee.

Note the three clauses (and now I modernize the spelling):

No man is an island.
Every man is a piece of the continent.
Any man’s death diminishes me.

50For example, the editor of the ninth edition of the Concise Oxford Dictionary [46]; however,
she treats one and two, like first, as ordinary [descriptive] adjectives.
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The first clause is contradicted some 350 years later by a verse of a popular song
by Simon and Garfunkel [38]:

I am a rock, I am an island.

Donne says that the proposition | am an island is false, no matter who says it: it
is false that some man is an island. (I take Donne’s man to be a human being,
male or female.) So we can abbreviate the first two of Donne’s clauses above
by:

Not-(some z is an island) & (every x is a piece of the continent),

where the variable x is understood to range over humanity. We can expand this
to

Not-(there is some x such that z is an island) & (for every z, z is a
piece of the continent).

The reason for this expansion is that the predicate [is] an island might be denoted
¢, and [is] a piece of the continent might be denoted x. For the phrase there is
some x such that, we write

dz;

for the phrase for all z, we write
V.

Then Donne’s two clauses can be written
-3z ¢(z) & Va x(z).

(Here I am borrowing — from propositional logic, rather than writing out not-.)
The symbol 3 is the existential quantifier; the symbol V is the universal
quantifier. We have just seen that these correspond respectively to the logical
adjectives some and every, and —3 corresponds to no. We shall discuss by and by
what =V corresponds to.

Let U be some universal set as in § 1.2, and let ¢ be a predicate applying (truly
or falsely) to elements of U; let A be the resulting set {x € U : ¢(x)}. We can
form several equations and inequations whose members are @, A and U; with
quantifiers, we can describe them:

(%) Vz ¢(x) means A = U;
(1) Jz ¢(x) means A # &;
(1) =3z ¢(x) means A = Z;
(§) —Vz ¢(x) means A £ U.
The set denoted
{rel:—¢(x)}

consists of those elements of U that are not in A: it is the set
A°, (1.23)

called the complement of A (in &). Then we can form more equations,
inequations and propositions on the pattern of those above:
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) Vx —¢p(x) means A° =U;

) Jx —¢(x) means A° # &;

) =3z —¢(x) means A° = @;

) =Vz —¢(z) means A° # U.

But we have, for example,

A=U — A=g;
A+ @ «—= A#U.

Correspondingly, we also have

-z ¢(x) <= Va —¢(z); (1.24)
-V ¢(x) <= Tz ~¢(x). (1.25)

These equivalences are valuable tools for understanding propositions written
with quantifiers.

1.9.1 Example. In calculus, a function f is said to be continuous at a real
number a if, for every positive real number e, there is a positive real number §
such that, for every real number z, if |x —a| < ¢, then |f(z) — f(a)| < e. In
our new symbolism, we can write the definition as

Ve(e>0 = 35(0>0 & Ve (Jlr—a| <d = |f(x) — fa)| <¢))).
Some people abbreviate this proposition to
Ve>030 >0V (Jlz—a| <d = |f(x) — fla)| <e).

By the Rules (1.24) and (1.25) above, as well as (1.22) in § 1.8, the negation of
this proposition is

e>0Vi>03z (Jx—a|l <d & |f(z) — fla)|] = ¢).
For a specific example, let f be the function given by
.1 .
sin—, if z # 0;
T
0, if x = 0;

fz) =

and a = 0. We can show that f is not continuous at a as follows. The function
sin is periodic, with period 2m: that is,

Va sin(x + 27) = sinx.

Also, sin(7/2) = 1. Let ¢ = 1/2. Say ¢ > 0. There is some integer n greater
than 1/276. Then 2nm + 7/2 > 2nm > 1/6. Let z = 1/(2nm + 7/2). Then
|z —a|l =2 < §, but |f(z) — f(a)] = |f(x)] = sin(2nm + 7/2) = 1 > e. This
proves that f is not continuous at 0. °

The assertion that the Diophantine equation 22 — y? = (z + y)(z — y) is an
identity is the proposition

Vo Wy 22 —y? = (z+y)(z—vy),
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where x and y are understood to range over Z. To express this last qualification,
we can write
ZENzVy 2 —y? = (z +y)(x — ),

where the notation Z E o can be read as [the proposition] o is true in Z; here Z
is the context in which o is true (see § 1.1). The symbol F can be called the
semantic turnstile: semantic, because it concerns the meaning of propositions
(rather than the form), and turnstile, because that’s roughly what it looks like:
a gate that keeps you from entering, say, the Ankara subway without paying.
(The syntactic turnstile - will be introduced in § 2.7.)

Look again at the equations
A=U, A#2, A=2, A#U.

These can be verbalized respectively as
() everything is in A,
(1)
(1) nothing is in A,
(8)

The first three of these clauses are obtained from the clause thing is in A by
adding, from Table 1.2, a universal, an existential and a negative logical adjec-
tive. The last clause needs the addition of not every; alternatively, the clause
could be written as something is not in A. Apparently, in English, there is not a
one-word logical adjective with the meaning of not every and some...not. Why
is there not such an adjective? This is a question for linguistics.

something is in A,

not everything is in A.

Some people might write the last clause on the list as Everything is not in A. For
example, there is a saying:

All that glitters is not gold.

It is pretty clear that what is meant is that some things that glitter are not
gold: some shiny attractive things are not worth much. But the saying looks as
if it could be written as All that glitters fails to be gold, which does not have the
intended meaning, since gold itself glitters. To avoid possible misunderstanding,
it seems better to write

Not all that glitters is gold.
Turkish avoids the ambiguities possible from a misplaced not. In the Antalya
autogare, I once bought a bag of bananas with the brand name Asal. The bag
displayed the slogan

Her muz Asal muz degildir.
This should be translated as Not every banana is a Prime banana. According to
our understanding, the sentence Every banana is not a Prime banana would be

rendered in Turkish as

Hig¢ bir muz Asal muz degildir.
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Should we have symbols for the other adjectives in Table 1.2, besides no, some
and all? Probably not. The sentence Neither x is in A means A = &, provided
that x ranges over a universe with just two elements (and A is a subset of this
universe). The distinction between a pair and a multitude is perhaps important
in a life where many things come in pairs (like married couples, teams of oxen,
and eyeballs); but we need not make the distinction logically, with fundamental
symbols, if we are just trying to do mathematics.

The word either is ambiguous: If I tell you that you may have either piece of
cake, does this mean you can have both? Maybe, maybe not. Likewise, a/an
and any are ambiguous. If you say A dog has three legs, you probably mean
the a existentially: there is a dog that has three legs. But if you say A dog has
four legs, probably you are describing dogs in general: every dog has four legs.
The sentence Anybody can come could be a general invitation to everybody, or
it could express a worry over the possibility that somebody will come.

Still, the word any seems useful in ordinary life. Again, Donne writes:
Any man’s death diminishes me.

Could he write, instead, Every man's death diminishes me? In a mathematical
context, the every is preferable; but every man’s death suggests the image of
all people dying at once; any man’s death takes the deaths one by one. It’s a
distinction that matters to a poet.

Exercises

(1) Write a sentence equivalent to Vz Jy ¢(x, y) that does not use 3.

(2) Discuss the logical adjectives of Turkish (or some other language besides
English).
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Propositional logic

2.0 Truth-tables

We have defined propositional formulas in § 1.7. For every closed propositional
formula F', there is an element

~

F
of B that can be found in the following way. First note that F' meets one of the
following conditions:
(¥) F is a constant from B (that is, 0 or 1), or
() F is =G for some closed formula G, or

(1) Fis (G * H) for some closed formulas G and H, where * is one of the
connectives A, V, —, «» and <.

Then we can find F by the following recursive procedure:
() If F is in B, then F is F itself;
(1) if F is =G, then F is the value of =G as determined by the table in § 1.7;

(1) if Fis (G * H), then F is the value of G  H as determined by the tables
in § 1.7.

In the terminology introduced at the end of § 1.7, F' is a name for F. Tt is
proved in the next next section below that F' is uniquely determined by the
procedure for finding it; we can then call F' the (truth)-value of F.

If a formula is not closed, then it doesn’t have a value in B. But any formula
can be made into a closed formula by substitution of values for its variables.

If the variables in a propositional formula F' belong to the set { Py, Py, ..., Pn—1},
then we can indicate this by writing F as F(Py, ..., P,_1); we may also call F
an n-ary formula.! A 3-ary formula would be ternary; 2-ary, binary; 1-ary,
singulary.? A 0-ary or nullary formula would have no variables: it would be

IHere F is a syntactical variable as discussed in Chapter 1, n. 45.

2The word unary is often used instead of singulary. Following Quine, Church [7, § 02,
p- 12, n. 29] suggests singulary as a more etymologically correct word than unary. Indeed,
whereas the first five Latin cardinal numbers are UN-, DU-, TRI-, QUATTUOR, QUINQUE, the

41
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closed in the sense of § 1.7. An n-ary formula is also (n + 1)-ary, (n + 2)-ary,
and so on.

2.0.1 Examples.

(1) Suppose F is PO A P1 — PO\/P1 (that iS, ((PO A Pl) — (Po\/Pl)),
according to the convention established in § 1.7). Then F' is binary and
can be described as

F(Py, P1).

It can also be considered as the ternary formula F'(Py, Py, P2), but not as
the singulary F(Fp).

(2) By the convention established here, the formula Py V Py is 22-ary and
175-ary; it is not 21-ary, much less binary. °

If F is an (n + 1)-ary formula, then it can be converted to an n-ary formula
in two different ways by substitution. Indeed, if e is one of the two elements
of B, then each occurrence of the variable P, in F' can be replaced with e; all
the remaining variables of F' belong to {Fp,..., P,—1}, so F has become n-ary.
In turn, other elements of B can be substituted for other variables in F', so as
to obtain, in the end, a closed formula.

In general, if F' is an n-ary formula, and (eg,...,e,—1) is a list of n elements
of B, then there is a closed formula

F(eo» B €n71),
which is the result of subtituting e; for Py in F' for each k less than n. The list
(egy...,en—1) can be called an n-tuple from B and can be abbreviated as

e or €.

(The definition of n-tuple will be refined in § 3.2.) Here the tuple € is an n-ary
truth-assignment (or a truth-assignment for F'). The truth-value of F(€)
can be denoted® R

F(e).
2.0.2 Example. Again suppose F'is Py A P; — Py V P;; consider this as
F(Py, P1). If € = (0,1), then F(€') is 0 A 1 — 0V 1; the value of this is the
value of 0 — 1, which is 1. That is, ﬁ(O7 1)=1 .

A truth-table is a list of the values attained by a propositional formula under
its possible truth-assignments. If a formula is n-ary, then its truth-table has
n 4+ 1 columns: a column for each variable, and one column for the formula
itself; also, aside from the headings of the columns, the table must have 2™
rows.

first five Latin distributive numbers—corresponding to the Turkish birer, ikiser, liger, dorder,
beser [30]—are SINGUL-, BIN-, TERN-, QUATERN-, QUIN-. It is the latter sequence that gives us
binary and ternary—also quaternary and quinary, if these are desired. So singulary appears to
be a better word than unary. In fact, singulary does not appear in the original Ozford English
Dictionary [28]. The word unary does appear in this dictionary, but it is considered obsolete:
only one use of the word, from 1576, was discovered in English literature. There, unary meant
unit, although the word unit was not actually invented until 1570, when it was introduced by
[John] Dee to correspond to the Greek povad-.
3The notation is from [5, Definition 2.1.8, p. 41].
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2.0.3 Example. Truth-tables defining certain connectives were given in § 1.7.
[ )

In general, each row of the truth-table for F(Fy,..., P,—1) will look like the
second row of the following:

R |

P | F
€0 ‘ ‘ €n—1 H F(eo,...,en,l)
To be able to compute the truth-table of a formula, we need to know the truth-

tables of the proper sub-formulas of the given formula. The sub-formulas of
a formula are determined by the following conditions:

(¥) F is a sub-formula of itself;
(t) F is a sub-formula of —F};

(1) F and G are sub-formulas of (F * G) (where % is A, V, —, < or ;
remember that, by the convention established in § 1.7, F' and G here are
not just strings, but formulas);

(§) every sub-formula of a sub-formula of F' is a sub-formula of F.
A sub-formula of F' is a proper sub-formula if it is not F' itself.
The sub-formulas of a given formula can be arranged in a tree. For example,
the sub-formulas of PV =P are the nodes of the following tree:
PV -P|
P| —P|
P

The sub-formulas of PV =P are thus P, PV =P itself, =P, and P again. I
write P twice because it appears twice as a sub-formula of PV —P. However,
we can give the truth-table for P V =P (along with an extra column for our
computations) thus:

P|-P|PV-P
0] 1 1
1|0

Alternatively, we can include a column for each sub-formula (even if it is the
same as another sub-formula):

P|PV-P|-P|P
0 1 1[0
1 1 0 |1

Why would we do this? The sub-formulas of any formula are in one-to-one
correspondence with the variables and the connectives in the formula. Indeed,
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compare the previous tree with the following:

We have the following correspondence between sub-formulas and symbols:

P «» P
PVaP ow V
—|P “ny -
P «» P

Using this correspondence, we can rewrite the last truth-table thus:

P |
0
1

| P
0
1

I propose to call this the full truth-table of P V —P; from it we can extract
the proper truth-table of PV =P by taking only one column headed by P,
along and the column headed by V (which corresponds to the whole formula):

P | PV-P
0 1
1 1

For another example, let F' be the formula P — =@V R. The sub-formulas of F'
compose the tree

From this we can get the full truth-table as described below. The table itself is:
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— OO~ OOl
—_ 0 0o~ ~= OOl
— =m0 O <<
e el el e ===l ey

=R

SO R OORF ]

We can construct this in stages, working our way up the trees drawn above,
starting with the variables:

P|—-|-1Q|V|R Pl—-|-]Q|VIR
0 0 0 0 110 0
1 0 0 1 110 0
0 1 0 0 0|1 0
1 1 0, 1 0|1 0,
0 0 1 0 110 1
1 0 1 1 110 1
0 1 1 0 011 1
1 1 1 1 0|1 1
then

P|—|-]1Q|VI|R

0 1101110

1 1101110

0 0| 1]0/|0

1 0| 1]0/|0

0 11011

1 11011

0 0|1 ]1]1

1 0|1 ]1]1

and finally the complete table given earlier. The column giving the values of F’
itself is the last to be filled in: in this case, the second column, under —. The
proper truth-table for F' is then

— o R OR OO
—_ 0 o~ oo
H R R RO OOOoOX
== e O R =
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Exercises

(1) Write full truth-tables and proper truth-tables for the formulas:

d) (P—=QVR)— (=PVQ);
(e) (P—=QV-R)A(Q—PAR)— (P— R);
(f) ~(=R— P — =(R — Q).

How many columns has each table?
(2) What does the truth-table for a constant formula look like?

(3) For each n in N, describe the n-ary formulas whose full truth-tables have
fewer columns than their proper truth-tables.

2.1 Unique readability

We have to justify our definition of F for closed formulas F: that is, we have to
confirm that only one value can be computed for each F'.

We have called a propositional formula n-ary if its variables are among the first n
variables on the list (Py, P1, Ps, ... ). The notion of arity applies to connectives
themselves:

(*) A, V, —, < and + are binary, because they are used to join two formulas;
(t) — is singulary;
(1) the constants 0 and 1 are nullary.

Although, by our convention, an n-ary formula is also (n + 1)-ary, a connective
has a unique arity: since — is singulary, it is not binary.

The formulas joined by a connective in a formula are the arguments of the
connective. In the formula
P—--QAN1

(which stands for (P — (=Q A 1))), the arguments of — are P and =Q A 1 (in
that order); the arguments of A are @ and 1; the argument of — is Q; and 1
has no argument.

By definition, each propositional formula F' meets one of the following condi-
tions:

() F is a variable;

()
(1) Fis =G for some G}
(8)

§) F'is (G x H) for some G and H and some binary connective .

F' is a nullary connective;
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It is obvious that F' can meet only one of these conditions. It is not obvious
that a formula (G * H) cannot also be written (G’ «’ H'), where G’ is a different
formula from G.

Let G be (P A Q), and let H be R. Then (G V H) can be written as (S A T,
where S is (P, and T is Q) V R. But S is not a formula (why not?); neither is
T.

How do we know that, if G and H are more complicated, (G * H) still cannot
be analyzed as a different application of a binary connective? How do we know
that (G % H) is uniquely readable? Our definition of F(€) requires unique
readability. To prove unique readability; we can use the notion of an initial
segment of a formula.

Every formula is a string of symbols, written left to right. If we cut the string,
then it is divided into two segments: an initial and a final segment. We allow
the cut to come at an end: that is, we allow one of the two segments to be
empty, so that the other segment is the whole string:

2.1.1 Example. The initial segments of (PV—P) are (PV—P) itself, (PV —P,
(PV—, (PV, (P, (, and the empty string. .

An initial segment of F' that is not F itself is a proper initial segment of F'.

2.1.2 Lemma.

() Ewery propositional formula has just as many left parentheses as right
parentheses.

(1) If F is a variable, a constant, or a negation, then every initial segment
of F' has at least as many left parentheses as right parentheses.

(1) If F is a propositional formula that is not a variable, a constant, or a
negation, then every non-empty proper initial segment of F has more left
parentheses than right parentheses.

Proof. To prove the first claim, follow the pattern of Proposition 1.2.

To prove the second and third claims, let A be the set of formulas F' that do
satisfy those claims. Then, trivially, A contains all variables and constants. If
A contains I, then F' has at least as many left as right parentheses, hence so
does —F', which means —F' is in A. Finally, suppose A contains F' and G, and
* is a binary connective. Every non-empty proper initial segment of (F * G) is
either (F % .S for some initial segment S of G, or (T for some initial segment T'
of F. But then S and T must have at least as many left as right parentheses,
since F' and G are in A; so (F %S and (T have more left than right parentheses.
Therefore (F'+G) is in A. By the inductive definition of propositional formulas,
A contains all of them. O

2.1.3 Lemma. No proper initial segment of a propositional formula is a propo-
sitional formula.

Proof. Let A comprise all formulas F' such that no proper initial segment of F’
is a formula. Then A contains all variables and constants. Suppose A contains
F, and S is an initial segment of =F that is a formula. Then S is =T for some
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initial segment of F' that is also a formula; so T is F'; hence S is =F. Therefore
—F is in A.

Finally, suppose F' and G are in A, and * is a binary connective. Every proper
initial segment of (F'*G) is either empty or has more left than right parentheses,
by Lemma 2.1.2, so it is not a formula. Thus (F * G) is in A. By definition of
propositional formulas, A contains all of them. O

An alternative proof of this lemma is by the method of infinite descent: that
is, it relies on something like Lemma 1.4.3. Suppose some proper initial segment
of a formula is also a formula. Then the original formula is either =F or (FxG).
If it is =F', then its proper initial segment is —=F’, where F’ is a formula that
is a proper initial segment of F. If the original formula is (F * G), then its
proper initial segment must have the form (F’ %’ G'), and then there are two
possibilities:

() one of F and F’ is a proper initial segment of the other, or
(t) F and F' are the same formula, and G’ is a proper initial segment of G.

Thus, for every formula with a proper initial segment that is a formula, there is a
shorter formula with the same property. In this way, we get an infinite sequence
of formulas, each one strictly shorter then the preceding, which is absurd.

2.1.4 Theorem (Unique Readability). If (F x G) and (F' ' G") are the same
propositional formula, then F and F' are the same (hence * is ', and G is G').

Proof. If (F xG) and (F' ' G') are the same formula, then one of F' and F’ is
an initial segment of the other, so they are the same by Lemma 2.1.3. O

Now we know that F' (€) is well defined, so truth-tables are uniquely determined.

It may seem as if parentheses are required to ensure unique readability. We
do have a convention that allows us to dispense with some parentheses: we
can write P — Q — R for (P — (Q — R)). But we can’t dispense with the
parentheses in (P — @) — R, unless we come up with a completely new system
of notation.

Polish notation

When we move into a second dimension and write formulas as trees, then

(¥) P — @Q — R becomes —
—]

P Q R
(f) (P — @) — R becomes =
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The arrangement of the branches takes the place of parentheses. Now con-
vert the trees back into strings, but write the symbols in the following orders,
respectively:

o N

The resulting strings are
—P—QR, ——PQR.

These are formulas written in Lukasiewicz or Polish notation.*

A signature is a set of connectives. Our definition of propositional formulas in
§ 1.7 is a definition of the formulas of the signature {0,1,—,A,V,—, <, «} in
infix notation. Infix notation makes sense only when the connectives in use
are 0-, 1- or 2-ary. Of a signature £ containing connectives of possibly higher
arities, the formulas in Polish notation can be defined as follows:

() All variables are formulas of £ in Polish notation;

(t) if n € N, and * is an n-ary connective in £, and if Fy, Fy, ..., F,,_1 are
formulas of £ in Polish notation, then

* FOF1 .o -Fn—l

is a formula of £ in Polish notation.

(The latter condition includes the case n = 0; in this case, the list (Fy, ..., Fr—1)
is empty, so the nullary connective by itself is a formula.) Thus, in Polish
notation, every connective is followed by the list of its arguments. In reverse
Polish notation (or RPN), the connective comes after its arguments. The
corresponding RPN for arithmetic can be convenient for electronic calculators,
and it bears some resemblance to Turkish word-order. Compare:

One plus two is three.
infix notation: 1 + 2 = 3
Bir iki  daha u¢c  -tir.
RPN: 1 2 + 3 =

Exercises

(1) For each symbol in the formula (P — QV-R) A (1 — P A R) — (0 — R),
give the list of arguments, if it exists. Write the formula in Polish notation.

(2) Prove that formulas in Polish notation have unique readability. (You can
use infinite descent; but can you avoid using this technique?)

(3) Letting V be the ternary operation on B that converts a triple (x,y, z) to
p((z+1)(y+ 1)(z + 1)), construct a truth-table for VPQR.

4Church [7, p. 38, n. 91] calls it Lukasiewicz notation, after its inventor—who was Polish;
the common term today seems to be Polish notation.
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2.2 Truth-equivalence

Recall the distinction, stated in § 1.3, between terms and polynomials. Suppose
F and G are two n-ary Boolean terms, that is, propositional formulas. They
represent the same Boolean polynomial if

F(e) =G(e)
for all truth-assignments €. In this case, as suggested in § 1.7, we shall write®

F~G;

and we shall say that F' and G are truth-equivalent (or just equivalent).

Here we have a clear test for equivalence: Two formulas are equivalent if and
only if they have the same proper truth-table; more precisely, the formulas must
have the same truth-table when the formulas are treated as being n-ary for the
same n. Let us call this test for equivalence the truth-table method.

2.2.1 Example. Are the formulas P and (Q V —Q) — P equivalent? Their full
truth-tables are

) |

and

Q
0
0
1
1

O O~ ]
HOHOl
— o~ ol

As a binary formula, each formula has the same proper truth-table

so the formulas are equivalent. °

The truth-table method is a method of proving that two formulas are equivalent.
The method is highly specific: For example, it can’t obviously® be used to prove
the arithmetic identities mentioned in § 1.3, or to prove trigonometric identities
like

tan? x + 1 = sec? z.
To prove this identity, we can write a chain of recognizable identities:

sin? 2 sinfx  cos’x  sin’z 4 cos’x 1 9

tan’z +1 = s +1= 5+ 5= = 5 = 5 = sec” x.
cos? x Ccos’x  Ccos’x Ccos? x cos? x

5The symbol ~ is a swung dash or tilde.

6 A one-variable polynomial of degree n has at most n zeros; so if f(z) is a polynomial of
degree n at most, and 0 = f(0) = f(1) = --- = f(n), then Vz f(x) = 0. This method doesn’t
work for polynomials in more than one variable.
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This proof is an example of the method of simplification. This method can
also be used for propositional formulas. In this context, we shall develop the
theoretical background of simplification in the next section; the method itself
is developed in § 2.6. A proof by simplification, suitably expressed, will be an
example of a formal proof.

Meanwhile, the problem of checking for equivalence can be formulated in other
ways. If F' ~ 1, then we write
EF (2.1)

and we say that F is a tautology.” (The semantic turnstile = was introduced in
§ 1.9. To be consistent with the notation in that earlier section, we might write
Line (2.1) as B F F’; but the variables in propositional formulas will always range
over B.) If F' ~ 0, we call F' a contradiction. We say F' is satisfiable if it is
not a contradiction. If both F’ and —F are satisfiable, then F' is a contingency.
Hence, in the truth-table for F', if the column for F' itself contains:

() only 1s, then F is a tautology;

(1) only Os, then F' is a contradiction;

(1) at least one 1, then F is satisfiable;

(§) at least one 1, and at least one 0, then F' is a contingency.
Also, the following statements mean the same thing:

(x) F ~G;

(1) FF < G;

() ~(F < G) is not satisfiable.

Thus, in effect, a test for equivalence is a test for tautology is a test for satisfi-
ability.

Exercises

(1) Test for the equivalence of the following pairs of formulas by the truth-
table method:
(a) Pand Q — P;
(b) Pand Q — (P A Q);
(¢c) P (Q@—R)and P—-Q — (P — R).

(2) Give examples of tautologies, contradictions, and contingencies.

(3) Establish the following equivalences by truth-tables (they will constitute
Lemma 2.6.1 below):

P—=Q~=PVQ;

PoQ~(P=Q) N (Q—P)

PeQn~ (P < Q)
—|—\PNP;

"From the Greek to a0to, meaning the same. Originally a tautology was a redundant
expression, such as cease and desist.
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=(PVQ)~-PA-Q; (PAQ)~—PV=Q;
PAQ~QAP; PVQ~QVP;
(PANQ)AR~PAQAR; (PVQ)VR~PVQVR;

PAQVR) ~(PAQ)V(PAR);, PV(QAR)~(PVQ)A(PVR);

PAP~P; PA—-P~0; PV P~ P, PV-P~1;
PA1l~P; P AO~O; PV0~P; PV1~1;

P~ (PAQ)V(PA=Q); P~ (PVQ)A(PV-Q).

(4) Establish the following equivalences:

(
(f) P«» P ~0.

(5) Is there a formula F such that = (F' — (P < Q)) A (PV (QV F))?

2.3 Substitution and replacement

If F' is a formula for which (e, . . ., e,—1) is a truth-assignment, then the constant
formula F'(eq,...,e,—1) is obtained by substitution. In this substitution, it is
not essential that each e; be in the set B, that is, {0, 1}; if (Go,...,Gn-1) is a
list of n formulas, then from F' we can obtain the formula

F(Go,...,Gn_1)

by substitution of G; for each instance of P; in F', for each j less than n. Note
that, if we are using the usual infix notation (see § 2.1), but have removed
parentheses as allowed by our conventions, then the substitutions must be done
with parentheses as necessary to ensure that each substituted formula becomes
a sub-formula of the new formula.

2.3.1 Example. Suppose F is Py A (Py — Pp), and Gy is Py — Py, and G is
P1 — (PO \ PQ) Then F(Go, Gl) is

(Po—>P1)/\((P1—>(P0\/P2))—>(P0—>P1)) [

Substitution is associative in that, if we substitute some formulas G; into F,
and then substitute some formulas H; into the result, we get the same formula
as if we substitute the H; first into the G;, and then the results into F'. The
formal statement is the following:
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2.3.2 Lemma (Associativity). Suppose F' is an n-ary formula, and
(Go,...,Gpn-1)

is a list of n formulas, each l-ary. Let H be the formula F(Go,...,Gn-1). Then
H is £-ary. Suppose (Ko,...,K¢_1) is a list of £ formulas. Then the formula

H(Ky,...,Ki—1)
is the formula
F(Go(Ko,...,Ki—1)y...,Gpn_1(Ko,..., Ki—1)).

Finally, suppose € 1is a truth-assignment for the G;. Then € 1is a truth-assign-
ment for H. If also

Gi(e)=f;
for each j in {0,...,n—1}, then (fo,..., fn-1) is a truth-assignment f for F,
and

~ ~ =

H(e) = F(f).

Proof. 1 claim that the proposition is obvious,® in the sense that no written
proof will make the truth of the proposition clearer than it already is to the

reader who has understood the proposition. O
Is a truth-assignment for F(Go,...,Gr—1) also a truth-assignment for the G;?
It is, if all of the variables Py, ..., P,_1 actually appear in F'; otherwise it may
not be:

2.3.3 Example. Suppose F'is just Py, considered as a binary formula. Let G;
be P; when i € {0,1}. Then F(Go,G1) is Py. Now, (0) is a truth-assignment
for the formula Py; but (0) is not long enough to be a truth-assignment for G.
[ ]

2.3.4 Theorem (Substitution). If
F(Py,...,Pn_1) ~G(Po,...,Py_1),
and (Hy,...,Hp—1) is a list of n formulas, then

F(Hy,...,Hy 1) ~ G(Hy,..., Hy ).

Proof. Since F' ~ (G, we have
F(@)=G(e) (2.2)

for all truth-assignments € for F and G. Let F’ be F(Hy,...,H,_1), and let
G’ be G(Hy,...,H,_1). Suppose f is a truth-assignment for the H;, and let
Hj(f) =e;. Then

FI(f)=F(@) [by Lemma 2.3.2]
=G(@) [by Equation (2.2)]
= é\’(f ) [by Lemma 2.3.2].

8However, Church [7, § 15, p. 97] proves a version of this lemma by induction.
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Therefore F’' ~ G'. This completes the proof.” O

2.3.5 Corollary. A tautology remains a tautology when arbitrary formulas are
substituted for the variables.

Proof. Exercise. O
2.3.6 Example. Since PV =P is a tautology, so is (P - Q)V (P — Q). e

In ordinary language, substitution and replacement are nearly synonyms, al-
though there is a distinction. From the expression abc, we get adc in a way that
can be described in two ways:

() by replacing b with d, or
() by substituting d for b.

When doing logic, we shall make another important distinction. If F' is a sub-
formula of G, then we may replace F' with another formula F’. Here, to replace
F is to replace a particular occurrence of F' (since possibly F' appears more than
once as a sub-formula of G).

2.3.7 Example. In PV —P, replacing the second occurrence of P with @ yields
PvVv-Q. °

2.3.8 Theorem (Replacement). Suppose F' is a sub-formula of G, and
F~F.

Let G’ be the result of replacing F with F' in G. Then
G~G.

Proof. Say G is n-ary. Let H(P,,...,P,) be the result of replacing F' with P,
in G. Then G itself is the formula
H(PO7"'7Pn—1>F)7

and G’ is H(P,,...,P,_1,F’). The remainder of the proof!® is an exercise
involving Lemma 2.3.2. U

2.3.9 Corollary. A tautology remains a tautology when a sub-formula is re-
placed with an equivalent sub-formula.

Proof. Exercise. O

2.3.10 Example. Since F (P — Q) V =(P — Q) by Example 2.3.6, and
~(P—Q)~PA-Q,

we have E (P — Q) V (P A =Q). o

9This is also Burris’s proof [5, § 2.3, pp. 46f.], although Burris’s use of the fact given in
Lemma 2.3.2 is not entirely explicit.

10Burris [5, § 2.4, pp. 48fF.] gives an elaborate proof using induction; but T think the work
is unnecessary, once one has Lemma 2.3.2. Church’s proof [7, § 15, p. 101] leaves details to
the reader, but also involves induction. Moreover, Church’s proof refers to the principle of
unique readability, which Burris seems not to discuss.
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The Substitution and Replacement Theorems work together in the following
way. From known equivalences, Substitution lets us derive many more. By
Replacement, we can use these equivalences to write given formulas in different
(but equivalent) form.

This, in short, is the method of simplification. Our first example of the proce-
dure will be in § 2.5. Meanwhile, in § 2.4, we shall describe some formulas such
that every formula is equivalent to one of them. These equivalences can be es-
tablished by the procedure just described, once we have the stock of equivalences
presented in § 2.6.

Exercises
(1) If F(P)is P — P — P, what is F(F(P))?
(2) Prove Corollary 2.3.5.
(3) Prove Corollary 2.3.9.

2.4 Normal forms

If we have the truth-table of a formula, then we can read off an equivalent
formula in so-called disjunctive normal form. The general procedure is described
immediately, then illustrated by Example 2.4.1.

Suppose we have the truth-table for a formula F(Fy,..., P,_1). Say there are
m rows in which the entry for F itself is 1. Then 0 < m < 2". If we ignore
the other rows (namely, those rows in which the entry for F' is 0), then what
remains has the form

Py P oo | Pt || F
0 0 0
€0 €1 €n—1 1
1 1 1
€0 €1 €n—1 1
m—1 m—1 m—1
€ ey el ep 1

where each eg» is in B. (So, i is the row-number of eé in the truth-table, and j
is the column-number). If 0 < ¢ < m and 0 < j < n, then let us define P]? to be

the formula _
P, ifej =0;
If 0 < i < m, let G* be the conjunction
Pin-. AP,

The formulas G* can be called the normal disjunctive constituents of F.
Their disjunction,
G'VGlv...vGagm 1,
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is called a disjunctive normal form for F'. (The other disjunctive normal
forms for F' are obtained by re-ordering the constituents G*.) It is Theorem 2.4.3
below that every formula is equivalent to its disjunctive normal forms.

Note here that we speak of conjunctions and disjunctions of arbitrarily many
formulas. The disjunction of the formulas Ho,..., H,_1 is

HoVH V-V H,_y,

which can also be written

\/ Hi. (2.3)
i<r
If » = 1, then this formula is just Hy. If » = 0, then, by convention,'! the

formula (2.3) is understood to be 0. In particular, the disjunctive normal form
of a contradiction is 0. The conjunction

/\ Hi
i<r
is defined analogously, and is 1 if » = 0.

2.4.1 Example. Here is the full truth-table of a particular disjunction:

Pl =|Q|V|@®R|A|-|P
00 [1]0]0]O0]O0O]1]oO
11 /lolof1lo0o]o]o]|1
ojlo|1|1]olo|o|1]o0
ol 11| 1]ololo|o]|1
ool 1]o 1|1 ]1]1]o0
1|1 ]oflof1]1]o0]0]1
ol o 1|11 ]1]1]o
ol 11| 1]o]1]ofo]1

Extract the rows in which the column headed V features 1, and take only one
each of the columns for P, @ and R:

P

The disjunctive normal form for —=(P — Q) V (R A —P) is therefore
(PA-QA-R)V(~-PA-QARVPA-QARV(-PAQAR). o

An n-ary formula is in disjunctive normal form if the formula is precisely

V- AF

<mj<n

1 The convention is reasonable: Instead of (2.3), we could write \/{Ho,..., Hy—_1}; infor-
mally, this says that at least one of the formulas H; is true. If r = 0, then there are no
formulas H;, and in particular there is no such true formula, so \/{Ho, ..., Hr—1} is false.
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where each sub-formula P; is either P; or —P;, but all of the constituents

N j<n Pj? are distinct. Note especially that each constituent must contain the
same variables.

2.4.2 Example. The formula =(P — Q) V (R A —P) is equivalent to
(PA=Q)V(-PAN=-QAR)V(-PAQAR),

but this is not a disjunctive normal form, since one of the constituents does not
contain R. °

2.4.3 Theorem. FEwvery formula is equivalent to its disjunctive normal forms.

Proof. Let us use the notation of the definition above. Write H for \/,_,, G*.
Then we have to show F' ~ H. For the truth-assignment (e, ...,ef ), let us
write €. For arbitrary truth-assignments f for the G?, we have
—~ 1, if f =é1;
GZ(f ) = e i
0, if f #e".
Then .
~ o 1, iff e{e?,....em 1}
H(f ) = c {_,0 —'m—l}
0, iff ¢{e’...,e }.
Hence H and F' have the same truth-table. O

There is also a conjunctive normal form; it looks like the disjunctive form,
except that the A and the V have switched roles. You read it off from the truth-
table again, but you look for 0 (not 1) in the column for the formula, and P/
resolves to P; if there is 0 in the corresponding column and row.

In particular, if a disjunctive form for an n-ary formula has m constituents, then
a conjunctive form for the same formula will have 2 —m constituents. Whether
it is easier to work with the disjunctive or the conjunctive normal form depends
on how big m is.

2.4.4 Example. To obtain the conjunctive normal form of the formula in Ex-
ample 2.4.1, from its truth-table we extract

from which we read off
(PVQVRYA(PV-QVR)AN(-PV-QVR)AN(=PV-QV-R). o

2.4.5 Theorem. FEvery formula is equivalent to its conjunctive normal form.

Proof. Exercise. O
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If F is a tautology in the variables Py,..., P,_1, then its disjunctive normal
form will be the disjunction of the 2™ possible constituents

PIA...AP!

n—1-

Suppose in general that we have a method of finding disjunctive normal forms
that does not rely on truth-tables. (In § 2.6 we shall describe such a method.)
Applying this method to a formula in n variables, if we arrive at a disjunction of
2™ distinct constituents, then the original formula must have been a tautology.

Exercises

(1) What is the disjunctive normal form for a tautology in no variables?
(2) Find the disjunctive and conjunctive normal forms for:

(a) P—(Q — R);
(b) (=P = Q) A (-Q — P) — (=P V =Q).

(3) Show that for any formula F(Py, Py, P, P3), either the disjunctive or the
conjunctive normal form has no more than 8 constituents.

(4) Show that every satisfiable n-ary formula is equivalent to a formula
F0<—r‘—>F1 <—z‘—>---<—"—>f‘-‘,ﬂ,17

where all of the F; are distinct, and, for each ¢ in {0,1,...,m — 1}, there
is a subset I of {0,1,...,n — 1} such that F; is the conjunction /\jEI P;.

2.5 Adequacy

In § 2.1, a set of connectives is called a signature. I said in § 1.8 that propo-
sitional logic was the study of propositional formulas. I want now to say more
precisely that a propositional logic is (the study of) the set of propositional
formulas of a particular signature. Then we have been studying the proposi-
tional logic of the signature

{/\7 \/, T <—/->,O, 1}

However, we have just seen that every formula with a truth-table is equivalent to
a formula with the smaller signature {A,V,—}. (If the formula is a contingency,
then just take a conjunctive or disjunctive normal form. For a contradiction,
take Py A —Pp; for a tautology, Py V —Fy.)

Another way to say this is that every Boolean polynomial is represented by a for-
mula in {A,V,—}. A technical term for this feature of a signature is adequacy:
A signature £ is adequate if every formula in every signature is equivalent to
a formula in L.

2.5.1 Lemma. If L is an adequate signature, and L' is a signature that includes
L, then L' is adequate.
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Proof. Obvious. O

In short, if a signature is adequate, then so is any larger signature.

In fact, there are proper subsets of {A,V, -} that are adequate. The following
was proved by Emil Post in 1921.'2

2.5.2 Theorem. The signature {V,—} is adequate.

Proof. Since {A,—,V} is adequate, it is enough to show that any formula in
this signature is equivalent to a formula in {A,—}. Suppose F is in {A,—, V}.
Every instance of A in F' determines (as in § 2.1) a sub-formula of F' that is a
conjunction. Say this conjunction is G A H, where G and H are sub-formulas
of F. We have an equivalence

PAQ~~(=PV-Q)

(as can be checked by truth-tables); therefore, by the Substitution Theorem, we
have

G AH ~—(=GV—H).

By the Replacement Theorem, in F' we can replace G A H with ~(=G V —H).
In this way, we can remove all instances of A from F', obtaining a formula in
{V, -} that is equivalent to F. O

Similarly, we have:

2.5.3 Theorem. The signature {A,—} is adequate.

Proof. Exercise. O

2.5.4 Corollary. The signature {A\, <>, 1} is adequate.

Proof. The signature {A, —} is adequate, but the connective — can be expressed
in terms of < and 1, since

-P~1&» P

by § 2.2, Exercise 4a; so {A, =, 1} is adequate. O

The proofs of the last three numbered propositions are examples of a general
method for proving adequacy of a signature £: Take a signature £’ that is
known to be adequate, and show that every connective in £’ can be expressed
with the connectives of £. Note well the two ingredients of the argument:

(¥) L' is known to be adequate;

(1) the elements of £’ can be expressed in terms of L.

12Post’s method is different from ours; see [32, pp. 167 f.].
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It would be useless to observe in this context that the elements of £ can be
expressed in terms of £’. (Remember that this observation would be immediate
if £ C L’; then surely the adequacy of £’ says nothing about the adequacy of
L)

For another example, let A be the Schréder connective:!? this is defined so
that
PAQ~—-PA-Q.

So A is defined in terms of A and —. This fact by itself tells us nothing about
the adequacy of {A}; it has no relevance to the proof of the following:

2.5.5 Theorem. The signature {\} is adequate.

Proof. Tt is enough to write =P and P A @ using only A. We have =P ~ P A P,
and also

PAQ~(=P) A (-Q)
~ (P AP) L (Q Q).

Hence all formulas in the adequate signature {A, =} can be written in terms of
A. Thus {A} is adequate. O

Adequate n-ary connectives where n > 2 can also be found.

How might we show that a certain signature is nmot adequate? Note that the
signature {A,—} is adequate even though it contains no nullary connectives:
the two constant Boolean polynomials are represented in {A, =} by P A =P and
—(P A —P) respectively.

2.5.6 Theorem. The signature {A\, <} is not adequate.

Proof. We shall show that no formula in {A, <»} represents 1. Now, if
F(P07P17P21"'aPH)N 1a

then F(Py, Py, Po,...,Py) ~ 1 by the Substitution Theorem. Since {A,+«»}
contains no nullary connectives, it is enough to show that no singulary formula
represents 1.

In {A,«»}, we can represent 0 by P «» P. We also have

0A0~DO, 0 0~ 0,
OAP ~0, 0 P~ P,
PAO~O, P 0~ P,
PAP~P, P P~ 0.

By the Replacement Theorem, we can create no singulary formula in {A, =}
that is not equivalent to 0 or a variable. O

13 According to Burris [5, § 2.5.2, p. 53], Schroder showed in 1880 that the ‘standard
connectives’—say, the ones we have been using so far—can be expressed using this connective.
Post’s later result—our Theorem 2.5.2—then establishes the adequacy of { A}.
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Exercises

(1) Write down truth-tables for unknown formulas, and then find disjunctive
normal forms for those formulas.

Prove Theorem 2.5.3.

)

3) Prove that {—-, —} is adequate.
) Prove that — by itself is not adequate.
)

Prove the adequacy of the Sheffer stroke, the connective | such that
PlQ~—(PAQ)

(6) Find an adequate ternary (3-ary) connective. (See § 2.1, Exercise 3.)

2.6 Simplification

In proving Theorem 2.5.2, we used a known equivalence, and the Theorems of
Substitution and Replacement, to ‘simplify’ a formula in the sense of eliminating
instances of disjunction. In the same way, we can simplify any formula to dis-
junctive normal form. The procedure relies on the following lemma, which lists
some fundamental properties of the Boolean connectives. (The label definitions
here is not a literal account of how the connectives were defined in § 1.7.)

2.6.1 Lemma.
(x) definitions:

P—Q~-PVQ,
PoQ~(P—-Q)AN(Q—P),
P o Q~—(P Q)

(t) double negation:

(1) De Morgan’s Laws:

S(PVQ)~=PA=Q,  —~(PAQ)~=PV-Q;
(§) Commutativity:
PANQ~QANP, PVQ~QVP;
() Associativity:
(PAQ)AR~PA(QAR), (PVQ)VR~PV(QVR);
() Distributivity:

PA(QVR)~(PANQ)V(PAR), PV(QAR)~(PVQ)A(PVR);
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(xx) redundancies:

PAP~P, PA—P ~0, PAl~DP, PAO~DO,
PV P~ P, PV P ~1, PVO~P, PV1~1;

(t1) mew variables:
Pr(PAQV(PA-Q),  P~(PVQ)A(PY-Q).
Proof. This was § 2.2, Exercise 3. O

To reduce a formula to disjunctive normal form, using the equivalences in
Lemma 2.6.1, we can:

(0) eliminate instances of —, < and «»;

(1) eliminate multiple negations, and make sure that the only arguments of —
are variables;

(2) eliminate conjunctions of disjunctions;

(3) eliminate redundancies; now the formula is a disjunction of conjunctions
of variables and negated variables, so:

(4) add variables as necessary to obtain a disjunctive normal form.

2.6.2 Example. Suppose F' is the formula =(P — Q) V Q. The reduction of
F to disjunctive normal form can proceed as follows:

Fr~a(=-PVQ)VQ [
~(==PA-Q)VQ [de Morgan]
~(PAN-Q)VQ [double negation]
~(PA=Q)V(QAP)V(QA-P) [

(PA=Q)V(PAQ)V(-PAQ) [

def’n of —]

new variable]

~

commutativity] o

There may be more than one way to proceed:

2.6.3 Example. Let F be =(-P — Q) A (Q V —P). Then

F~—=(—-=PVQ)A(QV-P) def’n of —]
~=a(PVQ)A(QV-P) double neg.]
~ (=P A=Q)A(QV —P) De Morgan]
~ (=P A=Q)NQ)V ((=P A —-Q)A—P) dist.]

[
[
[
[
~(PAEQAQ))V (=P A (P A-Q)) [assoc.; comm.
[
[
[
[
[

~ (AP AO)V (P A=P)A-Q) red.; assoc.]
~ =PV (=P A—=Q) red.]
~(=PAQ)V (=P A-Q)V (=P A-Q) new var.]
~(=PAQ)V (=P A-Q) red.]

~ —=P. new var.]

Thus, as a binary formula, F' has the disjunctive normal form

(=P AQ)V (=P A =Q);
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but F is also equivalent to a singulary formula, =P, which is trivially in dis-
junctive normal form. An alternative simplification of F' to =P proceeds:

Faa(PVQ)A(QV-P)
~ (=P A Q) A (QV —P)
~=P A (=Q A (QV —P))
~ P A ((2Q A Q)V (~Q A —P))

[def’n of —; double neg.]

[

( [

( [

~ =P A0V (=Q A —P)) [red.]
( [

[

[

[

De Morgan]

~ =P A (—QV -P)

~(=PVQ)AN(—PV-Q)A(-QV-P) new var.]
~(=PVQ)A(-PV-Q) red.|
~ —P. new var. .

In the last example, the two simplifications implicitly established the two Ab-
sorption Laws:

PA(PVQ)~P, PVv(PAQ)~ P

If two formulas F' and G are equivalent, then we can use simplification to show
this:

(0) Simplify F to a disjunctive normal form F”.
(1) Simplify G to a disjunctive normal form G’.

(2) Note that F' ~ G’. (They should be the same formula, except possibly in
the order of the constituents.)

However, it may be easier to simplify directly from one formula to the other, or
to use conjunctive normal forms.

2.6.4 Example. The formulas P — @@ — R and Q — P — R are equivalent,
because

P—-Q—R~-PV(Q—R) [def'n of —]
~-PV-QVR [def'n of —]
~-QV-PVR [comm.]
~-=QV (P —R) [def'n of —]
~Q@—P—R. [def'n of —]

(Associativity was used silently.) The reduction of each formula to disjunctive
normal form would be tedious, since that normal form is

(~PA=-QAN-R)V(PAN=-QAN-R)V(-PANQA-R)V
VEPA-QAR)V(PA-QAR)V(-PAQAR)V(PAQAR);

but the conjunctive normal form is just the formula =PV —Q V R, found in the
original simplification. °
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Exercises

(1) Given a formula in normal form, how would you write down its truth-
table?

(2) Use simplification to prove the following equivalences:
a) (PAQ)VR~PAQ— R,

b) (P—Q)A(R—Q)A~Q—~(PVR)~1;

() P=(Q@—R)~P—Q—(P—R)

(d) (PVR) A (QV~R) ~ (P A =R)V (Q A R);

(e) (Po v P1) A (QoV Q1) ~ Vig Vjmo(Pi A Q).

(3) For (-P — Q) A (-Q — P) — (=P V =Q), find the disjunctive normal
form using simplification.

(
(

(4) Use simplification to verify the equivalences listed in § 2.2, Exercise 4.
(5) Use simplification to establish the following;:

(a) P Q~~(P Q)
(b) P Q ~ P s —Q.

2.7 Logical consequence and formal proofs

Simplification is a way to prove that two formulas have the same truth-table.
There is more that we might want to prove:

If F is an n-ary formula such that F(&) for all truth-assignments &, then as in
§ 2.2 we write

E F.
Suppose (Fy,...,Fy) is a list of m + 1 formulas, each n-ary, such that, for
all n-ary truth-assignments €, if F;(€) = 1 for each i in {0,...,m — 1}, then

F,,(€¢) = 1. Then we say that F,, is a logical consequence of {Fy, ..., F,,_1},

and we write
Fo, ey FnL—l ': Fm,

it ¥ ={Fp,...,Fn_1}, then we can also write

YEF.

Corresponding to Theorem 2.3.4, we have

2.7.1 Theorem (Substitution). If (Fy, ..., Fy) is a list of n-ary formulas such
that
Fy,...,F_1 FE Fpy,

and (Go,...,Gp—1) is a list of n formulas, then

Fo(Go,...,anl), ey mel(GQ,...,Gn,ﬁ ':Fm(GOM--,anl)-
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Proof. Write the F;(Gy,...,Gn-1) as H;. Say € is a truth-assignment for the G,
such that H;(€) = 1 when i < m. Let fi= G;(¢) when j < n. Then Fy(f) =1
when i < m, by the associativity of substitution (that is, Lemma 2.3.2). Hence
also H,,(€) = Fn(f) =1 (since F,, is a logical consequence of {Fy, ..., Fpn_1}),
so Hy,...,H,,_1 F H,,, which was to be proved.

The following basic means of establishing logical consequence should be com-
pared with Implication (1.21):

2.7.2 Lemma (Detachment). F, F — GE G.

Proof. 1t is enough to show Py, Py — P; F P;, by the preceding Substitution
Theorem. The truth-table

>—l»—l©>—l
)—lHOO:U

shows that (1,1) is the only truth-assignment where both Py and Py — P; are
true. Under this assignment, P; is true. O

Suppose F' is a formula, and ¥ is a set of formulas. A deduction or formal
proof of F' from ¥ is a finite non-empty list

Go,...,Gy
of formulas such that Gy is F, and for each k in {0,..., £}, one of the following
conditions is met:
(*) G is in 3; or
() Gy is a tautology; or
(1) thereis jin {0,...,k — 1} such that G; ~ Gy; or
(§) there are distinct ¢ and j in {0,...,k — 1} such that G, is G; — Gj.

If such a deduction exists, then we say that F' is deducible or formally prov-
able from X, and ¥ is a set of hypotheses (singular: hypothesis) from which
F' is deducible; we may then write

Y+ F.

If ¥ is a finite set {Gy,...,Gm—1}, then we can also write Go,...,Gnp-1 - F;
if ¥ is empty, we write
FF.

2.7.3 Example. F' A G F G, because the following is a deduction of G from
FAG:
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(0) FAG [hyp.]

(1) 1 [taut.]

(2) -Fv1 [red.]

(3) -FV-GVG [red]

(4) —-(FAG)VG [De Morgan]

(5) (FAG)— G [def’n of —]

(6) G [Detachment, lines 0 & 5]

Strictly, the deduction itself is just the list
FAG,1, -FV1, -FV-GVG, ~(FANG)VG, (FANG)—G, G
of formulas. In fact, there is a shorter deduction of F' from F' A G, namely
FANG, FANG— G, G.

However, recognizing this as a deduction requires, in part, recognizing that
F NG — G is a tautology. °

2.7.4 Theorem. For all formulas F and all finite sets 3 of formulas,
YFF < YFF
Proof. We shall prove

(F0?7Fm—1':Fm)ﬁ(':F0_>F1—>—>Fm)

W M

(F0a7Fm—1|_Fm)<:(l_F0—>F1—>—>Fm)

Suppose Fy,...,Fn_1 E F,. Then for every truth-assignment € for the Fj,
either F,,,(€) =1, or F;(€¢) = 0 for some ¢ in {0,...,m —1}. If F;(€) = 0 and
i <m,then F; —» F;11 — --- — Fp, istrue at €, and hencesois Fy — --- — Fy,.

For the same reason, if F\m(é’) =1, then Fy — --- — F,, is true at €. Hence
FFy— - — F,.
Suppose F Fy — -+ — F,,. Then, since it is a tautology, the formula Fy —

-+ — F,, is its own proof of itself. Hence - Fy — -+ — F,,.

Suppose - Fy — -+ — F,,,. Let Gy, ...,Gy be a deduction of Fy — -+ — F,,.
Then we have a deduction

(0) Go
(¢-1) Go
(f) FO—>"'—>Fm
(£+1) Fo [hyp.]
(+2) F —---— F, [Detachment]
(£+3) Fy [hyp.]
l+4) Fo—---—Fy [Detachment]

(+2m—2) Fn_1— Fpy [Detachment]
(0+2m—1) Fo1 [hyp.]
(£ +2m) F,, [Detachment]
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of F,, from {Fy,...,Fn_1}. Thus Fy,..., F_1 F Fp,.

Suppose finally Fy,...,Fn—1 F F,. We use the method of infinite descent.
Let Go,...,Gy_1, F,, be a deduction of F,, from {Fp,...,F,,—1}. Let & be a
truth-assignment such that ﬁi(é ) = 1 whenever ¢ < m. Suppose if possible that
ﬁm(é) = 0. Then F,, is not in {Fp,..., F,,—1}, nor is Fy, a tautology. Hence,
by the definition of a deduction, either F,, ~ G; for some i in {0,...,¢ — 1},
or there are ¢ and j in {0,...,£ — 1} such that G; is G; — F,,. In the first
case, G; is false at €’; in the second case, either G; or G is false at €. In either
case, (A?k(é') = 0 for some k in {0,...,¢—1}. But Gy,..., Gy is still a deduction
from {Fy,..., F,_1}, strictly shorter then the original one, but with the same
property (namely that its last formula is false at €). We can’t take shorter
deductions indefinitely. Hence ﬁm (¢) = 1. Therefore Fy, ..., Fp_1 F Fy,. O

Suppose Fy, ..., F,_1 E F,,. The proof of the last theorem shows how to write
down a deduction of F,, from {Fp,..., F,_1}. Indeed, let Gy be the formula
Fy — F; — -+ — F,,,. Then Gy must be a tautology, so the sequence

GOa F07 F1—>"'—>FM7 F17 F2_>"'_’Fm7 ce Fm

is a deduction from {Fy,..., F,,,—1}. The problem is that this sequence is not
obuviously a deduction. To make it so, we can apply simplification to G, getting
a chain

Go~Gp~--~Gy

of equivalences as in § 2.6, where Gy is a tautology in disjunctive or conjunctive
normal form (or follows from such a tautology by a substitution). Then the
sequence

G@) Gf*l? ) GOa FO; Fl_)"'_)Fma F17 FQ_)"'_)F’NH ) Fm (24)

will be a deduction, and recognizably so; we may call it a recognizable de-
duction. I'm not giving a precise definition of recognizable. It could be done,
but we might find the definition too restrictive. Informally then, recognizable
deduction is:

() a deduction;

(1) clearly a deduction to any reader that knows the rules of simplification
established in § 2.6.

Not every recognizable deduction need be as long as the Deduction (2.4); there
may be short-cuts:

2.7.5 Example. To show F'V G, —=F G, we can start with the simplification

F\/G—>—\F—>GN—\(F\/G)\/(ﬂF—>G)
~—(FVG)V(FVG)

ending in a tautology derived from =P V P by substitution. Then the sequence
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-(FVG)V(FVG), [taut.]
“(FVG)V(-F — G), [def'n of =]
FVvG—-F—(G, [def’n of —]

FVvG@, [hyp.]

-F — G, [Det.]

-F, [hyp.]

G [Det.]

is a recognizable deduction of G from F'V G and —F'. A shorter deduction, still
recognizable, is

FVG,  |hyp]
-F, [hyp.]
G. [Det.]
(Curiously, it’s the tail end of the first deduction.) .
Exercises
(1) Show that Fy, ..., Fy,—1 F G ifand only if A\, _,, Fr. FG.

(2) Using an exercise from § 2.6, write a recognizable deduction of =(P V R)
from P — @, R — Q, Q.

(3) Convert other simplifications from § 2.6 into recognizable deductions.

(4) Write recognizable deductions for the following:

)
)
(¢c) FFFVGand FF-GVF;
() F— G, -G+ —F;
(¢ F-G, G—-HFF — H;
(f) FVG, -G F F;
(¢) Fy — Go, F1 — Gy, Fo VFiIFGoV Gy
(W) F, GF FAG.

(5) Assuming that Hy, ..., Hy,, is a recognizable deduction of G from Fy A F1,
write a recognizable deduction of G from {Fy, F }.

2.8 Proof-systems

Deductions as defined in the preceding section are really just deductions in a
particular proof-system. For propositional formulas, a proof-system consists
of:
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(%) axioms'?, that is, certain distinguished formulas, and

(1) rules of inference, which are clearly described ways of obtaining new
formulas from finitely many given formulas.

Then, of the proof-system of § 2.7,
(*) the axioms are just the tautologies;
(1) the rules of inference are two:

(0) to infer, from any formula, a formula equivalent to it;

(1) (also called Modus Ponens): to infer, from F and F — G, the
formula G.

Then the following should be an obvious generalization of what we did in § 2.7:

Suppose we have a proof-system N and a list (Fp, ..., Fy,) of formulas. In the
system N, a deduction or formal proof of F,, from {Fy,..., F,,_1} is a finite
sequence

Gy, ..., Gy,

where Gy is F,, and, for each k in {0, ..., ¢}, the formula Gy, is:
(x) an axiom of N, or
(1) one of the formulas F;, where ¢ < m, or

(1) a formula obtainable from (some of) the formulas in {Go,...,Gr_1} by
one of the rules of inference of N.

If there is such a deduction, then we write
FOv"'7Fm—l FNF7n?

and we say that F), is derivable or formally provable in A/ from the set
{Fo,...,Fm_1} of hypotheses. In case m = 0, we write by Fy and say that
Fy is a validity of NV (or a theorem of \V).

We might think of axioms as rules of inference whereby certain formulas can be
inferred from no given formulas.

Many proof-systems are possible. Some are more useful than others. As a
minimum requirement, we should like a proof-system N to have the following
two properties:

(¥) soundness: if Fy,..., F,,_1 Fn G, then Fy, ..., F,_1 EG;
() completeness: if Fy,..., F,—1 E G, then Fy, ..., F,_1 Fa G.
Theorem 2.7.4 is that the proof-system of § 2.7 is sound and complete.

In § 2.7, the notion of a recognizable deduction was kept imprecise. The Substi-
tution Theorem 2.7.1 gives a way to add new rules of inference to our system,
some of which we may want to allow in recognizable deductions. For instance,
taking note of Example 2.7.3, we may want to allow the rule of inferring G' from
F A G. More generally, if we know

FOv"'vafl':F’m;

MFrom the Greek dZioua, dEbuatoc (honor, worth, etc.).
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then we may allow the rule of inferring F,,(Gy,...,Gp—1) from the formulas
FVQ(CJQ7 . ;Gn—1)7 . 7Fm—1(G0a Ceey Gn—l)a

for every list (Go,...,Gp—1) of n formulas.

In any case, we have the rule that, from a formula, we may derive an equivalent
formula. This is not a rule of inference such as we have just described. But
Detachment is such a rule, being derived from

P, P—QFQ.

More rules can be obtained from the following:

2.8.1 Lemma.

)
) P—=QV-VQu Q—R, ..., Qn— RFP—R (Cases);
§) PEPVQ and PEQV P (Addition);

) P—Q, ~QF —P (Modus Tollens');

) P—Q, Q— RE P — R (Hypothetical Syllogism'©);

xx) PV Q, "PEQ and PV Q, -Q E P (Disjunctive Syllogism);

1) Py — Qo, P1 — Q1, Py V PLF Qo V Q1 (Constructive Dilemma,).

Proof. These were all proved in § 1.4 (most as exercises). O

Exercises
Write deductions for the following, using Lemma 2.8.1:

(1) PoQ, Q= REP o R
(2) P+»Q, Q< RF P« R.

2.9 Lukasiewicz’s proof system

Here is developed a proof-system £ (for its inventor Lukasiewicz). It is of interest
for the simplicity of its definition. It involves only formulas in the signature
{—,—}. (We know from an exercise in § 2.5 that this signature is adequate.)

The only rule of inference of £ is Detachment. The axioms of £ are of three
kinds!":

15Latin for method [of] denying.

16 A syllogism is a classical form of argument; Aristotle’s definition is quoted in Appendix A.
A standard example of a syllogism is: All men are mortal. Socrates is a man. Therefore Socrates
is mortal.

7Frege had an earlier proof-system in this signature that used three additional kinds of
axioms.
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(0) k¢ FF — G — F (Affirmation of the Consequent);

(1) b (F - G — H) - (F - G) - F — H (Self-Distributivity of
Implication);

(2) bz (-F — =G) — G — F (Contraposition).

System L is sound by Lemma 2.7.2 and because the axioms are tautologies. To
prove completeness, we shall need the following.

2.9.1 Lemma. F, F — F.

Proof. The formal proof is

F—F—F
(F-F—>F)—-F)—-(F—-F—>F)—>F—F
(F—-F—F)—>F—>F

F— F

)

where the first three entries are axioms (0), (0), and (1) respectively, and the
last two follow by Detachment. O

2.9.2 Lemma. If Fy,...,F, 1+, G — H, then Fy,...,F,_1,GVF, H.
Proof. Exercise. O

The converse of Lemma 2.9.2 is the following; the proof is by cases (and the
method of infinite descent).

2.9.3 Theorem (Deduction). If Fy,...,F,_1,GVFc H, then

F07-~-aFn—1 l‘ﬁG—>H

Proof. There are three possibilities for H:

If H is an axiom of £, or is one of the formulas F;, then Fy,..., F,_1 F, H;
but also b, H — G — H; hence Fy,...,F,_1 s G — H by Detachment.

If H is G, then - G — H by Lemma 2.9.1.

Finally, suppose Ky, ..., K,, is the formal proof in £ of H from Fy,...,F,_1
and G, and suppose the last step in the proof is by Detachment. (If it’s not,
then we have already treated this possibility.) Then K; is F, and K is F — H,
for some formula F', and for some 7 and j less than m. If G — K; and G — K;
can be deduced in £ from {Fy,..., F,_1}, then, by Detachment and the Self-
Distributivity Axiom, so can G — H. Also, both K; and K; have shorter
deductions than H in £. Hence, if G — H cannot be deduced, then neither
can G — K for some K with a shorter deduction than H, which would be
absurd. O

2.9.4 Lemma. The following are validities of L:

(1) -G — G — F;
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(2) ——F — F;
(3) F — ——F;
(4) (F = G) = -G — ~F;
(5) F = =G — ~(F — G).
(6) (F — G) — (-F — G) — G.
Proof. (1) The following is a formal proof in £ from —G:
-G, =G — (~F — =G), -F — =G, -F — -G — (G — F), G — F.

So =G F G — F'. By the Deduction Theorem, the claim follows.

(2) By part (1) (and Lemma 2.9.2) we have =—F F; -F — ———F. Use
contraposition to get =—F F, F, then use the Deduction Theorem to get the
claim.

The remaining parts are an exercise. O

We know how to evaluate a formula at a given truth-assignment. The following
shows that we can prove in £ the correctness of our computation.

2.9.5 Theorem. Let F' be an n-ary formula in the signature {—,—}. Let € be
a truth-assignment for F. Define

T e e E z‘flf(a):l
~F, ifF(@) =0.

‘ P, if e =0;
Then Py, ..., Pl_ Fp F'.
Proof. If F is P;, then P! is F',so P}, ..., P,_, k. F'.
Now we can suppose F' is not just a variable, and use infinite descent. So,
assume F’ is not deducible in £ from Pj, ..., P,_;. There are two cases:

Say F'is =G for some formula G. Then

o Jo. HE@ =1
-G, if F(€) =0.

®

Hence G’ is also not deducible; but G is shorter then F.
Say F'is G — H for some formulas G and H. Then

P,...,P _ .G H.
There are three sub-cases to consider, according as
(x) G'is =G, or
(t) H'is H, or
(1) G’is G and H' is —H.

Details are an exercise. This completes the proof. O
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2.9.6 Corollary. The proof-system L is complete.

Proof. Suppose Fy,...,F,_1 F F,,, the formulas being n-ary. Let G be the
tautology Fy — - -+ — F},,. Then for all n-ary truth-assignments €', we have

Py...,P,_,FrG.
If n =0, we are done. If n > 0, then by the Deduction Theorem we have
P6 ey Pr/l72 |—£ Pn,1 — G7 —|Pn71 — G,

SO Py y Lemma 2.9. . Continuing, we find F, G, so
P P 5 Fr Gby L 2.9.4 (6). Continui find -, G

Foyeoo Fopy bz Fp. O
Exercises

(1) Prove Lemma 2.9.2.
(2) Prove parts (3), (4), (5) and (6) of Lemma 2.9.4.

(3) Supply the missing details in the proof of Theorem 2.9.5.



Chapter 3

Sets and Relations

3.0 Boolean operations on sets

As observed in § 1.8, propositional logic is a model of the use of conjunctions
in ordinary language. A basic application of propositional logic is to sets.

Suppose U is some large set—a universal set, which will include all of the
other sets that we shall work with. By the Axiom of Comprehension, 1.2.3, if
P is a predicate applying (truly or falsely) to the elements of U/, then we can
form a set

{z €U : Pz} (3.1)
We have not yet said much about what P might be. Now we do.
If ACU and ¢ € U, then we can form the proposition

cEA,

which is either true or false. We can analyze this proposition into two parts:

c|eA
subject | predicate

With the predicate € A and an individual variable, x, we can make the
formula
x € A.

This is not a propositional formula, since € is not a symbol of propositional
logic. Let us call the formula a set-theoretic formula or an €-formula. We
may replace the set A with other sets, but for now, our only individual variable
will be z. (We shall allow more variables in § 3.2.)

First note that we can write A as
{rel . xe A}

(the set of z in Y such that x is in A). This is not very interesting; but we can
create more interest by combining €-formulas, by means of Boolean connectives,

74
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A ANB AUB
S| |8 2
AC ArB AN B

5 e D

Figure 3.1: Venn diagrams of combinations of sets

so as to create new €-formulas. We have already done this once, in § 1.9. From
the formula z € A, we obtain —(z € A), that is, x ¢ A; this formula defines the
complement of A in U:

{rel . x¢ A} = A"
Suppose also B C Y. Using both of the formulas z € A and x € B, we obtain

the following standard combinations:

e {r el :xze€ AANax e B} = AN B, the intersection of A and B; it
contains everything that is in both A and B;

e {relU:2€ AVzr € B} = AU B, the union of A and B; it contains
everything that is in (at least) one of A and B (the union was defined first
in § 1.2);

e {reld:x€ A« xe€ B} =AA B, the symmetric difference of A and
B; it contains everything that is in exactly one of A and B;

o {reU:x€ ANz ¢ B} = A\ B, the difference of A and B; it contains
everything that is in A, but not in B.

Pictures of these combinations are in Figure 3.1. The symbols ¢, N, U, A, and
~, along with @, stand for Boolean operations.

Note some alternative formulations:

ANB={xec A:x € B};
ANB={xe€ A:x ¢ B}.
Hence also
A°=U N A
If AN B =@, then A and B are called disjoint.

We now have a sort of correspondence between propositional logic and set-
theory:



76 CHAPTER 3. SETS AND RELATIONS

AN e~ N
Ve~ U
> e A
- e ©
0 & @

In the remainder of this section, we shall see how thorough-going this corre-
spondence is.

Let us give ourselves an infinite list
(AO’ Al, A2, . )

of subsets of U. We may let letters like A, B, and C stand for members of
this list. If F' is an n-ary propositional formula, then, by substituting for each
variable Py the formula x € Ay, we obtain the e-formula

F(IGA(), ey I’EAn_l). (32)
Abbreviate this as ¢(z). The latter is a formula determining! a subset

{zel: ¢(x)} (3.3)

of Y. (Compare Line (3.1) above.) This subset is a Boolean combination of
the sets Ag. It consists precisely of those elements ¢ of U such that

~

F@)=1,

where the n-ary truth-assignment € is defined so that

1, ifceA
k — ) 1 c k) (3.4)
0, ifcé¢ Ag,
for each k in {0,...,k — 1}. So we can express membership in Boolean combi-

nations of sets by means of truth-tables:

3.0.1 Example. From the truth-table

by considering the lines where the formula P — @ takes the value 1, we can
conclude that the set {x € Y : x € A — x € B} consists of those ¢ in U such
that one of the following holds:

(*) c¢ A & c¢ B, or

1By the Axiom of Separation, 1.2.3. See also § 3.9. However, the existence of the set
named in Line (3.3) is not really an axiom so much as a definition of the objects that we
are studying. Indeed, Theorem 3.0.2, along with Exercise 1, will show that, in effect, we are
studying equivalence-classes of propositional formulas.
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(f) c¢ A & c€ B, or
() ce A & ceB.

Alternatively, from the line of the truth-table where P — (@) takes the value 0,
we conclude that the set {z € U : © € A — x € B} consists of those ¢ such that
either ¢ ¢ A or ¢ € B. .

The foregoing example should recall the notions of disjunctive and conjunctive
normal forms in § 2.4.

The Axiom of Extension, 1.2.1, is that sets are determined by their members.
That is, two sets A and B are equal if

c€EA <= ceB (3.5)

for all ¢ in U. The converse of this axiom is obviously true: If two sets are
equal, then in particular, they have the same members. Hence, if

{reU:x€e A2 e B}=U, (3.6)

then, for all ¢ in U, the proposition ¢ € A is true if and only if the proposition
¢ € B is true—that is, Equivalence (3.5) holds, so A = B by the Axiom of
Extension. Conversely, if A = B, then the Axiom gives us Equation (3.6). In
short, the Axiom gives us the equivalence

A=B <<= {rcl:z € A—zeB}=U.

Being nullary Boolean connectives, the constants 0 and 1 are also €-formulas;
so we can form sets {x € U : 0} and {z € U : 1}. The former contains nothing,
so it must be the empty set; the latter contains every element of ¢/, and nothing
else, so it must be . In short,

{r el :0} =g
{rel:1}=U.

Another consequence of the Axiom of Extension is:
3.0.2 Theorem. Suppose Fyy and Fy are n-ary propositional formulas such that
Fo ~ Fy.
When e € B, let ¢p.(x) be the €-formula F.(x € Ay, ..., v € An—1). Then
{w €U go(a)} = {z €U 1(a)}.

Proof. If ¢ € U, let the n-ary truth-assignment € be as defined by the Rule (3.4)
above. Then

ce{zel: ¢o(z)} = Fo(@)=1
— F@)=1 < cec{zcl: ¢ (2)}.

By the Axiom of Extension, the equality of the sets follows. O
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Example (3.0.1 continued). Because P — @ ~ =P V @, the two sets
{reU:z€ A—-zxeBland{x el :x ¢ AV x € B} are equal. .

We can say more. The following should be compared with Theorem 2.3.8:

3.0.3 Theorem (Replacement). Suppose F' is a sub-formula of the n-ary for-

mula G, so that G itself is H(Py, ..., P,_1,F) for some formula H. Let
B={zelU:F(zxecA, ..., x€A,1)}

Then the set {r €U : G(x € Ay, ..., v € An_1)} is equal to

{reU:H(xeAy, ..., €A, 1, € B)}.

Proof. Exercise. O

3.0.4 Corollary. For all €-formulas ¢(x) and ¥(z),

fo €U 6(@) A p()} = {z €U d()} N {w €U s ()},

{rel:d@) V() ={z el o)} U{r el ()},

fr €U ¢lx) = Y()} = {z €U o(x)} & {w €U s p(a)},
{zel:—¢@)}={xecl: ()}

Proof. Let A ={x €U : ¢(x)} and B = {& € U : ¢(z)}, and let H be the
binary formula Py A P;. Then

{z el : ¢(x) ANp(x)}

={xel: Ho(x), )} [by def’n of H]
={zelU:H(x €A, x€B)} [by Replacement)
={rcelU:z€c ANz € B} [by def’'n of H]
=ANB [by def’n of N]
={zxel:d@)}n{xeld : Px)} [by def’n of A and B].

The other identities are established likewise. O

Example (3.0.1 continued again). We now have

{reU:2€e A—-zxeBt={zxcld:2¢ AVzx < B}
={zeclU:x ¢ A}U{x el .z € B}
= A°U B,

and similarly, {x e 1z € A -z € B} = (A°NB°)U(A°NB)U (AN B).
Hence the equation

A°UB=(A°NB°)U(A°NB)U(ANB)
is an identity. °

3.0.5 Example. From the truth-table
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PIA|(@Q]|V]|R)
010} 0|00
1/10]01]0]O0
O[O0 1 ]1]0
1|11 ]1]0
000 |11
1|10 ]1]1
o(o01]1]1
1|11 ]1]1

we can infer that the set {r e :x € AN (x € BV z € C)} is precisely

(ANBNC°)U(ANB°NC)U(ANBNC);

79

alternatively, the set is AN{z €U :x € BVz € C}, whichis AN(BUC). e

3.0.6 Lemma. The following are set-theoretic identities:
() definition:

AANB=(AUB)N(ANB)
=(ANB)U (BN A4),
AN B=AnBS
(f) double complementation:
ACC — A,
() De Morgan’s Laws:
(AUB)® = A°N B,
(AN B) = A°U BY;
(§) Commutativity:

ANB=BnNA, AUB = BUA;

(9) Associativity:
(AnB)NnC=ANn(BnNC), (AuB)UC=AU(BUC),

(I) mutual Distributivity of N and U:

AN(BUC)=(ANB)U(ANC),
AU(BNC)=(AUB)N(AUC):;

(xx) redundancies:

o =U, Uuc = o;
ANA=A AnA°=g, AnU=A4, Ang=g,
AUA=A, AUA°=U, Aug=A  AulU=U,

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
(3.16)
(3.17)
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(1) new set:

A=(ANB)U(ANB®); (3.18)

(11) Absorption:

AN(AUB) = 4,
—A

AU(ANB) : (3.19)

Proof. Most of these identities are immediate from the equivalences in § 2.6 by
means of Theorem 3.0.2 and Corollary 3.0.4. Identity (3.9) uses the definition
of \.. The rest are exercises. O

We can now prove other set-theoretic identities by a process of simplification
parallel to the one we use for logical equivalences:

3.0.7 Theorem. The equations

AN(BNC)=(ANB)U(ANCQ), (3.20)
AN (BUC)=(ANB)N(ANCO) (3.21)

are identities of sets.

Proof. For (3.20), we have the chain of identities

AN (BNC)=ANn(BNC)° [def'n of \]
=AN(B°UCY) [De Morgan]
=(ANB)UANCY) [distributivity]
=(ANB)U((ANCO) [def'n of \].

Equation (3.21) is an exercise. O

An alternative method for proving set-theoretic identities uses the original state-
ment of the Axiom of Extension on § 1.2. To prove Identity (3.9) for example,
it is enough to prove AN B C AN B¢ and AN B° C A~ B. To prove the
former, suppose ¢ € A~ B. Then ¢ € A, but ¢ ¢ B. Hence also ¢ € B¢. Hence
c € AN B¢. Therefore A~ B C AN B°. The other inclusion can be proved
similarly.

Exercises

(1) Prove the converse of Theorem 3.0.2 in the following sense: Show that, if
F and G are not equivalent, then there is a set U with subsets Aj such
that {r eU : F(x € Ay, ...,z € Ap_ 1)} #{z €U :G(x € Ay, ..., T €
An—1)}. (Suggestion: Let U be a set of truth-assignments, and let Ay
comprise those € such that e = 1.)

(2) Complete the proof of Theorem 3.0.3 and its corollary, 3.0.4.

(3) Complete the proof of Lemma 3.0.6.
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4) Complete the proof of Theorem 3.0.7.

)

5) Prove that (AN B)U(B~A)=A A B.

6) Prove that (ANB)U(AUB)*={z:2€ A— z € B}.
)

(
(
(
(7) Prove the following set-theoretic identities:

a) U =AU A°
b) @ = AN A°

(a)
(b)
¢) (ANB)*=A°UB
)
)

(
(d) BN A°=A\B
() AN(BNCO)*=(ANB)\C

3.1 Inclusions and implications

A natural generalization of Theorem 3.0.2 is:

3.1.1 Theorem. Suppose Fyy and Fy are n-ary propositional formulas such that
FyE F.
When e € B, let ¢p.(x) be the €-formula Fe(x € Ay, ..., v € An—1). Then
{rel:go(x)} C{z el ¢i(a)}.
Proof. Exercise. O

Some of the rules of inference in Lemma 2.8.1 now translate into tautological
inclusions (inclusions that are true for all sets):

3.1.2 Lemma. The following inclusions are tautological:

ANBC B; (3.22)
AC AU B; (3.23)
(AUB)N A° C B. (3.24)

Proof. The first two inclusions are translations (justified by Theorem 3.1.1) of
the logical consequences P A @Q F @Q and P F PV @Q; the last inclusion is a
translation of the rule of Disjunctive Syllogism, in view of § 2.8, Exercise 1. [J

Rules involving —, such as the Hypothetical Syllogism and the Constructive
Dilemma, can be expressed set-theoretically as implications:

3.1.3 Lemma. The following implications are tautological:

ACB & BCC = ACC; (3.25)
ACB & CCD = AUCCBUD & AnCC BND. (3.26)
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Proof. Suppose A C Band B C C and d € A. Then d € B, so d € C. Thus
ACC.

Suppose AC Band C C D. Sayde AUC. Thende Aorde C. Ifd € A,
then d € B, so d € BU D. The same conclusion follows similarly if d € C.
Therefore AU C C BU D. The remaining inclusion is an exercise. O

Implication (3.25) justifies abbreviating the proposition A C B & B C C by
ACBCC.
By Identities (3.16) and (3.17) above, Implication (3.26) has the special cases:

ACB & ACC = ACBNC, (3.27)
ACB & CCB = AUCC B. (3.28)

Their converses are a part of the following:

3.1.4 Lemma. The following are true for all sets:
(x) ACBNC = ACB;

() AUBCC = ACC;

(1) ANB=@2 & ACB = A=g;

(§) A°CA <= A°=0 <<= A=U;

() AN\B=g <— ACB.

Proof. Suppose A C BN C. Since BNC C B by Lemma 3.1.2, we get A C B
by Lemma 3.1.3. The remaining implications are exercises. O

We are now equipped to prove some non-obvious claims:
3.1.5 Example. Suppose A°U (B A C)C ANB°NC. Then
ANn(BUC)=(AuB)NnC. (3.29)

Indeed, to see this, note first

A CA°U(BACQC) [by Lemma 3.1.2]
CANB°NC [by assumption]
C A. [by Lemma 3.1.2]

Then A¢ C A by Lemma 3.1.3, and therefore
A=U

by Lemma 3.1.4. By the same lemmas, and Lemma 3.0.6, our assumption now
gives us
(BNC)U(CNB)=BACCB°NC=BNC;

therefore C ~ B C B ~. C, that is,

CnB*CBNC".
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Say a € C N B° Then a € B°. But also, a € BNC° so a € B. Thus
a € B°N B = @, which is absurd. So C'N B must be empty, which means

BCC.
Finally then,
AN(BUC)=BUC=C=(AUB)NC
since A=U =AU B. .

Where did this example come from? And, where did the proof come from?
First, note that variations of the proof are possible: For example, part of the
proof is showing

CNB*CBNC® = CNB°=2.

But if C N B° C BN CC, then
CNB°C(BNC)N(CNB%)=BN(C°NC)NB° = 2.

Thus there is no need to look at individual elements of C' N B¢, as in the proof

above.

Whatever minor adjustments we make, the proof in Example 3.1.5 does not
seem to follow a general pattern. Each step is justified, and the conclusion is
as desired; so the proof is correct. But this observation does not tell us how to
find the proof.

There is an alternative proof that follows a general pattern; this proof also
suggests how the proposition being proved was discovered. The key is the set-
theoretic analogue of the disjunctive normal forms of § 2.4:

Example (3.1.5 continued). We can analyze the given Boolean combinations
of A, B, and C as follows. First note that
A°=(A°NB°)U(A°N B)
=(A°NB°NCHYU(A°NB°NCYU(A°NBNC)U(A°NBNC),

while

BAaC=(BNCY)U(B°NC)
=(A°NBNCYU(ANBNC)U(A°NB°NC)U(ANB°NC).

Therefore

AU(BAC)=(ANB°NC)U(A°NB°NC)U(A°NBNC)U
U(A°NBNC)U(ANBNC®)U(ANB°NC)
The six constituents of this union are disjoint, and the whole set A°U (B A C)
is assumed to be a subset of its last constituent, A N B¢ N C; therefore the first
five constituents are empty. We aim to prove Equation (3.29). Analyzing the
two members of this equation, we have
AN(BUC)=(ANB)U(ANCQC)
=(ANBNCYU(ANBNC)U(ANB°NC),
(AuUB)NC=(AnC)u(BnQC)
=(ANB°NC)U(ANBNC)U(A°NBNCQC).
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Under the assumption, two constituents in each case are empty, and each mem-
ber of Equation (3.29) is AN BNC. .

Thus the alternative proof takes more writing, although it follows a general
procedure that involves writing every set in question as a union of intersections
of the sets A, B, and C and their complements.

Exercises

1) Prove Theorem 3.1.1.

2) Complete the proof of Lemma 3.1.3.

(1)
(2)
(3) Complete the proof of Lemma 3.1.4.
(4)

4) Prove the following tautological inclusions:

(a) AN(ANB)°CB

(b) ANCC(ANB)U(B\CO)
(c
(d
e) ACA~N (BNB°

)
) (ANB)*N(BNC)*C(ANCO)F
)
(e)
(f) (AN A CA
)
)
) B
)
)

ANCC(AN(BNO))U(ANB)

(g) ASCA°NA

(h (AUB)\CQ(A\C)U(B\C)
(i
(3
(k

(5) Prove the following implications:

C(ANB)U(A°\ B)
AN BC B
BNACB

(a) UCB = U=2B

(b ACB & AC(BNC) = ACC
() ACBNB® = A=U
(d)ACB&ACBC:>A &

) A=U = ACB

) ACB = AnCCBNC

e

(
(f
(6) Prove the following equivalences:
(a) ACB < A°UB=U
(b)) AL B < ANB°# g
(c) ACB < B°CA°
(d) AC(BNC) <= ANnBCC
(7) Simplify (A°NB°NC°)U(A°NB°NCYU(A°NBNC)U(A°NBNC)U
(ANBNC)U(AN B NCO) to the form A°U (B A C).

(8) Compose an example like 3.1.5.
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B Ax B

A

Figure 3.2: Cartesian product

3.2 Cartesian products, and relations

Suppose ¢(x) is an €-formula as in § 3.0, Line (3.2). We can say that this
formula defines, in U, the set {z € U : ¢(x)}; and this set can be called
the interpretation of ¢(z) in U. The interpretation of ¢(x) may change if U
changes. For example, the interpretation of « ¢ A in U is U \. A, which depends
on U. However, as long as U includes A, the interpretation of z € A in U does
not change: it is just A.

We now allow variables besides x, and we ask, for example, whether the binary
e-formula
r€EANYyEDB

defines a set. It does define a set, which is denoted
Ax B

and called the Cartesian product of A and B. This set A x B can be depicted
as in Figure 3.2. If a € A and b € B, then there will be an element of A x B,
denoted

(a,b)
and called an ordered pair. Such objects will have the property that
(a,b) = (d',V) <= a=d & b=1; (3.30)
consequently,
(a,b) e AxB <= a€ A & beB.
But what is an ordered pair?

So far (in this chapter), all of our sets have been Boolean combinations of given
sets. A completely different way of producing sets is usually taken as an axiom:

3.2.1 Axiom (Pairing). For any two objects (possibly not distinct), there is a
set whose elements are precisely those objects. That is, for all a and b, the set

{a,b}

exists.
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This axiom involves an existential statement. In particular, the axiom can be
written formally as

Vo Vy JzVw (w €z ow=xVw=y).

When one formalizes set-theory in this way, one usually understands the vari-
ables (here z, y, z, and w) to range only over sets. We are not being so restrictive,
for now.

If a = b, then the set {a,b} is just

{a},

which contains nothing but a and can be called a singleton. (We saw this
notion in § 1.2.) If @ # b, then {a, b} is an (unordered) pair or a doubleton.

3.2.2 Lemma. {{a},{a,b}} ={{c},{c,d}} <= a=c & b=d.
Proof. Exercise. O

Now we can define ordered pairs so as to have the desired Property (3.30): by

definition,
(a7 b) = {{a}v {av b}}

Note well that we make this definition solely so that ordered pairs will have
Property (3.30). It is true but unimportant? that {a} € (a,b)—except that, in
the usual treatment of set-theory, one still needs the precise definition of (a,b)
to justify aziomatically the existence of the set A x B. I shall discuss this point
later. Meanwhile, we can write

AxB={(z,y) eUxU:x€ ANy € B}.

Suppose now F' is a 2n-ary propositional formula. Then we have the binary
e-formula

Flxe Ay, ..., x €An_1, y€ Agy, ..., y€ Ap_1). (3.31)
Call this ¢(x,y). Its interpretation in I is a subset of U X U, namely
{(zy) eU xU : p(z,y)}, (3.32)
which consists precisely of those (¢,d) in U x U such that
Fe f)=1,
where € and f are the n-ary truth assignments such that

ep =1 < CEAk,
fi=1 < de A;

for each k in {0,...,n — 1}. As special cases, we have

{(z,y) eU XU :z € A} = A X U;
{(z,y) eUXxU:y€ B} =U x B.

2Some discussion of this point is in [16, § 6].
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These sets are also the interpretations in U X U of (z,y) € A x U and (x,y) €
U x B respectively. Hence, for example, the formulas z € A and (z,y) €
A x U are interchangeable or, as we may say, equivalent as binary formulas.
In Line (3.32), we can now replace ¢(z,y) with the formula

F((z,y) € Ao x U, ..., (z,y) € An_1 XU,
(z,y) eU X Agy .., (z,y) €U X Ap—1), (3.33)

without changing the set.

Since we have a new operation on sets, we may wonder how it interacts with
the ones that we already have. Let use first establish the notational convention
that x has priority over N, U, A, and ., but not over ¢, so that, for example,

AxBNC=(AxB)NC;
Ax B =Ax (B°).

Then we have:

3.2.3 Theorem. The following are set-theoretic identities:

Ax(BNC)=AxBNAxC, (ANB)xC=AxCnNBxC,
Ax(BUC)=AxBUAXxC, (AUB)xC=AxCUBxC,
Ux A= U x A)°, AS x U = (A xU)".

Proof. We prove the first identity in two ways; the rest are exercises.

Suppose (a,b) € Ax (BN C). Then a € A, and b € BN C. Hence also
b€ B and b € C. Therefore (a,b) € A x B and (a,b) € A x C. Consequently
(a,b) € (Ax B)N(AxC). Thus Ax (BNC) C (Ax B)N(AxC). The reverse
inclusion is an exercise.

Alternatively, we have

Ax(BNC)={(z,y) eUxU:z€e ANye BNC}
={(z,y) eUxU:z € ANye BAyecC}
={(z,y)eUXxU: (z€ANyeB)AN(z e ANye )}
={(z,y) eU xU: (z,y) € AXx BA (z,y) € Ax C},

which is (A x B) N (A x C) by definition of intersection. To save writing, we
might just note that A x (BNC) is the interpretation of the following equivalent
formulas:

reANye BNnC, reANyeBAyeC,
(xeANyeB)AN(xe ANy e (), (x,y) e AX BA(z,y) € AxC

—while the last formula defines (A x B) N (A x C). O

The identity for A x B€ is not so neat: see Exercise 3. Part of the last theorem
can be generalized:
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Figure 3.3: The less-than relation on Z

3.2.4 Theorem. The equation
AxBNCxD=(ANC)x (BND)
is an identity.
Proof. Ax BNC x D is the interpretation of
reEANyeEBANxeCANyED,
which is equivalent to
rEANzeCANyeEBAyED,
which is the interpretation of (AN C) x (BN D). O

For Ax BUC x D and (A x B)°, see Exercise 5.

We have observed that the formulas on Lines (3.31) and (3.33) are equivalent.
This suggests a further generalization: If (R, ..., R,—1) is a list of n subsets of
U xU, and G is an n-ary propositional formula, then we have a binary e-formula

G((x,y) € Ro, ..., (z,y) € Ry_1).

We have binary analogues of Theorems 3.0.2 and 3.1.1 (which I shall not write
down).

A subset of U x U is a binary relation on . If R CU x U, and (a,b) € R,
then we may also write
a RD.

Then R = {(z,y) e U xU : = R y}.

3.2.5 Example. The less-than relation on Z (named in § 1.3) is the set
{(z,y) €ZXZ:z <y},

which can be depicted as in Figure 3.2. .

There are two generalizations:
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(x) If R C A x B, then R is a relation from A to B; also, A is the domain
of R, and B is the co-domain.

(1) There are n-ary relations for every n in N.
The first of these will be taken up in the next section. On the latter point, note
that we can form an n-ary €-formula
xog EAg N ... Nxp_1 € Ap_1;
its interpretation in U/ can be denoted

A()X'--XAn_l.

This is a subset of U X --- x U, which we can also denote
—_———

n
u".
The elements of U™ are just the (ordered) n-tuples
(coy--vyCn_1) or c

where each ¢y is in Y. Such an n-tuple is just what we have called a list of n
elements of Y. In particular, an n-ary truth-assignment is an element of B™.
Instead of A x A, we can write A2. We can let A' be A itself. We can define

A3 to be A% x A; define A% to be A x A; and so on. By our precise definition
then,

(agy ... an) = ((agy..-,an-1),an) = {{(a0,---,an-1)},{(a0, .-, an-1),an}},

but this is not important; we could also use the definition

(CL(), e ,an_l) = {{ao}, {ao,al}, ey {ao,al, .. .,an_l}}

for example. (See also § 3.6.) In any case, we should understand

( ) ag, ifn=1;
AQy ey Op1) = )
0 yAn—1 o, ifn=0

that is, (a) is just a, and ( ) is @. Then A' = A as we said; also, A’ = {@}, which
is 1 in the von-Neumann definition of the natural numbers in § 1.2. Finally, if @
is the n-tuple (ag,...,an—1), and b is the m-tuple (bg,...,bm—1), then we treat
the ordered pair (@, b ) as the ordered (n+m)-tuple (ag; - .., an—1,b0, - - -, bm—1).
Then we have

A™ o AT =A™

for all m and n in w. (We do not have a meaning for A" if n is a negative
integer.)

An n-ary relation on U is a subset of ™. In particular, a singulary relation
on U is just a subset of /. A nullary relation on I is a subset of /°; which is
{@}; so a nullary relation is either @ or {@}. In the von-Neumann definition,
these sets are 0 and 1 respectively; so a nullary relation is just a truth-value.

An n-ary predicate is a name for an n-ary relation. An n-ary relation is then
a possible interpretation of an n-ary predicate.
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Exercises

1) Prove Lemma 3.2.2.

Prove the identity A x B¢ = A xU U x B.

4

)
2) Complete the proof of Theorem 3.2.3.
)
) Prove the identities:

(
(
3
(

(a) (AAB)xC=AxCABxC;
(b) (ANB)xC=AxC~BxC.

(5) Prove the identities:

(a) AxBUC xD=((AUC)x (BUD)\ A° x D°) \ C° x B¢,
(b) (Ax B)*=A°xUUU x B°.

3.3 Functions

A relation R from a set A to a set B is a function from A to B if it has two
properties:

(+) For every a in A there is some b in B such that (a,b) € R.
(t) If R contains both (a,b) and (a,c), then b = c.
One might abbreviate these properties as follows:
(*) VxeA) (ByeB)zRy.
(t) Vxe A) (VyeB)(VzeB)(zRy & t Rz = y=2).
Alternatively, R is a function if it has the property:
() For every a in A, there is a unique b in B such that a R b.

Unique existence—existence of exactly one—is sometimes abbreviated by the
quantifier
3.

Then the last property can be abbreviated:
() (Ve A) (A'ye B)aRD.

Often a function is denoted by a letter like f; then, instead of writing (a,b) € f,
or a f b, one writes

f(a)=b.
Suppose f is a function from A to B. This can be indicated by

fiA— B or A1 B

In accordance with the definitions in the previous section, A is then the domain

of f, and B is the co-domain of f. Also, f is a function on A, and f is a
function from A to B. Functions are sometimes called maps; in the present
case, f can be said to map A into B.
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Considered as a string of symbols, f(z) is a term. Then the function f might
be given by the notation
x— f(x),

and we might say that f takes or sends = to f(z). As we shall see presently,
the term f(x) might be replaced with another term that does not contain a
specific name for f itself.

An n-ary operation on a set A is a function from A™ to A. Then there is
at least one singulary operation on A, namely the identity on A: this is the
function

T
on A, which can be denoted
ida.

More generally, if k& < n, then there is an n-ary operation
(2o, Tp—1) — Tk

on A. (This operation is id4 if n = 1 and £ = 0.) But there are all sorts of
operations besides these:
3.3.1 Examples.

() In §1.2, the successor of a number n in N is denoted n™ or n + 1. This
means there is a function z — %+ from N to itself; this is a singulary
operation on N.

(f) The operations + and - named in § 1.3 are binary operations on Z and
can be denoted (z,y) — = +y and (x,y) — zy respectively.

(1) Hence any arithmetic term ¢ in an n-tuple (xq,...,2,) of variables
determines the n-ary operation £ — ¢ on Z.

(§) The fundamental theorem of calculus is that if f is a continuous func-
tion on R, and a € R, then the function = — f; f is a primitive for f
(that is, a function whose derivative is f). .

Several refinements of the notion of a function are useful. Suppose again that
f:A— B. Then f is:

(*) surjective or onto, if every element of B is f(a) for at least one a in A;

(1) injective or one-to-one, if every element of B is f(a) for at most one a
in A;

(1) bijective, if it is one-to-one and onto (injective and surjective).

A surjective function is a surjection; an injective function is an injection; a
bijective function is a bijection. An injection is also called an embedding; a
bijection is also called a one-to-one correspondence. More symbolically, f
is:

(%) surjective, if (Vy € B) (Jz € A) f(x) =vy;

(1) injective, if (Vz € A) Vy € A) (f(z) = fly) = xz=y).

3.3.2 Examples.
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(%) id4 is a bijection.

(t) The squaring function x +— 2 is injective on N, but not on Z; as a
function from C to C, it is surjective, but not as a function from R to R.

(1) The tangent-function x — tanz from R to R is surjective, but not
injective.

(§) The cubing function x — 3 from R to R is bijective. .

Again suppose f : A — B. The range of f is the set

{yeB:(Fred) flx) =y}
this is a subset of the co-domain of f, and can be denoted
{f(z): 2z e A},
or more simply
f(A).

Since this notation suggests—usually wrongly—that A is actually an element
of the domain of f, I shall also use the notation

f1A].
A function is surjective if and only if its range is equal to its co-domain.

3.3.3 Examples.

(*) The co-domain of = +— sin z is usually considered to be R, although the
range of the function is the interval [—1, 1].

(1) The function z +— 1+ 22, as a function on R, has range [1,00). .

Suppose also g : B — C'. The composition of f and g is

{(z,2) € Ax C:g(f(x)) =2}
This can be denoted
gof,

which can be read as g composed with f. Showing that g o f is a function
is Exercise 1 below; it is Exercise 2 to show that the composition of injective
functions is injective, and the composition of surjective functions is surjective.

Many of the foregoing ideas are connected by the following:

3.3.4 Theorem. Suppose A# & and f: A — B.
(0) The function f is injective if and only if go f = ida for some function g
from B to A.
(1) The function f is surjective if and only if fog = idg for some function g
from B to A.
(2) The function f is bijective if and only if go f =ida and fog =idp
for some function g from B to A.
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Proof. (0) Suppose f is injective. Then for every b in f[A], there is exactly one
a in A such that f(a) = b. This means that the set {(f(z),z) : x € A} is a
function from f[A] to A. Since A # &, there is some ¢ in A; then y — cis a
function from B ~\ f[A] to A. The union of these two functions, as sets, is a
function g from B to A, and g(f(a)) =a for all ¢ in A, so go f =id 4.

Suppose conversely that go f =ida. If f(a) = f(a'), then g(f(a)) = g(f(a)),
that is, id 4 (a) = ida(a’), which means a = a’. Thus f is injective.

(1) Suppose f is surjective. Then for every b in B, there is at least one a in A
such that f(a) = b. Now we have to do something sneaky: We pick one such
a, and define g(b) = a. We do this for all b in B, and this gives us g as desired.
(That such picking can be done once for all is perhaps not obvious, but it is a
consequence of the set-theoretic Axiom of Choice.)

The converse, and (2), are left as an exercise. O

3.3.5 Theorem. Suppose f : A — B and is bijective. Then there is exactly
one function g from B to A such that go f =id4 and fog=idg.

Proof. By the last theorem, there is at least one such function. Suppose gg and
g1 are such functions, and b € B. Then b = f(a) for some a in A, since f is
surjective. Hence

go(b) = go(f(a)) = go o f(a) = ida(a) = g1 0 f(a) = g1(f(a)) = g1 (D).

Thus go = ¢g1- O

The unique function g in the theorem is the inverse of f and can be denoted
f71

A bijection can also be called an invertible function.

In general, if f: A — B and C C A, then f N (C x B) is a function from C to
B; this can be denoted by

f1C;

it is the restriction of f to C, and its range is f[C].

Exercises

(1) Show that the composition of two functions is a function.

(2) Show that the composition if injective functions is injective; of surjective,
surjective.

(3) Complete the proof of Theorem 3.3.4.

(4) Suppose f and g are functions from A to B. For each of the following
relations,

e prove whether it is always a function; and

e prove whether it is always not a function:
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(5) Let f:A— Bandg: B — C.
(a) Supposing g and f are invertible, write (go f)~! as a composition of
inverses (rather than an inverse of compositions).

(b) If g o f is injective, does it follow that f is injective?—that g is
injective?

(¢) Same question, with surjective for injective.

(d) Same question, with bijective for surjective.

3.4 Deeper into functions

Induced functions

If f: A— Band C C A, then we have defined f[C] as a subset of B. This
suggests that we have a function X +— f[X]; but what are its domain and
co-domain?

3.4.1 Axiom (Power-set). If A is a set, then the class of subsets of A is a set.

The set of subsets of A can be denoted
P(A);
it is called the power-set of A.

3.4.2 Examples.
(x) P(@) = {2}, that is, P(0) = 1 in the definition of von Neumann;
(t) P{@}) = {2,{o}}, that is, P(1) = 2.
(1) @ €P(A) and A € P(A) for all sets A.

Hence, if f : A — B, then the function X — f[X] has the domain P(A4) and
the co-domain P(B).

3.4.3 Lemma. Suppose f: A — B. Then
XCY = fIX]C f[Y]

for all subsets X and Y of A.

Proof. Suppose z € f[X]. Then x = f(u) for some u in X. But X C Y, so
u €Y, and hence f(u) € f[Y], that is, z € f[Y]. O
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3.4.4 Theorem. Suppose f: A — B. Then

fIXUY] = fIX]u fIY], (3.34)
fIXnY]c fIX]n fy] (3.35)

for all subsets X and Y of A.

Proof. We have that f[X] and f[Y] are subsets of f[X UY] by the last lemma.
Hence
fIXJUfIY] C fIXUY]

by (3.28). For the reverse inclusion, suppose z € f[X UY]. Then z = f(u) for
some u in X UY. Either u € X or u € Y, hence, either z € f[X] or z € f[Y].
In either case, z € f[X]U f[Y]. This proves (3.34).

For (3.35), note that if f[X NY] is a subset of both f[X] and f[Y], by the last
lemma; we are now done, by (3.27). O

3.4.5 Example. The inclusion (3.35) can be strict. For example, if f is
{(0,0),(1,0)} and X = {0} and Y = {1}, then X NY = &, but f[X]N f[Y] =
{0}. °

3.4.6 Theorem. Suppose f: A — B.
(1) The following are equivalent:

() f is injective.
(1) fIXNY] = fIX]N fIY] for all subsets X andY of A.

(2) If f is injective, then
fIXeIC
FIXNY]C XN fTY]
for all subsets X and Y of A.

(3) The following are equivalent:
(x) f is bijective.
(1) fIX€] = (f[X])¢ for all subsets X of A.

Proof. Exercise. O

If f: A— B, and C C B, then A has the subset
{xreA: f(x) e C},
which can be denoted
el
Thus we have a function
Y — fHY]

with domain P(B) and co-domain P(A). Note well that this function exists,
whether f is invertible or not. The function Y ~ f~![Y] behaves more nicely
than X — f[X] with respect to the Boolean operations:
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A B

Figure 3.4: Converse of a relation

3.4.7 Theorem. Suppose f: A — B. Then

X uY]=fXJu Yy, (3.36)
[X NY] = fXx]In iy, (3.37)

X = (FHXD)S (3.38)
[X Y] = X S Y (3.39)

for all subsets X and Y of A.

Proof. Exercise. Note that, by adequacy of the signature {A,—}, the other
equations follow from (3.37) and (3.38). O

Operations on relations

It is possible to give a neat account of functions by first defining the composition
of relations. Suppose R C A x B and S C B x C. Then the composition of R
and S is the set

{(z,2) eAxC:(FyeB)(zRy & y S 2)},

which can be denoted
SoR.

Note well the order in which R and S are written, which seems unnatural,
but agrees with the notation for the composition of functions. At the expense
of introducing a new symbol, I propose to follow Tarski [43, § 28, p. 92] (and
Suppes [41, § 3.1, Definition 7, p. 63]) and write

R/S

for So R

The relation R from A to B has a converse, namely, the relation

{(y,z) e Bx A:z Ry}
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Ay

A
Figure 3.5: Diagonal on a set

from B to A; it can be denoted

v

R.

(See Figure 3.4.) This is sometimes denoted R~!, but this notation can be
misleading.

Finally, the binary relation of equality on A is just the set
{(z,y) e Ax A:x=y}.
We can also call this the diagonal on A, and give it the symbol
Ay

(The delta stands for diagonal; see Figure 3.5.)
We can now make the following definitions: R is
() full, if Ay C R/R;
(1) functional, if }VB/R C Ap.

3.4.8 Theorem. Let R C A x B. Then R is a function from A to B if and
only if R is full and functional (as a relation from A to B).

Proof. Exercise. O

We have alternative characterizations for notions in § 3.3:
3.4.9 Theorem. Suppose f: A — B.

(x) f is surjective if and only if Ag C f/f,

() f is injective if and only if f/f CAy;

(1) f is bijective if and only if f/f =Ap and f/f = Ay.

Proof. Exercise. O
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Exercises
1

(1) Prove Theorem 3.4.6.
(2

(

(

Prove Theorem 3.4.7.

3

)
)
) Prove Theorem 3.4.8.
)

4) Prove Theorem 3.4.9.

3.5 First-order logic

First-order logic provides a formal way to talk about particular operations and
relations. It allows for a precise definition of the context, mentioned in § 1.1,
in which a mathematical proposition is true or false. First-order logic is a large
subject; this section will be only a cursory treatment. However, we have already
mentioned the ingredients of first-order logic, in an informal way at least. A
signature L for a first-order logic consists of constants, function-symbols, and
predicates. A structure in the signature £ is a non-empty set A along with a
function that takes:

() each constant of £ to an element of A;
(1) each function-symbol of £ to an operation on A;
(1) each predicate of L to a relation on A.

Thus the elements of £ symbolize elements of A and operations and relations
on A. More elements and operations are symbolized by terms, which are strings
made of constants, function-symbols, and variables. More relations are symbol-
ized by formulas. The simplest formulas are the atomic® formulas, which consist
of terms joined by the sign of equality or by a predicate. Atomic formulas can be
preceded by quantifiers (with variables) or combined by means of Boolean con-
nectives; formulas in general are obtained in this way. New constants standing
for particular elements of A can be used as parameters in terms and formulas.

3.5.1 Example. The set Z of integers can be understood as a structure in the
signature {4+, —,-,0,1, <} (see § 1.3 (1.10)); a term in this signature (with pa-
rameters from Z as desired) is an arithmetic term as defined in § 1.3. (However,
the general definition of terms given below will use Polish notation as in § 2.1.)
Diophantine equations and arithmetic inequalities are the atomic formulas in
this signature. .

The terminology of first-order logic is a means to give a precise but general
account of some ideas that one encounters in high-school mathematics.

Structures

By formal definition, a structure is an ordered pair (A, J)—which can also be
referred to as 2—where:

3From the Greek dtopoc uncuttable, not compound, from tépoc a slice.
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(*) A is a non-empty set, which is called the universe of the structure;

(1) 7 is a function, written also

s — s%,

whose domain L is called the signature of the structure;

(1) s* is either an element of A or an n-ary operation or relation on A for
some positive n, for each s in L.

If £ ={so,51,...}, then 2 can be written as
(Aasomvslmv'“):

or just as (4, sg,s1,...) unless ambiguity would result (that is, unless some
structure different from 2 has the same universe and the same signature).

3.5.2 Examples. The following are structures:
(1) (N,T,0) (see § 1.2), or more briefly N;

(2) the power-set structure on a non-empty set {2, namely

(P(Y),N,U,°,2,9,0);

(3) the truth-structure*
(]Ba /\a \/7 ) 07 ]-7 ':)7

where F is the binary relation {(0,0), (0,1),(1,1)} on B. °

The last two examples are the same if the elements of B are von-Neumann
natural numbers and 2 is the von-Neumann natural number 1. Propositional
logic studies the truth-structure. The area of mathematics and logic called
model-theory studies all structures.

When 7 is as above in the structure (A4,7), and s is an element of £, then:
(x) s* is called the interpretation in 2 of s;
(1) s is called a symbol for s.
So s is one of the following, according to its interpretation:
(*) a constant;
(t) an n-ary function-symbol for some positive n in w;
(1) an n-ary predicate (or relation-symbol) for some positive n in w.

Since nullary operations on A can be considered as elements of A, a constant
can be considered as a nullary function-symbol.

Here are some observations about the definition of structure:

4The name truth-structure is my invention.
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(x) T am following the old convention® of denoting the universe of a structure
by a Roman letter, and the structure itself by the corresponding Fraktur or
Gothic letter. One might not bother to make a typographical distinction
between a structure and its universe. Indeed, as suggested in the examples,
the distinction is not easy to make with standard structures like B or Z
(which are commonly denoted by letters in a so-called blackboard-bold
font).

() Similarly, it is not always easy or convenient to distinguish in writing
between a symbol and its interpretation.

(1) In astructure (A,7), the interpretation-function J could be considered
to carry, within itself, the universe A. In any case, A and J work together
to provide interpretations of the symbols in £ as elements of, or operations
or relations on, a certain set, namely A itself. That’s all a structure is:
something that provides a mathematical interpretation for certain sym-
bols. What makes model-theory interesting is that the same symbols can
have different interpretions. Here begins the distinction between syntax
(formal symbolism) and semantics (mathematical meaning).

Terms and formulas

The terms of a first-order signature £ are conveniently written in Polish nota-
tion (see § 2.1). First, we introduce a list

T, L1, T2, .-

of variables (that is, of individual variables: variables standing for individual
elements of a universe). Then, by definition,

() all variables are terms of L;

(1) all constants of £ are terms of £;

(1) if f is an n-ary function-symbol in £, and (%o, ..., tn—1) is a list of n terms
of £, then
fto-tn1
is a term of L£; if f is binary, then ftgt; may also be written
(to f t1).

Finally, singulary function-symbols are sometimes written as superscripts
on their arguments: examples include n* in § 1.2, Line (1.5), and A€ in
§ 1.9, Line (1.23).

The atomic formulas are defined similarly:

5Used for example in [6]. Recent writers (as in [27] or [35]) use ‘calligraphic’ letters, not
Fraktur:

For a structure with universe: | A | B | C | ... M | N
Twrite: | A | B | &€ | ... m | N
Others may write: | A | B | C M | N

Another option (taken in [20]) is to use an ordinary letter like A for a structure, and then
dom(A) for its universe. (Here dom stands for domain.)
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(%) if to and ¢; are terms of £, then the equation
to =t1

is an atomic formula of £;

(1) if R is an n-ary predicate of £, and (to,...,t,—1) is a list of n terms of L,
then the string
Rto-+tn_1

is a term of L; if R is binary, then Rtgt; may also be written

to Rt;.

Finally, formulas in general can be defined:

(*) atomic formulas of £ are formulas of £;

(t)
(1) if ¢ and x are formulas of £, then (¢ A x) is a formula of L;
(8)

8

if ¢ is a formula of £, then so is —¢;

if ¢ is a formula of £, and z is an individual variable, then dz ¢ is a
formula of L.

These are the first-order formulas in the signature £; they constitute the
first-order logic in that signature. We can use other connectives in addition
to, or instead of, = and A. One will generally want to use an adequate signature
for propositional logic, like {—, A}. Once the criterion of adequacy is met, then
using fewer symbols makes the ensuing definitions and proofs easier to write
down.

We can also use the quantifier V; but formulas using V can be rewritten with 3
alone by means of (1.24) and (1.25) in § 1.9.

It is standard to write a formula —(tg = t1) as to # 1.

Interpretations of formulas

A term ¢ can be called n-ary if the set of its variables is a subset of {z, : k < n};
then ¢ is interpreted in an L-structure 2 as an n-ary operation t* on A. The
possibility that n = 0 is allowed; in that case, ¢ is nullary or constant, and its
interpretation in 2 is just an element of A. The precise definition is what one
should expect:

() if k < m, then the variable ) is an n-ary term, and as such is interpreted
in 2 as the n-ary operation ¥ — x, on A (here necessarily n > 0);

(t) every constant c is an n-ary term, interpreted in 2 as the constant n-ary
operation ¥ +— ¢ on A (or just as c¥, if n = 0);

(1) if (to,...,tx—1) is a list of n-ary terms, and f is a k-ary function-symbol,
then the term ftg--- fr—1 is n-ary and, as such, is interpreted in 2 as the
n-ary operation

T [T, tea1 (F))

on A (or as fA(to®,..., tx_1%), if n = 0).
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3.5.3 Example. In Z, the two ternary terms (zg - (x1 + 22)) and ((zo - 1) +
(zo-x2)) have the same interpretation, namely the ternary operation (z,y, z) —
x(y + z) on Z. We could also write this operation more precisely as (x,y, z) —
-2 (y+Z2). (See § 1.3 (1.7).) o

Interpretations of formulas take longer to define precisely, but the idea is that —,
A, and 3 symbolize complementation, intersection, and projection respectively.
An atomic formula ¢ can be called n-ary if the set of its variables is a subset of
{x; :i < n}. Then ¢ is interpreted in an L-structure 2 as an n-ary relation ¢
on A. This relation ¢ is the solution-set in 2 of the formula ¢. In particular:

(to = tl)m = {f e A" tom(f) = tlm(f)}, (340)
(Rto---tr_)* ={Z € A" : (t,*(Z), ..., tr_1 2 (Z)) € R*}. (3.41)

3.5.4 Example. The interpretation of ((zo - o) + (21 - 1)) = 25 (or just
20?2 +x1% = 25) in R is a circle of radius 5 and center (0, 0); the interpretation in
Z cousists of the integer points on this circle, namely (+5,0), (£4, 3), (+4, —3),

(£3,4), (£3,—4), and (0, £5). The interpretation of z¢? + 212 < 25 in R is the
interior of the disk bounded by the circle. °

In the sense described in § 3.2, a nullary relation is a truth-value; if n = 0, then
Equations (3.40) and (3.41) can be written as the equivalences

(to = tl)m =1 <— tog‘ = tlm; (342)

(Rt()'--tk,l)m =1 < (tom,...,tkflm) S Rm (343)

Quantifiers complicate matters, such as the defining of the arity of a formula.
Assume for the moment that we have defined this, and that ¢ and v are arbitrary
n-ary formulas, whose interpretations ¢% and 1)® are n-ary relations on A. Then

(_|¢)21 = A" ¢Ql _ ((bﬂ)c;
(@ Ap)* =g ny™.
If also n > 0, then (Jz,,_1 ) is an (n — 1)-ary relation on A, namely the set
of all (ag,...,a,_2) in A"~! such that (ag,...,an_2,b) € ¢* for some b in A.
This means

(Ekl'n,1 ¢)‘21 = szl[(bm]v (344)

where 7_; is the function
(1.07"';‘%71727'1.7171) — (1’0,...,.@71,2) (345)

from A™ to A"~!; such a function can be called a projection. (See Figure 3.6
and § 3.7.) Note then that the formula Jz,,_1 ¢ should be considered as (n—1)-
ary, not m-ary, even though it contains the variable z,,_;. The point is that this
variable is not free in the formula; it is only bound.

The set of free variables in a formula is defined recursively:
() fv(¢) is the set of variables appearing in ¢, if ¢ is atomic;

(1) tv(=¢) = tv(o);
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be

An—l
Figure 3.6: Projection

(1) tv(o A ) = fv(¢) Utv(y);
(8) vz ¢) = fv(g) ~ {z}.

Thus quantifiers bind variables, making them not free.

3.5.5 Example. Suppose R and S are binary predicates. Then
fv@z (x Ry ANz S z)) ={y, 2},

but fv(Frx RyAxz Sz)=fE@zxxz Ry)Ufv(z S z) = {y} U{x, 2} = {z,y, 2}
Thus parentheses make a difference. °

Suppose fv(¢) C {x : k < n}. Then ¢ is n-ary, and so is Iz ¢, no matter
what k is. If £ < n, then let 7' be the function

(1.07 ce 7xn71) | (:EOa vy Lh—1, Tkl - 7:1:77,71)

from A™ to A"~!; the function 7”_; defined on Line (3.45) above is a special
case. By definition then,

Gz @)™ = {(Wg)l[ﬂg[dﬂl]], if k <n.

In particular, if k& < n, then (3, ¢)® is the set of @ in A™ such that

(a’Oﬂ'"7ak717b7ak)+17"'7a’n71) S Qsm

for some b in A.

If k = n—1, then 3z ¢ is also (n— 1)-ary and, as such, can be interpreted in 2
as on Line (3.44) above; now we can see this as an application of the following
rule.

Suppose again that ¢ is n-ary. Then ¢ is also (n + 1)-ary. Suppose that, as
such, ¢ has the interpretation X in A. Then, as an n-ary formula, ¢ has the

interpretation 77 1[X].

3.5.6 Example. As a binary formula, 3z, z¢? + x,2 = 25 is interpreted in R
as {(x,y) € R? : =5 < z < 5}, which is [-5, 5] x R; as singulary, the formula
has the interpretation [—5, 5]. o
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Truth of sentences

By our definition, some formulas are nullary. Such formulas are called sen-
tences. If o is a sentence, then o% is a truth-value, as we have noted. In
particular, if ® = 1, then o is called true in 2, and we write

AE o; (3.46)
otherwise, o is false in 2, and we write
AF o.

Thus, a structure in signature £ is a context in which a sentence of L is true
or false. If o is true in 2, we may also say that 2 satisfies o.

For an alternative (but equivalent) method of defining truth, we need param-
eters, that is, constants standing for elements of the universe of a structure.
We have been working with an arbitrary structure 2 in an arbitrary signature
L. If to this signature we add a parameter for every element of A, then we
get a signature called £(A). Then 2 can be considered, in the obvious way, as
a structure with this larger signature: if b € A, then b is also considered as a
constant (belonging to £(A)) whose interpretation b® in 2 is just b itself.

Any formula can be made into a sentence by substitution of constants for its
free variables. Now, we have defined the set of free variables of a formula; but
that does not mean that every element of that set is free where it appears in the
formula; it might be bound. (Look again at Example 3.5.5.) If ¢ is a formula,
and z is a variable, and c¢ is a constant, then the result of replacing every free
occurrence of z in ¢ with ¢ is denoted

T,
c)

this is defined recursively as follows:

(x) if ¢ is atomic, then ¢Z is just the result of replacing every occurrence of
x with ¢;

(=) is ~(¢7);

(@ ANP)E is (02) A (62);

(3z ¢)* is Jx ¢ (that is, the formula does not change);
(

(
(4
(8
1

Then a particular occurrence of x in ¢ is free if it is replaced by c in the
formation of ¢¥; otherwise, the occurrence is bound.

If ¢ is a formula of £, and b € A, then ¢ is a formula of £(A). We can use
Equivalences (3.42) and (3.43) to define truth of atomic sentences of £L(A) in 2.
If o is an arbitrary sentence of £(A) for which truth in 2 is defined, then

)
)
)

Jy $)% is Jy (¢%), if y is a different variable from z.

AE -0 < AF o;
if also 7 is a sentence of L(A) for which truth is defined, then

AF(oAT) < AFo & AET.



3.5. FIRST-ORDER LOGIC 105

Finally, if {z} C fv(¢), and truth of ¢* is defined for all a in A, then
AEIr ¢ <= {ac A:AE (¢7)} # @.

We now have a recursive definition of truth of sentences in structures. The
definition can be extended in an obvious way to allow other Boolean connectives.
For example,

AE (0 —7) <= AFoVAET
= AF o VAFET.

Likewise,
AEVr ¢ < {ac A:AFE (¢2)} = A.

Using the definition of truth, we can define interpretations of formulas. First,
note that we can perform more than one substitution at once. If ¢ is n-ary, and
¢ is an n-tuple of constants, then, instead of writing

o ,,.Tn—-1
Cco Cn—1"
we can write
¢[CO7 cee 7cn—l]

or just ¢[¢]. Then
P* ={a € A" AE p[a]}.
Strictly, the last equation is a theorem, namely the theorem that our two ways

of defining interpretations are equivalent.

If a formula is described as

d)(uO? R 7’11/77/—1),
this means that its set of free variables is a subset of {ug,...,u,—1}. In this
case, the formula

(ZS(C()7 . 7Cn—1)
is just ¢(ug, - .., Un—1)20 -+ r ).

3.5.7 Example. The sentence
_'(—\3.130 —\(PQL‘Q AN —\on) AN (—E'J?O _‘P.IO A 3.130 —\Qﬂfo)).

is true in every structure in the signature { P, Q}, where P and @ are singulary
predicates. To prove this, note first that the sentence is just an official version
of

Va (Pr — Qx) — (Vo Px — Vx Qx).

To prove that this is true in all structures in {P, @}, it is enough to show that
A F (Vo Pr — Vo Q) whenever 2 F Vo (Px — Qx). So suppose

A E Vo (Pzr — Q). (3.47)
It is now enough to show that, if also A F Vx Pz, then % F Vx Qz. So suppose
A E Vo Pz. (3.48)

Let a € A. Then A F Pa, by (3.48). But 2 F (Pa — Qa), by (3.47). Hence
2 F Qa. Since a was arbitrary, we have 2 F Va Qz. °
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Theories

The theory of a structure 2 in a signature £ is the set of sentences of £ that
are true in .

The notation for truth in Line (3.46) is standard, although an alternative no-

tation such as Fg ¢ might be preferable, in order to avoid confusion with the
notion of logical consequence, now to be introduced by analogy with § 2.7.

Suppose X is a set of sentences of a first-order signature £, and 2 is a structure
in £. Then 2 is a model of ¥ if every sentence in ¥ is true in £. A sentence
7 of L is a logical consequence of X if 7 is true in every model of ¥; in this
case, we can write

YET.

A set of sentences is a theory if it contains all of its logical consequences. You
should check that the theory of a structure is indeed a theory in the sense just
defined.

If some theory T is the set of logical consequences of a set 3 of sentences, then
> axiomatizes T, or X is a set of axioms for 7. It is a consequence of Godel’s
Incompleteness Theorem® that the theory of N in the signature {*,+,-,0,1}
cannot be recursively axiomatized: there is no program that can generate a
complete set of axioms for the theory. By Mojzesz Presburger’s earlier work,”
the theory of N in the signature {*,+,0,1} is recursively axiomatizable [27,
§ 3.1, pp. 81-84]: the axioms are

(x) Vo o™ #£ 0 (that is, Vo =(zT = 0));
(1) Vo vy (27 =y -z =y);

(1) Vex+0=u;

(§) Vezx+1=zt

(1) Voo +y* —( +y)*

(I ¢(0) AVz (¢p(z) — ¢(xT)) — Vo ¢(x), for all formulas ¢(z) of {+,+,0,1}.

The last line is an axiom-scheme: it describes a set of axioms (in fact, an
infinite set).

In general, a theory T in a signature £ is complete if

TEo <= TF-0o
for all sentences o of L. In particular then, the theory of a particular structure
is always complete. Two complementary problems of model-theory are:

(x) To show that a particular set of sentences axiomatizes a complete theory;

(t) To find a set of sentences that axiomatizes the (complete) theory of a
particular structure.

Presburger’s result shows that the former can sometimes be done; Gédel’s result
shows that the latter cannot always be done.

6Published in 1931; available in English in [48].
7In Warsaw, in 1928, in his master’s thesis, at the suggestion of Alfred Tarski. Then
Presburger went into the insurance industry. He died under the Nazis. [15, pp. 73-74]
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If T is a theory in a signature £, then two n-ary formulas ¢(Z) and (&) of £
are T-equivalent if

TE VZL’O N 'ViL’n_l ((f)(.’ﬂo, . ,xn_l) > 1/)(:]5‘0, e ,ZL’n_l)).

One way to learn about a theory and its models is to try to eliminate quanti-
fiers. A theory T in a signature £ admits elimination of quantifiers if for
every formula of £, there is a formula that is T-equivalent to it, but that con-
tains no quantifiers. Presburger proved elimination of quantifiers for the theory
axiomatized above, but in a larger signature.

Higher-order logics

First-order logic uses individual variables, but no other kinds of variables. In
particular, there are no variables for relations. Relations are symbolized by
predicates in first-order logic, and predicates stand for different relations in
different structures; but in a particular first-order logic, predicates are constant
in the sense that they cannot be preceded by quantifiers.

In second-order logic, variables standing for relations are allowed. The third
of the properties of N listed at the end of § 1.2 is second order in this sense,
since it refers to every subset of N.

Likewise, R is characterized (among the structures called ordered fields) by the
second-order property of completeness, namely that every set of real numbers
with an upper bound has a least upper bound.

First-order logic has a compactness theorem,® namely that if every finite subset

of a set of sentences has a model, then the whole set has a model. Propositional
logic has a similar theorem; second-order logic does not. This is a reason why
model-theorists work mostly with first-order logic.

Exercises

(1) Letting P and @ be singulary predicates, determine, from the definition
of F, whether the following hold. (A method is shown in Example 3.5.7.)
(%) (3z Pz — 3z Qz) E Vz (Pr — Qu);
) (Vo Px — 3z Qx) F 3z (Px — Qux);
) dz (Px — Qx) F (Vz Px — 3z Qx);
) {3z Pz, dz Qz} E Jx (Px A Qx);
() 3z Pz — Jy Qy EVa Jy (Pxr — Qy).

(
(1
(8

(2) Let £ = {R}, where R is a binary predicate, and let 2 be the L-structure
(Z,<). Determine ¢* if ¢ is:
(*) V"El (R.’Elxo — Rxol'l);

(T) V‘TQ (RIEQZ'O V Rl’l.’EQ).

8Proved by Kurt Goédel for countable signatures in his doctoral dissertation in Vienna in
1929; proved generally by Mal’tsev in the Soviet Union, and independently by Leon Henkin
[19] in 1948 in his doctoral dissertation at Princeton. [20, p. 318]



108 CHAPTER 3. SETS AND RELATIONS

(3) Let £ be {S,P}, where S and P are binary function-symbols. Then
(R, +,-) is an L-structure. Show that the following sets and relations are
definable in this structure:

() {0}

() {1}

(1) {aeR:0<al;

(8) {(a,b) e R*:a < b}.

(4) Show that the following sets are definable in (w,+,-,<,0,1):

() the set of even numbers;

(1) the set of prime numbers.

(5) Let R be the binary relation
{(z,x+1):z€Z}

on Z. Show that R is 0-definable in the structure (Z, <); that is, find a
binary formula ¢ in the signature {<} such that ¢(»<) = R.

3.6 Equipollence

By the definitions of the previous section, a non-empty set is a structure in the
empty signature.

If a set is finite, then in principle we can count its elements. Two finite sets
then have the same size if they have the same number of elements. What if the
sets are infinite? We can’t count them separately; but in theory we can count
one of the sets by using the elements of the other:

Two sets are equipotent or equipollent? if there is a bijection from one to
the other. If A and B are equipollent, we can write

A~ B.

Instead of =(A = B), we may write A % B. If there is an injection from A to
B, we write

A< B.
If there is an injection, but no bijection, we write

A < B; (3.49)
in this case, B is strictly larger than A.

3.6.1 Examples.
(1) If A+# @, then & < A.
(2) Zx={xe€eZ:Iy2y=uz}. o

9The Latin participles POTENT- and POLLENT- both mean able.
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It is a remarkable fact,'® to be proved below in Theorem 3.6.3, that Sen-
tence (3.49) may hold even when both A and B are infinite.

The following gives some justification for the name power-set.

3.6.2 Theorem. Ifn € N, and a set A has n elements, then P(A) =~ B".

Proof. We can consider A as a set

{ao, [SPEN ,an_l}.

Let f be the function from P(A) to B™ given by

f(B)=(eq,--,en—1),

where
L 1, if a; € B,
‘1o, ifa; ¢ B.

Let g be the function from B" to P(A) given by

g((eoy. .. en-1)) ={a; :e; =1}.
Then go f =idp4) and fog =idg-. So f is a bijection by Theorem 3.3.4. [
The last theorem can be modified to make sense for infinite sets. In § 3.2, a
couple of formal definitions of n-tuples are mentioned. By yet another definition,
an n-tuple of elements of a set A is just a function!! from {0,...,n — 1} (the

von-Neumann natural number n) into A. To indicate explicitly the set of such
functions, I propose to use the notation

"A.

Then "A =~ A™. The latter set could be defined as the former. I shall use the
notation A™ when the precise definition of its elements is not important: when
all that matters is that

a=b << /\(J,]CZb}C
k<n

for all elements @ and b of A™. (Compare the use of N instead of w for the set

of natural numbers, as described in § 1.2, when the composition of an individual

natural number is not important.) We can generalize the new notation, writing
B

for the set of functions from A to B. Then for all sets A, the function

freAzeA: f(x) =1}

10Discovered by Cantor.
M Many writers will give this function the domain {1,2,...,n} instead of {0,1,...,n — 1}.
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is a bijection from 4B to P(A) whose inverse is Z +— Yz, where

() 1, ifxecC;
xTr) =
xe 0, ifx¢C;

for all subsets C of A. (Here x¢ is the characteristic function of C on A; the
letter chi may cause confusion, but it stands for the Greek yopaxtip.) Thus

for all sets A. The inequality
n<?2" (3.50)

holds for all natural numbers n (see § 4.5, Exercise 3); so the power-set of a
finite set is always strictly larger than the original set. The same is true for all
sets:

3.6.3 Theorem. A < P(A) for all sets A.

Proof. We have an injection z — {z} from A to P(A4), so A < P(A). Suppose
f is an arbitrary injection from A into P(A). Let B be the subset {z € A: z ¢
f(z)} of A. Then B is not in the range of f. For, suppose z € A. If z € B,
then x ¢ f(x), so B # f(x). If © ¢ B, then z € f(x), so again B # f(x). So
there is no bijection between A and P(A). O

Suppose A < B and B < A; do we then have A ~ B? In fact we do, by
Theorem 4.8.11, but the proof is not easy.

3.7 Equivalence-relations

Let R be a binary relation on a set A. The following are some properties that
R might have. Now, R does have these properties, for example, if R is A4 (as
defined in § 3.4). In any case, we say that R is:

(%) reflexive, if (A, R) FVz z R x;
(t) symmetric, if (4, R) EVaVy (x Ry — y R x);
(1) transitive, if (A,R)EVzVYyVz(x RyAyRz— xR z).

An alternative formulation can be given in terms of the notions of § 3.4. The
relation R is:

(%) reflexive if and only if Ay C R;
() symmetric if and only if R = R;
(1) transitive if and only if R/R C R.

A reflexive, symmetric, transitive relation is called an equivalence-relation.

3.7.1 Examples.

(1) Truth-equivalence (§ 2.2) is an equivalence-relation on the set of propo-
sitional formulas. (Likewise, if T is a first-order theory of £, then T-
equivalence (§ 3.5) is an equivalence-relation on the first-order formulas of

L)
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(2) If R is a relation from A to B, then R/R is an equivalence-relation
on A.

(3) If n is an integer, then congruence modulo n is an equivalence-
relation on Z. This is the relation consisting of pairs (a,b) such that

a=b (modn)
that is, n | a — .
(4) On N2, we can define an equivalence-relation ~ by
(a,b) ~ (¢,d) <= a+d=b+c
(See § 4.3 for elaboration.)
(5) Similarly, on Z x (Z ~. {0}), we can define an equivalence-relation ~ by
(a,b) = (¢,d) < ad = be.

(Again, see § 4.3.)
(6) Equipollence is an equivalence-relation (on any set of sets).

(7) If k < n, and A is a set, then there is an equivalence-relation ~} on

A™ given by
- n i _
(ZNkb — /\aj—bj,
j<n
7k
that is, @ ~} b — mh(d) = WZ(E), where 77! is as in § 3.5. .

Suppose ~ is an equivalence-relation on A. If b € A, we can define
b/~v={xe€A:b~uz};

this is the ~-class of b, or the equivalence-class of b (with respect to ~;

the notation here must not be confused with the notation for composition of
relations). If the equivalence-relation is clear, one might write [b] instead of b/~,
as in the following:

3.7.2 Lemma. If an equivalence-relation on A is given, then
[b] =[] <= [bIN[]#2
for all b and ¢ in A.

Proof. Exercise. O

The quotient of A by the equivalence-relation ~ is the set {[b] : b € A}, which
can be denoted

Al

this can be read as A modulo ~. Then there is a quotient-map or projection
from A to A/~, namely the function
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This function might be denoted 7. Suppose also f : A — B. One may ask
whether there is a function g from A/~ to B such that f = gom.. That is,
does g exist so that the following diagram commutes?

A
B
Yet another way to formulate the question is, does f have 7., as a factor? Nec-
essary and sufficient conditions for a positive answer are given by the following.

Af~

3.7.3 Theorem. Suppose E is an equivalence-relation on A, and f : A — B.
The following conditions are equivalent:

(x) ECf/f;
() e Ey = f(z) = f(y) for allz and y in A;

(1) there is a function g from A/E to B such that g([z]) = f(x) for all x
in A.

Proof. Exercise; see Examples 3.7.4 below. O]

The function g in the theorem can be written

[z] — f(2).

Such an expression does not automatically define a function. If it does, we say
the function is well-defined.

3.7.4 Examples. The following parallel Examples 3.7.1:

(1) If Fis an n- -ary pr0p081t10na1 formula in a signature £, then there is a
function & — F(&) or F from B" to B. Hence there is a function F — F
from the set Fm,, (L) of n-ary propositional formulas of £ to the set B"B.
By definition of truth-equivalence, F' ~ G if and only if F = G. Hence
there is a well-defined injection F/~ — F from Fm,(£)/~ to B"B; if £ is
adequate, then this function is also surjective.

(2) If f: A— B, then A/(f/f) ={{a€ A: f(a) =b}:be f(A)}.

(3) If n > 0, then the distinct elements of the quotient of Z by congruence
modulo n are [0], [1], [2], ..., [n —1].

(4) The function [a,b] — a — b is a well-defined bijection from N2/~ to Z.
(In § 4.3, the structure Z will be defined in terms of N so that there is
such a bijection.)

(5) The function [a, b] — a/b is a well-defined bijection from Zx (Z~{0})/~
to Q. (In § 4.3, the structure Q will be defined in terms of Z so that there
is such a bijection.)
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(6) The equipollence-class of a set A can be called the cardinality of A
and denoted

Al

Equipollent sets are sets having the same equipollence-class; such sets can
also be said to have the same cardinality.

(7) The function [Z] — 77 (Z) is a well-defined bijection from A™/~} to
An—l. [

A partition of A is a subset P of P(A) such that:
() if B and C are in P, and BN C # &, then B = C}

(1) every element of A is an element of some element of P.

3.7.5 Theorem. If ~ is an equivalence-relation on A, then A/~ is a partition
of A. Conwversely, if P is a partition of A, then the relation

{(z,y) € A?: (3X € P) {z,y} C X}
s an equivalence-relation on A.

Proof. Exercise. O

Exercises

1) Prove Lemma 3.7.2.

3

(1)

(2) Prove Theorem 3.7.3.
(3) Prove Theorem 3.7.5.
(4)

4) Let A ={0,1,2,3,4,5,6,7,8,9}.

(a) Define an equivalence-relation FE on A so that |[A/E| = 5.
(b) Can you define an equivalence-relation F' on A so that |[A/F| =77

(5) Define an equivalence-relation ~ on Z so that there is a bijection from
Z/~ to N.

(6) For every property in the set {reflexive, symmetric, transitive}, find a set
A and a relation R on A that has just the other two properties.

(7) Suppose R is a reflexive and symmetric relation on A, but R ¢ R/R. Can
you find an equivalence-relation S on A such that R C S?

3.8 Orderings

Let R be a binary relation on A. The following possible properties complement
those given in § 3.7. The relation R is:

(x) irreflexive, if (A, R) F Vz =(z R z);
(1) anti-symmetric, if (A,R)FVzVy (t RyAy Rz — x=y).
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Figure 3.7: The remains of the temple at Assos: an example of the Doric order
of architecture. Think of the columns, when arranged properly, as an order in
our sense. Now the columns are only partially ordered!

Again we have alternative characterizations. The relation R is:
(%) irreflexive if and only if RN A4 = &;
(1) anti-symmetric if and only if RN R C A 4.

A reflexive, anti-symmetric, transitive relation on a non-empty set is called a
partial ordering. A set with a partial ordering is a partially ordered set or
a partial order. Thus an order is a kind of structure in a signature consisting of
a binary predicate. A strict partial ordering is an irreflexive, anti-symmetric,
transitive relation on a non-empty set. Note then that a strict partial order is
technically not a partial order (see Exercise 1). In any case, in my terminology,
an order is a kind of structure (see Figure 3.7); an ordering is the relation that
is part of an order. However, this terminological distinction is not of great
importance.

3.8.1 Examples.
(1) (P(A), Q) is a partial order; so is (B, C), if B C P(A).

(2) (P(A),C) is a strict partial order.

(3) (See the first of Examples 3.7.4.) If we understand F as a binary re-
lation, then (Fm,(L)/~,F) is a partial order. The case n = 2 can be
depicted as in Figure 3.8.

(4) (Z, |) is a partial order.
(5) (A, A,) is a partial order.
(6) (A,2) is a strict partial order.
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VAN

PvQ P—qQ Q—P PlQ

LSRN

WA

PAQ Q=»P P»Q PAQ

N

Figure 3.8: In this depiction of the set of (truth-equivalence-classes of) propo-
sitional formulas in two variables, F' E G if an only if G can be reached from F
by travelling upwards along the drawn lines. The new connective - here has
the obvious meaning.

(7) The relation < on sets is not a partial ordering; but we shall see in
§ 4.8 that it ‘induces’ a partial ordering of cardinalities. °

3.8.2 Lemma.
(*) If (A,R) is a partial ordering, then (A, R~ A,) is a strict partial

ordering.
(1) If (A, S) is a strict partial ordering, then (A, S U A 4) is a partial or-
dering.

Proof. Exercise. O

In the lemma, one might say that R~ A4 is associated with R, and SU A 4
with S.

A partial order (A, R) is a total order (or a linear order) if
(A,R)EVax Yy (x RyVy R z),

that is,
RUR = A2

If < is a total ordering, then the associated strict total ordering can be denoted
by <, and wvice versa.

3.8.3 Example. (Z,<) is a total order; (Z, <) is a strict total order. .
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Suppose (A, R) and (B,S) are partial orders, and f : A — B. Then f is
order-preserving if

t Ry = f(x) S f(y)
for all x and y in A. An order-preserving function is an example of a more
general notion:

Suppose 2 and B are two structures in a signature £. A function f from A to
B is called a homomorphism from 2 to B if

AE dlag, ... an—1) = BE &(f(ag),--., flan-1))

for all atomic formulas ¢(xq,...,2,—1) of £ and all a; in A, for all n in N.
Moreover, f is an isomorphism if f is invertible and f~! is a homomorphism
from B to 2.

A homomorphism is thus a function that preserves structure; it preserves the
symbols in a signature (hence it preserves the atomic formulas that use them).
The existence of an isomorphism shows that two structures are the same as
structures. If an isomorphism exists between 2 and B, then 2 and B are called

isomorphic, and we write
A =B,

Isomorphism is an equivalence-relation. Isomorphic structures have the same
theories.

3.8.4 Examples. Here are some kinds of homomorphisms and isomorphisms:

(1) An order-preserving function is a homomorphism of partial orders. An
isomorphism of partial orders is an invertible order-preserving function
whose inverse is also order-preserving.

(2) Any function from a non-empty set to another is a homomorphism of
sets. Equipollence is isomorphism of sets.

(3) By Theorem 3.4.7,if f : A — B, then X ~— f~1[X] is a homomorphism
from (P(B),N,U,°) to (P(A),N,U,°).

(4) More examples of homomorphisms and isomorphisms are in §§ 4.1, 4.3
and 4.6. °

The following is a representation theorem: it shows that every partial order
can be represented by (is isomorphic to) a structure of the form given in the first
of the Examples 3.8.1. Note how the proof of the theorem uses every property
in the definition of partial orders.

3.8.5 Theorem. For every partial order (A, R), there is a set Q and a subset
B of P(Q) such that (A, R) = (B, Q). In fact, Q can be A.

Proof. Let f be the function z — {y € A:y Rz} from A to P(A). Then f is
injective: Indeed, suppose ¢ and d are elements of A. If ¢ R d and d R ¢, then
¢ = d since R is anti-symmetric. Suppose ¢ # d. Then we may assume —(c R d).
Then ¢ ¢ f(d). But ¢ € f(c) since R is reflexive. Therefore f(c) # f(d). Let
B = f[A]; then f gives a bijection between A and B.

Also, f is order-preserving: Suppose ¢ R d. If e € f(c), then e R ¢, so e R d
since R is transitive; hence e € f(d). Thus f(c¢) C f(d). This shows that f is
order-preserving.
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{1,4} {1,2,3,6}

6
/3 b 1Ly {1,3} {1,5}
NN

Figure 3.9: Two isomorphic partial orders:

{1}

But X — f71[X] is also order-preserving (as a function on B, this set being
equipped with the relation C): If f(c) C f(d), then ¢ € f(d) since ¢ € f(c); so
cRd.

Therefore f is an isomorphism from (4, R) to (B, Q). O

3.8.6 Examples.

(1) The partial ordering ({1,2,3,4,5,6},|) is isomorphic to (B, C), where
B is the set

{{1},{1,2},{1,3},{1,2,4},{5},{1,2,3,6}}.

See Figure 3.9.

(2) A set of propositional formulas in n variables, partially ordered by
logical consequence (that is, by F), is isomorphic to a set of Boolean
combinations of n suitable sets, partially ordered by inclusion. Compare
Figure 3.8 to Figure 3.10.

Exercises

(1) Show that no partial ordering is a strict partial ordering.
(2) Are there partial orders that are also equivalence-relations?
(3) Are there relations that are both symmetric and anti-symmetric?

(4) Write down the ordered pairs that belong to |, considered as a relation on
{1,2,3,4,5,6}. Can you add pairs to this relation so that it becomes a
total ordering?

(5) More generally, if R is a partial order on a finite set A, is there a total
ordering S on A such that R C S?

(6) Find sets A and B such that all of the Boolean combinations depicted in
Figure 3.10 are distinct.
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Figure 3.10: A partial order of sets. (The sets A and B here should be inde-
pendent in the sense that all Boolean combinations here are distinct.)

3.9 Infinitary Boolean operations

The union of two sets is the set comprising everything that is in one or the other
of the sets. There is no reason to restrict unions to two sets. Instead of writing
AU B, we might write

{4, B}

This is the union of the single set {A, B}, whose elements happen to be the sets
A and B. Then |J{A4,B,C} is AUBUC, and so forth. If S is a set of sets,
then the union of § is the class

{z:y@yeSnzeyk

Us.

Unions in the latter sense are infinitary, in the sense that the set S may be
infinite. Note that no universal set is specified in the definition of (JS. The
union of a set of sets is generally considered to be a set itself:

this is denoted

3.9.1 Axiom (Union). Infinitary unions are sets.

As there are infinitary unions, so there are infinitary intersections: If S is a
set of sets, one of which is A, then

ﬂS:{xeA:Vy(yeS—chy)}. (3.51)

So AN B is ({A, B}, and so forth.

3.9.2 Theorem. The intersection of a non-empty set of sets is a set.
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Proof. By the Axiom of Separation, 1.2.3, the right member of Equation (3.51)
is a set. O

The following will be useful in the next chapter, starting in § 4.1.
3.9.3 Theorem. Let S be a set of sets, one of which is A. Then

AscAaclys.
Proof. Exercise. O

Sometimes, in an infinitary union (JS (or an intersection (S), the set S is
given as the range of a function. Say f : A — P(B). Then we can write

/1A= () f(2)

TEA

and U fA] = Uyea f(2).
3.9.4 Examples.
(x) R=U,en(=1=n,n+1);
(1) Myenln, 00) = &;
() Npen[=1/(n+1),1/(n+1)] = {0}.

Exercises
1) Find |J @ and |J{2}.

2) Can you define (@7

4

(1)
(2)
(3) Find a set S of sets such that | JS = S.
(4) Prove Theorem 3.9.3.

()

5) Prove the infinitary analogues of some propositions in § 3.4: Suppose

f:A— B,and S CP(A), and 7 C P(B). Then:
(a) fFUS]=U{fIX]: X €S}

(b) fINS] € M{f(X): X € S}

(c) the last inclusion is an equality if f is injective;
(@) fAUTI=U{f X1 X eTh

(e fHUNTI=N{f1X]: X e T}



Chapter 4

Numbers

4.0 The Peano axioms

In a book called The Principles of Arithmetic, Presented by a New Method [47],
originally written in Latin and published in 1889, Giuseppe Peano describes
the positive integers by means of nine strings of symbols—strings that he calls
azioms. In our terminology, three of Peano’s axioms say that equality of pos-
itive integers is an equivalence-relation; another says that everything equal to
a positive integer is a positive integer. The remaining five axioms have more
mathematical content, and versions of them are sometimes listed by themselves'
as the axioms for the positive integers; these axioms may or may not be called
the Peano axioms. Two of these axioms say that 1 is a positive integer and that
every positive integer has a successor that is a positive integer.

The remaining three of Peano’s axioms correspond to the three statements at
the end of § 1.2, except that the latter statements concern the natural numbers,
rather than just the positive integers. In model-theoretic terms, Peano’s axioms
amount to the assertion that a certain structure is a model of the theory axiom-
atized by certain sentences. (However, one of these sentences is second order.)
I propose to make this an assertion about the natural numbers as follows:

4.0.1 Axiom (Existence of N). In the signature {0, T}, there is a structure N
such that:

(x) NEVz 2zt #£0;

() NEVz Vy (2t =yt — 2 =y);

(1) (N,A) E PO AVx (Px— P(at)) — Vo Px, whenever A CN, and P is
a singulary predicate.

(In the last line, it should be understood that A is to be considered as the
interpretation of P in N.) Henceforth, N is simply such a structure as named
in this Axiom.

I shall refer to the sentence Vo 7 # 0 as Axiom Z, since it says that Zero is
not a successor. Then Vz Vy (z+ = y* — z = y) is Axiom U, since it says

LFor example, in [23, pp. 988 f.] or [25, § 1].

120
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that successors are Unique when they exist. Finally, there is Axiom I, or the
Axiom of Induction, a second-order sentence that can be written formally as

VP (PO AVx (Pz — P(z")) — Vx Px),

where P is a singulary predicate-variable.  Collectively, Axiom Z, Axiom U,
and Axiom I can be called the Peano Axioms.

Axiom 7 is that the immediate predecessor of 0 does not exist as an element of
N. The Axiom of Induction is that a set contains all natural numbers, provided
that it contains 0 and contains the successor of each natural number that it
contains. Later we shall define the binary operation (x,y) — z+y on N so that
T =x+1.

In § 1.2, T gave an informal definition of the set w of von-Neumann natural
numbers. The definition is such that the structure (w,’, @) satisfies the Axiom
of Induction automatically. In Theorems 1.2.4 and 1.2.6, we proved that this
structure satisfies Axiom Z and Axiom U. Thus we proved the Axiom of Exis-
tence of N, 4.0.1—on the assumption that w exists. Now I want to justify this
assumption by means of another set-theoretic axiom:

4.0.2 Axiom (Infinity). There is a set Q, consisting only of sets, such that
@ € Q, and for all sets A, if A € Q, then A’ € Q.

Let € be so. Then () contains all of what we have called the von-Neumann
natural numbers; but it may contain other things. We can throw out these
other things, obtaining w itself, by taking an appropriate intersection. That is,
we can make the definition

w=[HrePQ:@canVy(ycz—yU{y}lca)l (4.1)
Now we can prove that w has the properties claimed for it in § 1.2:

4.0.3 Theorem. (w,’, @) is a model of the Peano azioms.

Proof. Let S be the set whose intersection is defined to be w in Equation 4.1.
Then w is a set by Theorem 3.9.2.

(*) By definition, every element of S contains &; so w contains &, the proof
of Theorem 1.2.4 is valid, and w satisfies Axiom Z.

() Every element of S also contains the set-theoretic successor of every set
that it contains; so w satisfies Axiom U, by the proof of Theorem 1.2.6.

(1) Finally, if A contains &, and contains the successor of its every element,
then A € S, and therefore w C A by Theorem 3.9.3; so w satisfies Axiom I.

Thus (w,’, @) is a structure satisfying the Peano axioms. O

We have now given a precise definition of the class w defined informally in
§ 1.2.2 We also observed in § 1.2 that, in w, every non-zero von-Neumann
natural number is a successor; this is true generally in every model N of the
Peano axioms, by the Axiom of Induction:

2More precisely, we have given two definitions—one less formal, one more—of structures
satisfying the Peano axioms. That only one structure can fit the definitions will be a conse-
quence of Theorem 4.1.2.
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4.0.4 Lemma. FEvery non-zero natural number is a successor. Symbolically,

NEVz (r=0V3Iyy"t =2).

Proof. Let A be the set of natural numbers comprising 0 and the successors.
That is, A = {0} U{z € N: Jy y™ = z}. Then 0 € A by definition. Also, if
n € A, then nt is a successor, so nt € A. By induction, A = N. O

In the last proof, the full inductive hypothesis n € A was not needed; only n € N
was needed.

4.0.5 Theorem. The successor-operation is a bijection between N and N\ {0};
in particular,
N~ N~ {0}.

Proof. Exercise. O

By the definition suggested by Richard Dedekind? in 1882, a set is infinite if it
is equipollent with a proper subset of itself. (See also § 4.8.) Then we have:

4.0.6 Corollary. N is infinite.

Proof. Immediate from the theorem. O
4.0.7 Lemma. Every natural number is distinct from its successor:

NEVz 2T # a.

Proof. Let A = {x € N: " # x}. Now, 0T is a successor and is therefore
distinct from 0 by Axiom Z. Hence 0 € A. Suppose n € A. Then nt #
n. Therefore n™ # n™ by the contrapositive of Axiom U; so n™ € A. By
induction, A = N. O

4.1 Recursion

To able to say much more about the natural numbers, we should introduce the
usual arithmetic operations. We need not do this by axioms; we can define the
operations. But how? There are several possible approaches. The approach
that I propose to take starts with the following theorem. Its proof is difficult,
but once we have the theorem, then we can freely define many useful operations
and functions.

4.1.1 Theorem (Recursion). Suppose B is a set with an element ¢, and f :
B — B. Then there is a unique function g from N to B such that g(0) = ¢ and

g(n™) = f(g(n)) (4.2)
for all n in N.

3See Dedekind’s note on [9, p. 63].
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Proof. Recall from § 3.3 that a function from N to B is literally, by definition,
a subset of N x B. Let S be the set whose members are the subsets R of N x B
that have the following two properties:

(1) (0,¢) € R;
(2) (n,t) € R = (n™T, f(t)) € R, for all (n,t) in N x B.
In one line, we can write
S={ReP(NxB):0RcAVY(z,t) (xr Rt —xt R f(t))}.

So the members of & have the properties required of g, except perhaps the
property of being a function.

The set S is non-empty, since N x B itself is in S. Let g be the intersection (| S.
Then g € S (exercise).

We shall show that g is a function with domain N. To do this, we shall show by
induction that, for all n in N, there is a unique ¢ in B such that (n,t) € g.

For the base step of our induction, we note first that (0,¢) € g. To finish the
base step, we shall show that, for every ¢ in B, if (0,t) € g, then ¢ = ¢. Suppose
t # c. Then neither Property (1) nor Property (2) requires (0,¢) to be in a given
member of S. That is, if R € S, then R~ {(0,t)} still has these two properties;
so, this set is in S. In particular, g \ {(0,¢)} € S. But g is included in every
member of S, by Theorem 3.9.3; in particular,

9 C g~ {(0,1)}
Therefore (0,t) ¢ g. By contraposition, the base step is complete.
As an inductive hypothesis, let us suppose that n € N and that there is a unique
t in B such that (n,t) € g. Then (n*, f(t)) € g. To complete our inductive
step, we shall show that, for every w in B, if (n™,u) € g, then u = f(t). There
are two possibilities for wu:

(x) If (nT,u) = (y*, f(v)) for some (y,v) in g, then n™ =y, son =y
by Axiom Uj this means (n,v) € g, so v =t by inductive hypothesis, and
therefore u = f(v) = f(t).

(1) If (n*,u) # (y*, f(v)) for any (y,v) in g, then (as in the base step)
g {(nT,u)} € 8,50 g Cg~{(nT,u)}, which means (n*,u) ¢ g.

Therefore, if (n*,u) € g, then (n™,u) = (y*, f(v)) for some (y,v) in g, in which
case u = f(t). Therefore f(t) is unique such that (n™, f(t)) € g.

Our induction is now complete; by Axiom I, we may conclude that g is a function
on N with the required properties (1) and (2). If h is also such a function, then
h €S8, s0 g C h, which means g = h since both are functions on N. So g is
unique. L]

In the statement of Theorem 4.1.1, (B, f, ¢) is a structure in the signature {,0}.
Also, Equation (4.2) is that the following diagram commutes:

+
N —— N

a2l |

B —— B
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That is, from the N on the left to the B on the right, there are two different
routes, but each one yields the same result. In fact, the theorem is simply that
there is a unique homomorphism from (N, T, 0) to (B, f,c).

A recursive definition, or a definition by recursion, is a definition of a
function on N that is justified by Theorem 4.1.1. Informally, we can define such
a function g by specifying g(0) and by specifying how g(n™) is obtained from
g(n).

Sections 4.2 and 4.4 will provide several important examples of recursive defini-
tions. Such definitions are sometimes?* called inductive definitions, or definitions
by induction. However, this terminology is misleading when Axiom I is called
the Axiom of Induction. Logically, the Recursion Theorem is equivalent to the
three Peano Axioms together; the Recursion Theorem is strictly stronger than
the Induction Axiom, in the sense that there are models of Axiom I that do not
satisfy Theorem 4.1.1. The remainder of this section is devoted to proving this.

Let us say that a structure admits (definition by) recursion if it satisfies
the Recursion Theorem. That is, a structure 2 in the signature {*,0} admits
recursion if and only if, for any other structure 95 in this signature, there is a
unique homomorphism from 2 to 8.

Similarly, structures that satisfy the Induction Axiom can be said to admit
(proof by) induction.

4.1.2 Theorem. All structures that admit recursion are isomorphic.

Proof. Suppose 2 and B admit recursion. Then there are unique homomor-
phisms f from 2 to B and g from B to 2. Hence the composition g o f is a
homomorphism from 2 to itself; so it is the unique such homomorphism. But
id4 is also such a homomorphism. Therefore go f =id 4. Similarly, fog =idp.
Therefore g = f~*, by Theorem 3.3.4. U

4.1.3 Corollary. All structures that admit recursion satisfy the Peano axioms;
in particular, they admit induction.

Proof. By the theorem, every structure that admits recursion is isomorphic
to (N, %,0). This satisfies the Peano axioms; hence so does every structure
isomorphic to it. O

However, there are structures that admit induction, but not recursion:®

4Dedekind calls them definitions by induction in [9, Theorem 126, p. 85], which corresponds
to the Recursion Theorem above.

5 Apparently Peano himself did not recognize the distinction between proof by induction
and definition by recursion; see the discussion on [25, p. x]. Burris does not acknowledge
the distinction; see [5, p. 391]. Stoll [40, p. 72] uses the term ‘definition by weak recursion’,
although he observes that the validity of such a definition does not obviously follow from the
Induction Axiom. However, Stoll does not prove (as we have done in Example 4.1.4) that the
Induction Axiom is consistent with the negation of the Recursion Theorem.
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4.1.4 Example. On B, define a singulary operation s by s(0) = 1 and s(1) = 0.
Then (B, s,0) admits induction,® but there is no function g : B — N such that
g(0) =0 and g(s(n)) = (g(n))* for all n in B.

Exercises

(1) If g and S are as in the proof of the Recursion Theorem, prove that g € S.

(2) Prove directly (without Theorem 4.1.2) that Axiom Z is a consequence of
the Recursion Theorem. (For example, if in 2 the successor-operation is
surjective, show that there is no homomorphism from 2 into N.)

4.2 The arithmetic operations

By recursion, we can define addition, multiplication and exponentiation.” First,
we define the binary operation + of addition on N by defining, for each n in
N, the singulary operation y — n + y. This operation is given by the rules:

(*) n4+0=nmn;
(t) n+mt=m+m)*.
4.2.1 Lemma. N satisfies
(¥) Ve 04+ 2 = x,
(1) VeVyyt +a=(y+x)".
Proof. By definition of addition, 0 + 0 = 0. Suppose 0 +n = n. Then
0+nt=0+n)" [by definition of addition]
=nt. [by inductive hypothesis]
This completes an induction showing F Vx 0 + z = .

For the second claim, as the base step of an induction, we have

m*+0=m" [by the first claim]
=(m+0)7; [again by the first claim]

6The structure (B, s,0) in Example 4.1.4 also satisfies Axiom U, but not Axiom Z. If we
define t : B — B so that ¢(n) = 1 for each n in B, then (B,t,0) satisfies the Induction Axiom
and Axiom Z, but not Axiom U. Later we shall have natural examples of structures satisfying
Axiom Z and Axiom U, but not admitting induction.

"We can also define addition and multiplication using only the Induction Axiom, not the
Recursion Theorem. The method is shown, for example, in [25]. As a result, the operations
can be defined on structures that do not satisfy all of the Peano Axioms. For example, let n
be a positive integer, and on Z let = be congruence modulo n. if x =y, then x +1 =y + 1
(though by the standards of this chapter, we can’t quite prove this yet). Hence we can define
a successor-operation s, namely

Zl— [z4+1]:2/= — Z/=.

The resulting structure (Z/=, s, [0]) satisfies the Induction Axiom; therefore it can be equipped
with an addition and a multiplication that satisfy the theorems of this section. (The result is
arithmetic modulo n.) We cannot in general define exponentiation on Z/=. If we try to do
this in case n = 3, we get 20 =1, 21 =2,22 =2.2=1, so 25(2) = 2 but also s(2) =0, so
25(2) =20 = 1.
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soVyyt +0=(y+0)*.

Now, as an inductive hypothesis, suppose Yy y* +mn = (y +n)™. Then, for all
m in N, we have

mt +nt =(m" +n)t [by definition of addition]
=(m+n)tt [by inductive hypothesis]
=(m+nh)* [again by definition of addition].
This completes an induction showing Vz Vy y™ +z = (y + z)T. O

The second part of the proof showed N = {z : Vy y* + 2z = (y + z)"}: We have
proved the identity
yTrr=(y+a)’ (4.3)

in N by induction on z. Induction on y here does not work directly. Indeed,
suppose A ={y e N:Vz y" +z = (y+ )" }. To prove that 0 € A, we have to
show that 0T +n = (0+n)". From the first part of the theorem, we know that
(04+n)*T =n™; but we cannot yet say anything about 07 + n. We could prove
Yz 07 +x = 2 by induction; but it would be more efficient just to start over
and prove Identity (4.3) by induction on z.

To prove some identities below, one has to choose the right variable to work
with.

4.2.2 Theorem. N satisfies
(¥) Ve ot =2+ 1;
(t) YV Vy x +y =y + x [that is, + is commutative/;
(1) YaVYyVz (x+y)+2z=x+ (y+ 2) [that is, + is associative];
(§) YVaVyVz (x+z=y+2z— x=y) [that is, + admits cancellation].

Proof. Exercise. O

The binomial coefficients (::L) are given by a two-stage recursion:
(%) (8) =1, and (n?+) =0.
(1) (0) =1 and (73) = () + ()-
(See also Exercises 6 and 7 in § 4.5.)
The binary operation - of multiplication on N is given by:
(*) n-0=0
(t)y n-mT™=n-m+n.
Multiplication is also indicated by juxtaposition, so that n - m is nm.
4.2.3 Lemma. N satisfies
(¥) Va 0z =0,
(1) Ve Vy yto = yz + .

Proof. Exercise. O
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4.2.4 Theorem. N satisfies
() Vz 1oz =z,
(f) Vz Yy xy = yx [that is, - is commutative],
(1) Ve Vy Vz (z +y)z = xz + yz [that is, - distributes over +],
(8) Va Yy Vz (zy)z = x(yz) [that is, - is associative].

Proof. Exercise. O

Finally, exponentiation: the binary operation (x,y) — z¥ on N is given by:
() n® =1;

(1) nm" =nm.n.

4.2.5 Theorem. The following are identities in N:
(x) x¥%% = aVa?;
(1) (%) =a¥%;
(1) (zy)* =7y~

Proof. Exercise. O

Exercises

(1) Prove Lemma 4.2.2. In the latter two parts, does induction work on every
variable?

(2) Prove that (}) =z for all z in N.

(3) Prove Lemma 4.2.3. In the second part, does induction work on either
variable?

(4) Prove Theorem 4.2.4.

(5) Prove Theorem 4.2.5.

4.3 The integers and the rational numbers

In Examples 3.7.1 and 3.7.4, I mentioned equivalence-relations ~ on N x N and
~ on Z x (Z ~ {0}) and corresponding bijections:

(%) [a,b] — a — b from N? /~ to Z;

(1) [a,b] — a/b from Z x (Z ~ {0})/~ to Q.
We couldn’t properly prove these claims then, since we didn’t have precise def-
initions of the structures involved. Now that we have defined N axiomatically,

we can use the observations in § 3.7 to justify a definition of Z and Q in terms
of N.
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4.3.1 Lemma. On N x N, let ~ be the relation given by
(a,b) ~ (¢,d) <= a+d=b+c.
Then ~ is an equivalence-relation. If (ag,bo) ~ (a1,b1) and (co,dp) ~ (c1,d1),
then
(%) (ao + co,bo +do) ~ (a1 +¢1,b1 + d1);

() (bo,ao) ~ (b1,a1);
(i) (a()CO —+ bodo, boCO —+ aodo) ~ (CL101 —+ bldh b161 —+ aldl).

Proof. Exercise. For the last part, show that each member is equivalent to
(a100+b1d0,blco+a1d0). O

Letting ~ be as in Lemma 4.3.1, we now define Z to be N x N/~. Let the
~-~class of (a,b) be denoted
a—b.

By Theorem 3.7.3 and Lemma 4.3.1, we can define the operations +, —, and - on
Z by the following rules, where a, b, c,d € N. 1 use superscripts on the symbols
(as described in § 3.5) as a reminder of which structure is being considered:

(*) (a=b)+%(c—d) = (a+V¢) — (b+N d);

() ~Ha—b) =b—a

1) (a=b)L(c—d)=(aNe+NbNd)—(b-Nc+NaNd).
Alternatively,

(¥) Addition on Z is (z —y,z —w) — (x + 2) — (y + w);

() additive inversion on Z is x — y — y — x;

(1) multiplication on Z is (z — ¥,z — w) — (vz + yw) — (yz + zw).

Note that, by the current precise definition, an integer like 5 — 3 is not the
natural number 2; it is not a natural number at all; it is the equivalence-class

{(2,0),(3,1),(4,2),(5,3),... },

which is {(z,y) € N? : z = y + 2}. The distinction is just a technical detail,
because of the following:

4.3.2 Theorem. Let i be the function x — x — 0 from N to Z. Then 1 is
injective. Also, i is a homomorphism from (N,+, -) to (Z,+, - ), that is,

(¥) i(a+Nb) =i(a) +2i(b);
(1) i(a N b) =i(a) -*i(D)

for all a and b in N. On Z, addition and multiplication are commutative and
associative, and multiplication distributes over addition. Finally,

a+%(=%a) =0—0=1i(0)
for all a in Z.

Proof. Exercise. O
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On Z, define the binary operation — by the identity

r—y=x+(-y).

4.3.3 Lemma. If a,b € N, then the integer a — b is (a — 0) =% (b — 0).
Proof. Exercise. O

Now we can identify the natural numbers with their images in Z, considering
the natural number n to be equal to the integer n — 0.

We can define the rational numbers similarly:

4.3.4 Lemma. On Z x (Z ~ {0}), let = be the relation given by
(a,b) = (¢,d) < ad = be.
Then = is an equivalence-relation. If (ag,bo) =~ (a1,b1) and (co,do) =~ (¢1,d1),
then
(*) (aodo + boCo, bodo) ~ (a1d1 + blcl,b1d1>;
() (aoco,bodo) =~ (arcy, bidy);
(i) (b07a0) ~ (bhal) and (O,CL()) ~ (O, 1) Zf aop 75 0.

Proof. Exercise. O

Letting ~ be as in Lemma 4.3.4, we define Q to be Z x (Z \ {0})/~. Let the

~-class of (a,b) be denoted
a

b

or a/b. By Theorem 3.7.3 and Lemma 4.3.4, we can define the operations -+,
—,and - on Q, and z — 27! on Q \ {0/1}, by the following rules, where
a,b,c,d € Z:

(%) a/b+xc/d= (ad £ bc)/bd;
(t) (a/b)(c/d) = ac/bd;
(1) (a/b)~! =b/a if a # 0.

4.3.5 Theorem. The function x — x/1 is an injective homomorphism from
(Z,4+,—, ) to (Q,4,—, -). On Q, addition and multiplication are commutative
and associative, and multiplication distributes over addition. Finally,

for all a in @~ {0/1}.
Proof. Exercise. O

Now we can identify the integers with their images in @, considering the integer
z to be equal to the rational number x/1.
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Exercises

1) Prove Lemma 4.3.1.

2) Prove Theorem 4.3.2.

4

(1)

(2)

(3) Prove Lemma 4.3.3.
(4) Prove Lemma 4.3 .4.
(5)

5) Prove Theorem 4.3.5.

4.4 Recursion generalized

How can we define n!, called n-factorial? Informally, we write
nl=1-2-3---(n—1) - n.

A formal recursive definition should be able to take care of the dots. We say
0! =1, and (n™)! = n™-nl. But for this to be a valid definition by the Recursion
Theorem, we would have to express n™ - n! as a function of n!.

In fact our definition of n! is valid by the following.

4.4.1 Theorem (Recursion with Parameter). Suppose B is a set with an ele-
ment ¢, and F : N x B — B. Then there is a unique function G from N to B
such that G(0) = ¢ and

G(n*) = F(n,G(n) (4.4)

for all n in N.
Proof. Let f be the function
(z,0) — (33+,F(-T7 b))

from N x B to N x B. By recursion, there is a unique function g from N to
N x B such that g(0) = (0,¢) and

") = flg(n)

for all n in N. Now let G be 7 o g, where 7 is the function

g(n

(z,b) — b

from N x B to B. Then for each n in N we have g(n) = (m,G(n)) for some m
in N. We can prove by induction that m = n. Indeed, this is the case when
n =0, since g(0) = (0,c¢). Suppose g(n) = (n,G(n)) for some n in N. Then

g(n™) = f(n,G(n)) = (n", F(n,G(n))). (4.5)
In particular, the first entry in the value of g(n™) is n*. This completes our
induction.

We now know that g(n) = (n, G(n)) for all n in N. Hence in particular g(n*) =
(nT,G(n")). But we also have (4.5). Therefore we have (4.4), as desired.
Finally, each of g and G determines the other. Since g is unique, so is G. O
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4.4.2 Example. We can define a function f on N by requiring f(0) = 0 and
f(z™) = z. This is a valid recursive definition, by Theorem 4.4.1. Note that f
picks out the immediate predecessor of a natural number, when this exists.®

For any function f from N to M, where M is a set equipped with addition
and multiplication, we can now define the sum Y, _, f(k) and the product
[Tr_o f(k) recursively as follows:

n

0
) > f(k) = f(0 ande )= k) + f(n);
k=0

k=0
0 nt n
) [ (k) = £(0) and ] f(k) = (H f(k)> F(n™)
k=0 k=0 k=0

See Exercise 1 below.

Exercises

(1) Show clearly that the definitions of >°,'_, f(k) and []}_, f(k) are justified
by Theorem 4.4.1.

(2) Prove the following for all n in N:

(a) Dok +1)=(n*+3n+2)/2;

(b) Yok +1)% = (2n® 4+ 9n? + 13n + 6) /6;
(€) Xpott =" =1)/(b—1);

(d) Yh—o(2k+1) = (n+1)%

(€) [io((k+1)/(k+2))=1/(n+2).

4.5 The ordering of the natural numbers

We can define the binary relation < on N as the set
{(z,y) e NxN:3Jzz+ 2z =y}

The associated strict relation < is then {(z,y) e Nx N:z <y Az # y}. Now
we have to show that < is the total ordering that we expect:

4.5.1 Lemma. NE Ve Vy (2 <yt — 2 <vy).

Proof. Suppose a™ < b*. Then a* + ¢ = b™ for some c in N, by definition of
<. This means (a + ¢)* = b*, by Lemma 4.2.1, so a + ¢ = b, by Axiom U, and
therefore a < b, again by the definition of <. O
4.5.2 Lemma. N satisfies:

(*) Vo (x <0 — x=0);

(f) VaVy (z +y <z —y=0).

8Since f is unique, we now have a proof that Axiom U follows from the Recursion Theorem.



132 CHAPTER 4. NUMBERS

Proof. Suppose a < 0. Then a + b = 0 for some b in N. Either a = 0, or a = ¢™
for some ¢ in N, by Lemma 4.0.4. In the latter case, (¢ + b)* = 0, which is
absurd by Axiom Z. Hence a = 0, and the first claim is proved.

Now suppose a +b < a. Thena+b+c=a=a+ 0 for some ¢, sob+¢c =0
by cancellation (Theorem 4.2.2), which means b < 0. Hence b = 0 by the first
claim. The second claim is now proved. O
4.5.3 Lemma. N satisfies:
(*) Vo Vy (z <y — ™ <y);
(1) Vo Vy (z <y" =2 <y).

Proof. To prove the first claim, by Lemma 4.0.4, it is enough to show

Vz (z < 0— 2t <0),
Vo vy (r <yt — o™ <yh).
The first sentence is trivially true in N by Lemma 4.5.2; since the hypothesis
x < 0 always fails: If n < 0, then n < 0, so n = 0, which means —(n < 0).

For the second sentence, suppose n < m™. Then n + ¢ = m™ for some ¢; but
£ #0,s0 ¢ =k" for some k. Hence n+ kT = m™, that is, n™ + k = m™, so
nt <mt.

The proof of the second claim is an exercise. O

4.5.4 Theorem. On N, the relation < is a total ordering.

Proof. There are four properties to check:
Reflexivity: Since n + 0 = n, we have n < n by definition.

Anti-symmetry: We can use Lemma 4.0.4. If n < 0 and 0 < n, then n < 0,
son = 0 by Lemma 4.5.2. Suppose n < m™ and m™* < n. From the latter
inequality, n = m™ + ¢ = (m + £)™ for some ¢. Hence (m + £)* < m™
by the former inequality, so m + ¢ < m by Lemma 4.5.1. Hence ¢ = 0 by
Lemma 4.5.2, son =m* +0=m™.

Transitivity: If n < m and m < 0, then m = 0 by Lemma 4.5.2, so n < 0,
so n = 0. As an inductive hypothesis, suppose

VeVy (z <yAy<l—axz<l).

Suppose also n < m and m < ¢+. There are two possibilities. If m = ¢%,
then n < ¢T. Suppose m < £+. Then m < £ by Lemma 4.5.3, so n < £
by inductive hypothesis. By definition then, n + k = ¢ for some k, so
n+ kt =47, and therefore n < ¢*. This completes the induction.

Totality: We shall prove x < yVy < z by induction on z. Since 0+m =m
for all m, we have Yy 0 < y. As an inductive hypothesis, suppose

Yy (n<yVy<n).

To complete the induction, suppose —(n™ < m) for some m. Then —(n <
m) by Lemma 4.5.3. By inductive hypothesis, m <n. Alson < n+1=
nT. By transitivity, m < n™.
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The proof is complete.

Various standard properties can now be proved:

4.5.5 Theorem. N satisfies:
(*) Vx 0 < z;
() VaVyVz (s <y x+z<y+z);
() VaVyVz (z<y—ax-zt <y-zt);
§) VaVyIz (e <ye—x+z=y).

Proof. Exercise.

Exercises
(1) Complete the proof of Lemma 4.5.3.
(2) Prove Theorem 4.5.5.
(3) Prove NEVz x < 2%, (See § 3.6 (3.50).)

(4) Prove the following in N.
(x) Ve Vy 1l + 2y < (1 + x)Y
(1) Vo 3 <z — 22 < 2%)

133

(5) Find the flaw in the following argument, where max is the function from
N x N to N such that max(z,y) = y if v < y, and otherwise max(z,y) = z.

If max(x,y) = 0, then z = y. Suppose that z = y whenever
max(z,y) = n. Suppose max(z,w) = n + 1. Then max(z —
1,w—1) =n, so z—1 = w—1 by inductive hypothesis; therefore

z = w. Therefore all natural numbers are equal.
(6) Prove that, if y < z, then <x> = —
Y

(7) Prove the Binomial Theorem:

(z+y)" = En: (7) a" Ty

=0

(8) Prove that every proper divisor of a positive integer is less than that
integer. (By proper divisor, I mean a divisor other than the number

itself.)
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4.6 The real numbers

Recall from § 4.3 that every integer is a difference x —y of two natural numbers,
and every rational number is a quotient u/v of two integers.

4.6.1 Lemma. There is a well-defined subset P of Z consisting of those differ-
ences a — b of natural numbers a and b such that b < a. There is a unique strict
total ordering < of 7 such that

r<y < y—zxeP
for all x and y in Z. The injection x — = — 0 : N — Z is order-preserving.

4.6.2 Lemma. There is a well-defined subset P of Q consisting of those quo-
tients a/b of integers a and b such that 0 < ab. There is a unique strict total
ordering < of Q such that

r<y < y—zxzeP
for all x and y in Q. The injection x — x/1:7Z — Q is order-preserving.

A cut of a total order (X, <) is a subset a such that:
(x) 9CaCX;
(f) x<yAhy€a = x€aq
B Vvylyea—y<z) = z¢a

The set R of real numbers is the set of cuts of Q. On R, the operations +
and - and the relation < can be defined so that the expected algebraic properties
are true. Details are an exercise.

4.6.3 Theorem. The function © — {y € Q: y < 2} : Q — R is an injective
homomorphism from (Q,+, -, <) to (R, +, -, <).
Proof. Exercise. O

If a,b € R, then [a,b) is the set {z € R:a < z < b}.

4.6.4 Theorem. Suppose the real number a is in [0,1). Then there is a unique
function k — ag : N — B such that

n

Z 2k+1 sa< Z 2k+1 2n+1

k=0

for all n in N.
Proof. Exercise. O

With notation as in the theorem, we can write
j— a/k .
a= Z 2k+1?

keN

this is a binary expansion of a.
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4.7 Well-ordered sets

Suppose (£, <) is a total order. Then we can define a function z — pred z from
Q to P(Q) by the rule
predz ={y € Q:y <z}

Then pred a is the set of predecessors of a. Suppose A C 2. An element b of
Q is a least or minimal element of A if b € A, but b < cif ¢ € A. That is, an
element b of  is a least element of A if and only if

be A & Anpreda =ga.

4.7.1 Lemma. Least elements are unique when they exist.
Proof. Exercise. O

The least element—if it exists—of a subset A can be denoted
min A.

The total order (2, <):
(x) is well-ordered if every non-empty subset of 2 has a least element;

(t) admits (proof by) strong induction if A = Q) whenever A is a subset
of 2 such that
predbC A = be A

for all b in Q;

(1) admits (definition by) strong recursion if, for every set B and func-
tion h from P(B) to B, there is a unique function G from  to B such
that

G(c) = h(Gpred )

for all ¢ in Q.

We shall see presently that these three conditions are equivalent. Meanwhile,
we can observe that (N, <) satisfies one of the conditions.

4.7.2 Lemma. pred (n™) = predn U {n} for all n in N.

Proof. Since n < n™, we have predn U {n} C pred (n™). For the reverse in-
clusion, suppose a € pred (n™), so that a < n*. Then a < n by Lemma 4.5.3,
so a = n or a < n; in either case, a € predn U {n}. Thus, pred(n™) C
predn U {n}. O

4.7.3 Theorem. (N, <) admits strong induction.

Proof. Suppose A is a subset of N that contains n whenever it includes pred n.
By induction, we shall show that predn C A for all n in N, and then A = N.

Since pred0 = @, and @ C A, this means 0 € A by assumption. As an
inductive hypothesis, suppose predn C A. Then n € A by assumption, so
pred (nt) = predn U {n} C A by Lemma 4.7.2. This completes the induction.
Hence, for all n, we have n € pred (n™) C A, son € A. Thus A =N. O
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Example 4.7.7 will show one use of strong induction.

The totally ordered set (2, <) is well-ordered if and only if every subset with no
least element is empty. This formulation will be used in proving the following
theorem. Also, a subset A of € has no least element if and only if

Vo (predz NA =2 —x ¢ A),
that is, Vo (predz C QN A -z € QN A).

4.7.4 Theorem. The following are equivalent conditions on a total order:
() It is well-ordered.
(1) It admits strong induction.

(1) It admits strong recursion.

Proof. Let (£2,<) be a total order. We shall show that, if it admits strong
induction or strong recursion, then it is well-ordered, and if it is well-ordered,
then it admits strong induction and strong recursion.

Suppose (€, <) admits strong induction, but A is a subset of  with no least
element. We shall show that A is empty. If a € §2, and preda C Q ~ A, then
a € Q~\ A, since a is not a least element of A. By strong induction, 2 = Q\ A,
so A = @. Thus (2, <) is well-ordered.

Suppose (€2, <) admits strong recursion, but A is a subset of  with no least
element. Let
C={zeQ:JyyeAny<a)}

Then C has no least element (exercise). For each e in B, let G, be the function

from Q to B given by
0, if C;
Gow) = 4O 1@ ¢ C;
e, ifzedC.

(So G is the characteristic function of C' on Q in the sense of § 3.6, but Gy is
the constant function z — 0 on €.) Let h be the function from P(B) to B given
by

MX)=1 < 1e€X,

that is,

1, if X e {{1},{0,1}}.

Then G(a) = h(G[pred a]) for all a in Q, whether G is G or G (exercise). By
strong recursion, there is a unique such function G, so Gg = G;. Therefore
C = ©. Thus (92, <) is well-ordered.

Now, conversely, suppose (€2, <) is well-ordered. First, let A be a subset of
Q such that, if preda C A, then a € A, for all ¢ in A. Consequently, if
predanN (2N A) =@, then a ¢ Q& A. Then Q \ A has no least element, so it
is empty, and A = Q. Thus (9, <) admits strong induction.

h(X) = {o, if X € {@,{0}};

Finally, using that (€2, <) admits strong induction, we shall follow the proof
of the Recursion Theorem, 4.1.1, to prove that (£, <) admits strong recursion.
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Suppose B is a set, and h : P(B) — B. Let S be the set of relations R from
to B such that
(a,h(f[preda])) € R

whenever f : preda — B and f C R. Then S is non-empty, since it contains
Q x B itself. Let G =(S. Then G € S (exercise). Let
A={zeQ: Ty (x,y) € G}.

Suppose preda € A. Then G N (preda x B) is the unique function f from
preda to B such that f C G. Hence (exercise) h(f[preda)) is the unique b in
B such that (a,b) € G. Therefore a € A. By strong induction, A = Q, so G is
a function from Q to B. Also,

G(a) = h(Glpred a])
for all @ in Q, since G € S. Suppose G’ is another function on Q in S. Let
D={zre:Gx)=G(x)}.

If preda C D, then G’'(a) = h(G'[pred a]) = h(G[pred a]) = G(a), so a € D. By
strong induction, D = Q, so G’ = G. Thus G is the only function on Q in S,
and (£, <) admits strong recursion. O

4.7.5 Corollary. (N, <) is well-ordered and admits strong recursion.

Proof. Theorem 4.7.3. O

Interrelations

What is the force of the word strong in strong induction and strong recursion?

Structures that admit induction or recursion have a signature that includes
{*,0}. Structures that admit strong induction or strong recursion have a sig-
nature that includes {<}. The next theorem establishes one connexion between
these two kinds of structures:

4.7.6 Theorem. Suppose (2, 7,0) admits induction and has a partial ordering
< such that a < a™ for all a in Q. Then < is a total ordering, and N and Q are
isomorphic as structures in the signature {*,0,<}: in particular, (2, <) admits
strong induction.

Proof. Since (N, T, 0) admits recursion, there is a homomorphism h from (N, T, 0)
to (£2,7,0). In particular,
h(m)*t = h(m™)

for all m in N. We shall first show that the function h is also a homomorphism
from (N, <) to (Q, <); that is,

Vo (x < n— h(x) < h(n)) (4.6)

for all n in N. Sentence (4.6) is trivially true when n = 0. Suppose it is true
when n = m, and now a < m*. Then a < m. Either a = m or a < m.



138 CHAPTER 4. NUMBERS

(x) If @ = m, then h(a) = h(m) < h(m)™ = h(m™).
(1) If @ < m, then by inductive hypothesis, h(a) < h(m) < h(m™).

In either case, h(a) < h(m™). Thus (4.6) is true when n = m™*. By induction,
it is true for all n in N.

Also, h is surjective, by induction in (2, *,0). Indeed, 0 € h[N], and if a € h[N],
then a = h(n) for some n in N, so a™ = h(n)™ = h(n™), and a* € h[N].

Since h is a bijection, it is an isomorphism from N to  in the signature {*,0}.
To complete the proof, it is enough to show that A~' is order-preserving. If
h(m) < h(n), then =(h(n) < h(m)), so =(n < m) by (4.6); hence, m <n. O

Thus, roughly,
induction & ordering = strong induction. (4.7

It is sometimes suggested® that strong induction can be proved from induction
alone. It cannot; there has to be an ordering around, as in the theorem. Exam-
ple 4.1.4 gives a structure that admits induction, but has no ordering such that
Ve <zt

Strong induction on N is called strong because it involves a stronger hypothesis
than ordinary induction. To prove N E Vz ¢(z) by induction, one proves two
things, as described in § 1.2:

() NE ¢(0);
(1) NEVz (¢(z) — ¢(a™)).

The inductive hypothesis is here is ¢(x). To make the proof by strong induction,
one proves one thing:

(x) NEVZ (Vy (y <z — ¢(y)) — o(x)).

Here the strong inductive hypothesis is Vy (y < z — ¢(y)). If = is 0, then
this hypothesis is trivially true; if  is not 0, then x is a successor. Hence we can
analyse a proof by strong induction into two steps, as with ordinary induction:

(¥) NF (0);
(1) NEVz (Vy (y <z — o(y)) — o(27)).

In this formulation, the strong inductive hypothesis is Vy (y < z — ¢(y)), that
is, ¢(0) A ¢(1) A ... A ¢(x); this is a stronger assumption than ¢(x) alone.
Sometimes this stronger assumption is just what one needs:

4.7.7 Example. To prove that every natural number other than 1 has a prime
divisor, it seems not enough to use induction. If n has prime divisors, what
does that say about n + 1?7 But every positive integer divides 0, so 0 has prime
divisors. Suppose n > 0, and all of the numbers in the set {2,3,4,...,n} have
prime divisors. If n + 1 is prime, then it is its own prime divisor. If n is
composite, then it has a divisor in the set just named, by Exercise 8 in § 4.5.
By strong inductive hypothesis, this divisor has a prime divisor, which is then
a divisor of n + 1.

9For example, [13, § 4.4, p. 213] says that the two methods of proof are equivalent; but the
proofs use hidden assumptions.
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From the theorem follows a connexion between recursion and strong recursion:

4.7.8 Corollary. Every structure (2,%,0) that admits recursion has a partial
ordering < such that a < a™* for all a in Q. If < is any such ordering on 2,
then < is total, and (2, <) admits strong recursion.

Proof. Every structure that admits recursion satisfies the Peano axioms, by
Corollary 4.1.3; in particular, it has a total ordering as defined in § 4.5, so it
admits strong recursion by Corollary 4.7.5. If < is just a partial ordering of
the structure such that Vo z < 27, then the theorem applies, showing that the
structure is isomorphic to N and so admits strong recursion. O

In short then,
recursion = strong recursion. (4.8)

That is, logically, recursion is at least as strong as strong recursion. The con-
verses of Implications (4.8) and (4.7) fail. To show this, some more definitions
will be useful. Let (£2,<) be a well-ordered set. We can use 0 as a name for
min 2. An element a of  is a limit if:

(*) a#0;
(t) Ve Jy (z <a—z <y<a).

In short, a is a limit if it is not zero and has no immediate predecessor.

4.7.9 Examples.
() (N, <) has no limits.

(1) Extend < so that it well-orders N U {oco} by defining n < oo for all n
in N. Then oo is a limit.

A greatest element of () is an element a such that Vz x < a. Suppose €2 has
no greatest element. Then we can define the successor-operation = — =+ on

Q by
+

T =min{y € Q:z < y}.
In this case, the limits of  are just those elements not in {0} U {z™ : z € Q},
that is, the non-zero elements of {2 that are not successors.

4.7.10 Theorem. FEvery well-ordered set with no greatest element and no limits
admits induction and recursion.

Proof. We shall show that such structures satisfy the Peano axioms. In such
structures, Vo 0 < x < 7 by definition of successor; so Axiom Z is satisfied.
Also, if a < b, then a™ < b < b, again by definition of successor; so Axiom U is
satisfied. Finally, suppose A is a proper subset of such a structure 2, and 0 € A.
Then Q ~ A has a least element b, which is not 0, so it must be a successor ct.
Then ¢ € A, but ¢t ¢ A. Contrapositively, if 0 € A, and Vz (z € A — zt € A),
then A = Q. That is, Axiom I is satisfied. O

If a well-ordered set does have a greatest element, then this can have no succes-
sor, so induction and recursion are meaningless. If the well-ordered set {2 has
no greatest element, but does have limits, let £ be its least limit. Then pred £
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satisfies the hypotheses of Theorem 4.7.10, so it admits induction and recursion;
but the whole structure Q does not (exercise).”

Ordinals

Theorem 4.7.6 gives us that C is a total ordering of w, and (w, C) is well-ordered.
By Lemma 1.2.5, if n € w, then n C w. This observation gives an easy way to
obtain the least element of a subset A of w:

min A = ﬂ A.
Moreover, on w, the relation C is precisely &:

4.7.11 Theorem. On w, strict inclusion is containment.

Proof. We have n € nU {n} = n’ for all n in w. Also, € is a strict partial
ordering:

Irreflexivity: As the base of an induction, note & ¢ @. Now suppose m’ €
n'. Then m’ € nU{n}. If m' = n, then m € n. If m’ € n, then m’ C n by
Lemma 1.2.5, so m € n. In either case, m € n. Contrapositively, if m ¢ n,
then m’ ¢ n'. In particular, if m ¢ m, then m’ ¢ m’. This completes the
induction.

Anti-symmetry: Say m € n. Then m C n, but m # n by irreflexivity, so
m C n. Hence n € m, son ¢ m.

Transitivity: If £ € m and m € n, then also m C n, so £ € n.

By Theorem 4.7.6, there is an isomorphism from (w,C) to (w, €) that takes 0
to 0 and n’ to n'; so this isomorphism is id,,. This completes the proof. O

Now we can rewrite Examples 4.7.9 in a neater way:

4.7.12 Examples.
() (w, <€) has no limits.

(1) wis a limit in (&', C).

A set that includes its every element is called transitive; that is, a set 2 is
transitive if and only if

AeB & BeQ) — Aeq.

A transitive set that is strictly well-ordered by containment is called an ordinal
number or an ordinal. Then w is an ordinal; so are all of its elements; so is
the successor of every ordinal. The class of ordinals would be an ordinal itself,
if it were a set; then it would contain itself, so it would strictly include itself.
Therefore the class of ordinals is not a set. Still, it is well-ordered, and parts of
it can be listed:

0,1,2,3,...;w,w 0", ...

ORotman [36] gives an intuitive argument, based tacitly on induction and the ordering, for
why N is well-ordered; then he claims to prove induction, seemingly from well-ordering alone.
The hidden assumption is that every non-zero element of N is a successor.
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There is an arithmetic of ordinals, according to which we can list the ordinals
as
0,1,2,3,...;w,w+1lLw+2,..;w-2,.. ;0% . WY

Thus we have a way to extend the ordinary list first, second, third,... of ordinal
numbers.

Exercises

(1) Prove Lemma 4.7.1.
(2) Supply the missing details in the proof of Theorem 4.7.4.

(3) Show that there are well-ordered sets with no greatest element that do
not admit induction or recursion.

(4) Find a formula ¢ (x,y) containing no quantifiers such that the sentence
Va Jy ¥(z,y) is logically equivalent to Vz (Vy (y <z — ¢(y)) — o(z)).

4.8 Cardinality

Infinite sets are defined in § 4.0 as sets equipollent with proper subsets of them-
selves. Finite sets could be defined as sets that are not infinite; but it is more
interesting and perhaps more natural to say that a set A is finite if

A =~ predn
for some n in N. We may then write
Al = n. (4.9)

This is not an equation in the usual sense, since we have not given a meaning
to |A| by itself. In § 3.7, it was suggested that the equipollence-class of a set
can be called the cardinality of the set; but Formula (4.9) is also read as saying
that the cardinality of A is n. If pred n = pred k, then it would be nice to have
n = k; also, finite sets should not be infinite. In fact, both of these conditions
hold:

4.8.1 Theorem. Finite sets are not infinite.

Proof. 1t is enough to prove by induction that no set predn is infinite. The
set pred 0 is empty, so it has no proper subsets that it can be equipollent with;
hence it is not infinite. Suppose predn is not infinite. Say f is an injective
function from pred (n™) into itself. Define g from predn into itself by

f(x), if f(x) # n;
o(z) = (z) . (z) #
f(n), if f(z) =n.
(See Figure 4.1.) Then g is injective (exercise). Hence g is surjective, by induc-

tive hypothesis. Therefore f is surjective (exercise). Consequently, pred (n™) is
not infinite. O
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Figure 4.1: Functions used in the proof of Theorem 4.8.1.

4.8.2 Theorem. On N, the relation < is just {(z,y) : predz < predy}.

Proof. If m < n, then predm C predn, so pred m < predn.

Suppose conversely that f is an injection from pred m into pred n; we want to
show m < m. Supposing n < m, it will be enough to show m = n. (So we shall
give nearly a proof by contradiction, except that we are not quite assuming the
negation of what we want to prove.)

Since n < m, we have predn C predm, so f | predn is an injection of predn
into itself. Hence f | pred n is also a surjection, by Theorem 4.8.1, and f is also
a surjection onto pred n. In particular, for every a in pred m, there is b in predn
such that f(a) = f(b); but then a = b since f is injective, so a € predn. Thus
predm C predn, so predm = predn and m = n. In short, if predm < predn,
then m < n. O

4.8.3 Lemma. If A is finite, and there is a surjective function from A onto B,
then B is finite.

Proof. Use induction on the cardinality of A. The claim is trivially true if
|A] = 0. Suppose it is true when |A| = n, but now |A] = n™, and f is a
surjection from A onto B. We may assume that A is just pred (n*). Let
¢ = f(n). There are two possibilities:

() If also ¢ = f(m) for some m in pred n, then f [ predn is still surjective
on B, so B is finite by inductive hypothesis.

(t) Suppose flpredn] C BN{c}. Then f | predn is a surjection on B~ {c},
so this set is finite, again by inductive hypothesis. In this case, there is a
bijection h from pred k onto B\ {c} for some k in N. Then hU {(k,c)} is
a bijection from pred (k™) onto B, so B is finite.

The induction is complete. O

4.8.4 Theorem. Suppose A X B. If B is finite, then A is finite.
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Proof. 1t is enough to show that if A C B, and B is finite, then A is finite. If A
is empty, then |A| = 0. Suppose A contains c. Define f from B to A by:

x, ifx € A
J(@) = {c, if x ¢ A.

Then f is surjective, so the claim follows by Lemma 4.8.3. O

4.8.5 Theorem. If A is infinite, then N < A.

Proof. There is a non-surjective injection s : A — A. Let ¢ € A\ s[A]. Then
(A, s, c) satisfies Axiom Z and Axiom U. Now let

S={CePA):ceCAs[C]CC).

Then S contains A itself, so S is non-empty; so we can let B = [|S. Then
(B, s | B,c) satisfies all three Peano axioms (exercise). By Theorem 4.1.2, there
is an isomorphism from (N, * 0) to (B,s | B,c); this function is an injection
from N to A. O

By Theorem 4.8.4, if A < B, and A is not finite, then B is not finite. Below we
shall show that the non-infinite sets are precisely the infinite sets; but this will
require a new set-theoretic axiom. Without this, we can still prove:

4.8.6 Theorem. Suppose A < B. If A is infinite, then B is infinite.
Proof. Suppose the functions f : A — B and g : A — A are injections. Then
fogo f~!is an injection from f[A] to B. Let C = B ~ f[A], and let h be the

union (fogo f~1)Uidc. Then h is an injection from B to itself. If ¢ ¢ g[A],
then f(c) ¢ h[B]. O

By this theorem, we can show that a set A is infinite if we can find an injective
function G from N to A. That G is injective means precisely that

G(nT) € AN{G(0),...,G(n)}
for all » in N. Now, if A is not finite, then in each case the set
AN {G(0),...,G(n)}

is not empty by Lemma 4.8.3, so there is some hope that the function G exists.
Does strong recursion (that is, Corollary 4.7.5) give us such a function G? It
does, if there is a function h : P(A) — A such that h(X) ¢ X when X # A.
However, we have no reason, so far, to assert that such a function exists. That
functions like A exist is a consequence of:

4.8.7 Axiom (Choice). For every set A, there is a function f : P(A) — A such
that f(C) € C whenever C # 0.

A function f as in the axiom is called a choice-function.

4.8.8 Theorem. FEvery set is either finite or infinite.
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Proof. Suppose A is not finite. Let f be a choice-function for A, and let h be
the function X — f(A~ X) on P(A). By strong recursion, there is a function
G from N to A such that

G(n) = h(G[predn]) = f(A ~ G[predn])

For all n in N. Since G[pred n] is finite by Lemma 4.8.3, the set A \ G[pred n|
is non-empty, so G(n) ¢ G[pred n]. In particular, if m < n, then G(m) # G(n).
Thus, G is injective. O

It is a remarkable result of twentieth-century mathematics that neither the
Axiom of Choice, nor its negation, is a consequence of of the other set-theoretic
axioms that we have been using.

4.8.9 Theorem. If A is infinite, then AU{A} = A.

Proof. The claim is trivially true if A € A; so suppose A ¢ A, and f is an
injection from N to A. Define a function g from AU {A} to A by:

7(0), if x = A;
g(z) =< =, ifx € AN fIN];
f(f~Yz)+1), ifxe fIN].

Then g is a bijection. O

The converse of this theorem is true, by definition of infinite, if every set A is a
proper subset of AU {A}. Suppose if possible that A = AU {A}. Then A € A,
which is very strange, and which is ruled out by:

4.8.10 Axiom (Foundation). Every non-empty set A has a subset that has no
elements in common with A:

X (X €AANXNA=0)

for all non-empty sets A.

Here, if we replace A with {A}, then this set has the single element A, so
AN{A} = @, which means A ¢ A.

We haven’t yet proved that < is a partial ordering of the cardinalities. This we
now do.

4.8.11 Theorem (Schréder—Bernstein!). Ax B & B<x A = A~ B for
all sets A and B.

Proof. Suppose f: A— B and g : B — A are injections. We recursively define
a function

HThis theorem is commonly attributed to Schréder and Bernstein, who, according to [40,
p. 81], proved the theorem independently in the 1890s. But the theorem is attributed to
Cantor in [31, § 8.3, p. 171].
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from N to P(A) x P(B) by requiring (Ap, Bo) = (4, B), and (A,+1, Bpt1) =
(9[Bn], f[An]). Since f and g are injective, we have

fl(An N Ant1)] = flAR] N flAn1] = Bny1 N Buya

by Theorem 3.4.6, and likewise g[(B,, \ Bn+1)] = Ant1 \ Apya. Also

fIN{A. : n e N} = ("{Bn+1 :n € N}

by Exercise 5 in § 3.9. Now define h : A — B by

f(.’)?), ifx e Agn AN A2n+1;
h(z) =< g H=z), ifz€ Agnyr ~ Aopyo;
fa), if € N{A, :n €N}

Then h is a bijection. O

We now know that if A is finite, and B is infinite, then the successor AU {A}
is finite, and
A< A <N<xB.

So N has the least infinite cardinality, which is a least upper bound for the finite
cardinalities.

It is possible, using the Axiom of Choice, to show that every set A can be well-
ordered by some relation <, and then (A4, <) is isomorphic to (a, C) for some
ordinal number «. In particular then, the class of cardinalities is well-ordered.
In another adjustment of terminology, the cardinality of a set can also be
defined now as the least ordinal that is equipollent with the set. The cardinal
numbers are then the ordinals that are cardinalities of some set. Most infinite
ordinals are mot cardinals; but there is an order-preserving bijection

Q— We

from the class of ordinals to the class of infinite cardinals. In particular, wq is
just w. Sometimes w, is written N, ; here N is the Hebrew letter aleph.

Exercises

(1) Supply the missing details in the proof of Theorem 4.8.1.

(2) Prove that the union of two finite sets is finite, and if A and B are finite,
then |[AU B|+|AN B| = |A| + |B].

3) Complete the proof of Theorem 4.8.5.

4) If AX N and B = N, show that A x B~ N.

(3)
(4)
(5) Show that, if A < N, and n € N, then A™ < N.
(6)

6) Show that, if A < N, then |J "< N.

nEN
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4.9 Uncountable sets

If A XN, then A is called countable. If A =~ N, then A is countably infinite.
If N < A, then A is called uncountable.

By Theorem 3.6.3, we know that uncountable sets exist, at least in principle.

The set R of real numbers is also called the continuum, and its cardinality is
denoted by c.

4.9.1 Theorem. The cardinality of P(N) is ¢; in particular, R is uncountable.

Proof. By Theorem 4.6.4, each real number a in [0, 1) has a uniquely determined
binary expansion
Qag
Z 2k+1"

keN

Different numbers have different expansions. Also 1 can be given the expansion
> ren 1/251. Hence we have an embedding

ar—{keN:a, =1}

from [0, 1] to P(N). This is not a surjection (why not?). However, each subset
A of N determines a ternary expansion, namely

€
Z 3i+1’

€N

where
ifi € A;
e, =
0, ifi¢ A
This is an element of [0,1], and a different set A would determine a different

element. So we have an injection from P(N) into [0,1]. By the Schroder—
Bernstein Theorem, we have

P(N) =~ [0,1].

But also, [0,1] C R; while R < [0, 1], since for example the function

2=l if0<z< 4
Xr —
2=l iflca <

11—z

is a bijection from (0,1) to R. Thus [0,1] = R. By transitivity of equipollence,
we are done. O

The special symbol ¢ is used for the cardinality of R because the set-theoretic
axioms introduced so far do not determine an ordinal « such that w, ~ R. In
particular, the Continuum Hypothesis is

= ws; (4.10)

but this can be neither proved nor disproved from what we know. (There are
models of our axioms in which (4.10) is true, and models in which it is false—on
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the assumption that there are models of our axioms at all, and this is something
that we cannot prove either.)

If we only want to show N < R, we can use the following diagonal argument.
Suppose f is a function from N into [0,1]. If n € N, write

fo) =3 5

ieN

where a,, ; € 10. Now define

b — 57 H?aiJ #35;
L O7 ﬂ?ai¢ = 5.

Then f(n) is never equal to ), b;/10°*1; so f is not surjective.

Exercises

(1) Show that R is equipollent with the set of functions from N to N.
(2) Show that R x R = R.

(3) A real number « is algebraic if there is no positive integer n for which
there is an n-tuple @ of rational numbers such that

E apa® +a™ = 0.
k<n

A real number that is not algebraic is transcendental. Show that there
are uncountably many transcendental numbers.



Appendix A

Aristotle’s Analytics

Below is a translation from the first few pages of the Aristotelian work called the
Prior Analytics. Like all of Aristotle’s extant works, the text appears to consist
of students’ lecture notes; perhaps these notes were never edited by Aristotle
himself.

I only want to observe three features of the text:
(x) the absence of any special notation;
(t) the definition of proposition;
(1) the use of proofs.

The translation here is mine, from the text in [2]. Some of the wording is
from the English translation by Tredennick that accompanies that text, but
there are deviations. For example, where I have ‘proposition’, Tredennick has
‘premiss’. The typography is entirely my own, based on the conception of the
text as lecture-notes; the Greek text indicates no special line-breaks. Likewise,
my English is highly abbreviated and ‘telegraphic’, as is the original Greek.

Here then is Aristotle:
First, to say what our study (oxé{ic) is about and of:
(%) it is about demonstration (dnédeilic), and
(t) it is of demonstrative science (émothun dmodextixy).
Next, to define:
(x) proposition (npbtacic), term (8poc), and syllogism (culhoylopdc), and
(t) which kinds [of syllogism]| are complete (téhetoc) and incomplete (dtelfc).
After these:
(1) what it is for one thing to be or not to be wholly (16 é&v A €lvon # un
glvan) in another, and

(§) what we mean by being predicated (xatnyopetoda) of all or of none.

A proposition is a statement affirming (xatagotixédc) or denying (drogatixdc)
something of something. It is universal (xoadérouv), particular (Ev pepet), or
indefinite (ddi6poTOC).

148
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(%) By universal, I mean applying (Undpyewv) to all or none;
(t) by particular, applying to some, or not to some, or not to all;

(1) by indefinite, applying or not applying, without reference to whole or
part, as in ‘The same science studies contraries’ or ‘Pleasure is not good.’

[I skip some further discussion of propositions.]

A term is what a proposition is divided into, namely
(%) that which is predicated, and
(1) that of which it is predicated,

[a form of] to be or not to be being added or removed.

A syllogism is a ‘piece of language’ (Adyoc) in which, some things being as-
sumed (tedévtov Tvav), because of these (t& todta givan), something different
from what was laid down (to xewéva) necessarily follows. By saying:

(%) ‘because of these,” I mean it follows through these (81& tabta);

(1) ‘it follows through these,” no additional term is needed for the necessity
to come about.

I call a syllogism:

(*) complete, if it needs nothing else, apart from what it [already] contains,
for the necessary [conclusion] to be evident;

() incomplete, if it needs one or more [propositions] not included among
the [given] propositions, although they are necessary through the terms
that have been laid down.

These are the same:
(%) for this to be wholly in that;
(1) for that to be predicated of all of this.

We say that [that is] predicated of all [of this] when nothing of this can be taken
of which that cannot be said. Similarly if [that] is predicated of none [of this].

Now, every proposition is
(*) an application (Undpyetv), or
(1) a necessary (€€ avdvxnc) application, or
(1) a potential (toU €vdéyeodou) application.
Of these,
(x) some are affirmative (xatagotindc),
(1) some negative (&rogatxdc),
according to each application.

Again, of the affirmative and negative, some are universal, some particular,
some indefinite.

A universal

(x) negative (otepnuindc) application is necessarily convertible (dvtioTpépew)
in terms; for example, if no pleasure is a good thing, then no good thing
is a pleasure;
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(1) affirmative (xatnyopwxdc) is necessarily convertible, not universally, but
particularly. For example, if every pleasure is good, then some good is a
pleasure.

Of the particular:

() the affirmative is necessarily convertible particularly; for, if some pleasure
is good, then some good will be a pleasure;

(1) the negative, not necessarily; for it does not follow that, if man does not
apply to some animal, then animal does not apply to some man.

First, let the proposition AB be negative universal. If then A applies to nothing
of B, then B will apply to nothing of A. For if to something, say C, then it will
not be true that A applies to nothing of B, for C' is of B.

If A applies to all B, then B applies to some A. For if not, then A will apply
to no B; but it was supposed to apply to all.

Similarly if the proposition is particular:

If A to some of B, then B to some of A necessarily applies; for if not, then A
to nothing of B.

But if some of B does not apply to A, there is no necessity that some of A
should not be B. For example, suppose B is animal and A is man; man not to
every animal, but animal to every man applies.
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