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Invited Talks

Algebraic geometry and Abelian varieties over
finite fields

Yves Aubry

The first part of the talk will be devoted to an historical overview on the devel-
opment of algebraic geometry. Starting from the exploration age with Descartes,
we will explore the golden age of projective geometry with Segre, the birational
geometry with Riemann, development and chaos with Kronecker, new structures
with Hilbert and to finish by sheaves and schemes with Grothendieck.

The second part of the talk will be concerned with abelian varieties over finite
fields. After the description of the action of the Frobenius endomorphism on
the Tate module, we will derive new bounds on the number of rational points.

Université de Toulon and Aix-Marseille Université

email: yves.aubry@univ-tln.fr

Coleman integration and integral points on
hyperelliptic curves

Jennifer S. Balakrishnan

We discuss explicit computations of p-adic line integrals (Coleman integrals) on
hyperelliptic curves and some applications. In particular, we relate a formula for
the component at p of the p-adic height pairing to a sum of iterated Coleman
integrals. We use this to give a Chabauty-like method for computing p-adic
approximations to integral points on such curves when the Mordell-Weil rank
of the Jacobian equals the genus. This is joint work with Amnon Besser and
Steffen Müller.

University of Oxford

email: balakrishnan@maths.ox.ac.uk

web: http://people.maths.ox.ac.uk/balakrishnan/

Euclidean Number Fields and Euclidean Minima

Eva Bayer-Fluckiger

If a and b are two integers, with b 6= 0, then there exist two integers q and r such
that a = bq + r, and that |r| < |b|. This so-called Euclidean division property
plays a fondamental role in the arithmetic of the usual integers. It is natural
to try to generalise this to more general rings, for instance rings of integers of
algebraic number fields. This idea leads to the notions of Euclidean number
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fields and Euclidean minima. Both are very classical topics of number theory.
The aim of this talk is to survey old and new results concerning this subject,
such as new Euclidean number fields and upper bounds for Euclidean minima.
In particular, we will survey the history and recent developments concerning a
classical conjecture of Minkowski.

EPFL, Lausanne email: eva.bayer@epfl.ch

Bernoulli series and volumes of moduli spaces

Arzu Boysal

I will introduce Witten series associated to classical Lie algebras. Particular
instances of these series compute volumes of moduli spaces of flat bundles over
surfaces, and also certain multiple zeta values. I will explain how one actu-
ally computes these series using residue techniques on multiple Bernoulli series
introduced by A. Szenes.

This talk is based on our joint work with Velleda Baldoni and Michèle Vergne.
Boğaziçi Üniversitesi

email: arzu.boysal@boun.edu.tr

Motivic cohomology and algebraic cycles

William D. Gillam

Motivic cohomology is a remarkable cohomology theory for algebraic varieties
whose existence was conjectured by Grothendieck in the 1960s, with later elabo-
rations by Beilinson and Lichtenbaum. One can now construct such a cohomol-
ogy theory either by using Voevodsky’s approach via presheaves with transfers
or by Bloch’s approach in terms of higher Chow groups. Suslin and Voevodsky
ultimately established the equivalence of the two approaches. In this talk we
will survey these constructions and discuss some of the remarkable properties
of motivic cohomology. If there is time at the end I will say something about
the motivic cohomology of toric varieties.

Boğaziçi Üniversitesi email: wdgillam@gmail.com

Large Soluble Groups

Francesco de Giovanni

The aim of this lecture is to show that in a large group (like for instance can
be considered a group of infinite rank) the behaviour of small subgroups (in the
above case those of finite rank) with respect to an embedding property can be
neglected.

University of Napoli “Federico II”

email: degiovan@unina.it

web: http://www.dma.unina.it/~degiovan/
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The structure of Costas arrays

Jonathan Jedwab

A Costas array is a permutation array in which the vectors joining pairs of 1s
are all distinct. This property was identified by J. Costas in the 1960s for use in
sonar. The central problem is to determine all orders for which a Costas array
exists.

The classical constructions, due to Welch and Golomb, use finite fields to gen-
erate infinite families of Costas arrays. These constructions, together with ex-
haustive search results, show that Costas arrays exist for all orders less than 32.
Numerical evidence suggests that some orders of Costas arrays might not exist,
but no nonexistence result has yet been found. The smallest orders for which
existence is open are 32 and 33, and this has been the case for at least 25 years.

I shall describe some new results that shed light on the structure of Costas
arrays, including a proof of a recent conjecture due to Russo, Erickson and
Beard.

This is joint work with J. Wodlinger.

Simon Fraser University, Canada

email: jed@sfu.ca

web: http://people.math.sfu.ca/~jed/

Graphs of Varieties Associated to Multiplicative
or Additive Group Actions

Ali Ulaş Özgür Kişisel

The concept of the T -graph of a standard or multigraded Hilbert scheme was
defined by Altmann and Sturmfels using Gröbner degenerations. The T -graph
retains certain properties of the Hilbert scheme in question. We define T -graphs
in a more general setting when X is a scheme carrying a torus action, and prove
that the T -graph of X is connected if and only if X is connected. If X has
additional automorphisms, then under suitable hypotheses one can define a
subgraph of the T -graph, which will be called the A-graph of X. We prove that
X is connected if and only if its A-graph is connected. As an application, we
give another proof of the classical theorem stating that the Hilbert scheme is
connected. This is joint work with Engin Özkan.

Middle East Technical University

email: akisisel@metu.edu.tr
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On rank and orbits in tensor products over
finite fields

Michel Lavrauw

Tensor products play an important role in both mathematics and physics, with
applications in e.g. complexity theory, algebraic statistics, tensor networks in
quantum information theory, and representation theory (see e.g. Landsberg [1]).
One can easily say that there is no lack of motivation to study tensor products,
and, although there are still many interesting open problems, tensor products
are well studied objects. However, most of the research on tensor products
(including [1]) only considers tensor products over the complex numbers. Some-
times this is extended to general algebraically closed fields, but few consider the
case where the ground field is finite.

The main problems that turn up from the applications are concerned with the
decomposition

τ =

k∑
i=1

v1i ⊗ . . .⊗ vmi (∗)

of a tensor τ ∈
⊗m

i=1 Vi. This naturally leads to the following four essential
issues.

(E) Existence: given a tensor τ and an integer k, does there exist an expression
of the form (∗)?

(U) Uniqueness: given an expression of the form (∗) for a tensor τ , is this
expression essentially unique?

(A) Algorithm: given a tensor τ and an integer k, does there exist an algorithm
that decomposes τ into an expression of the form (∗) (in the case where
it exists)?

(O) Orbits: can we determine the number of orbits and describe the orbits of
the natural group action of GL(V1)× . . .×GL(Vm) on

⊗m
i=1 Vi?

In this talk, we will elaborate on these problems, focus on tensor products over
finite fields, and explain the connections with finite geometry. We will survey
what is known, including some recent results concerning rank, decomposition
and invariant orbits, from [2, 3, 4].

References

[1] J . M. Landsberg. Tensors: Geometry and Applications. 2012. Graduate Studies in
Mathematics, 128. American Mathematical Society, Providence, RI, 2012. xx+439
pp. ISBN: 978-0-8218-6907-9.

[2] M. Lavrauw and J. Sheekey. Orbits of the stabiliser group of the Segre variety
product of three projective lines. Finite Fields Appl. 26 (2014) 1–6.
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[3] M. Lavrauw, A. Pavan and C. Zanella. On the rank of 3 × 3 × 3-tensors. Linear
and Multilinear Algebra (2013) 61 (5) 646–652.

[4] M. Lavrauw. Finite semifields and nonsingular tensors. Des. Codes Cryptogr.
(2013) 68 (1-3) 205–227.

Università degli Studi di Padova, Italy

email: michel.lavrauw@unipd.it

web: http://cage.ugent.be/~ml

Sums of dilates and direct and inverse problems
in Baumslag-Solitar groups

Patrizia Longobardi

Subsets of the set of the integers of the form

n ? A = {rx : x ∈ A},

where r is a positive integer and A is a finite subset of the set of the integers
are called r-dilates.

We obtain new direct and inverse results for sums of two dilates. Then we apply
them to solve certain direct and inverse problems in Baumslag-Solitar groups.

A new result on dilates is the following. If A is a finite set of integers and
|A + 2 ? A| < 4|A| − 4, then A is a subset of an arithmetic progression of size
≤ 2|A| − 3.

The Baumslag-Solitar groups are defined as follows:

BS(m,n) = 〈a, b | b−1amb = an〉

where m,n are integers.

We concentrate on the groups BS(1, n) and their subsets of the type

S = {brax1 , brax2 , . . . , braxk} = braA

where r is a positive integer and A = {x1, x2, . . . , xk} denotes a finite sequence
of integers.

A sample result is the following. If S = baA ⊆ BS(1, 2), |S| ≥ 3 and |S2| <
4|S| − 4, then A is a subset of an arithmetic progression of size ≤ 2|S| − 3.

We also investigate the structure of arbitrary subsets of BS(1, 2) satisfying small
doubling properties. We consider the submonoid

BS+(1, 2) = {bmax ∈ BS(1, 2) | x,m ∈ Z,m ≥ 0}

of BS(1, 2).

We prove that if S is a finite non-abelian subset of BS+(1, 2) and |S2| < 7
2 |S|−4,

then S = baA, where A is a set of integers of size |S|, which is contained in an
arithmetic progression of size less than 3

2 |S| − 2.
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European Journal of Combinatorics 40 (2014) 42-54, to appear.
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Patrizia Longobardi, University of Salerno, Italy

email: plongobardi@unisa.it

Some recent results on small doubling problems
in orderable groups

Mercede Maj

Let G denote an arbitrary group. If S is a subset of G, we define its square S2

by

S2 = {x1x2 | x1, x2 ∈ S}.

We are concerned with the following general problem: let S be a finite subset
with k elements of a group G, determine the structure of S, if |S2| satisfies
the following inequality:

|S2| ≤ α|S|+ β

for some small α ≥ 1 and small |β|.
Problems of this kind are called inverse problems of small doubling type.
Inverse problems of small doubling type have been first investigated by G. A.
Freiman in the additive group of the integers. Our aim is to investigate the
structure of finite subsets S of orderable groups satisfying the small doubling
property with α = 3 and small β’s, and also the structure of the subgroup
generated by S. This is a step in a program to extend the classical Freiman’s
inverse theorems (see [1]) to nonabelian groups.

Let G be a group and suppose that a total order relation ≤ is defined on the set
G. We say that (G,≤) is an ordered group if for all a, b, x, y ∈ G, the inequality
a ≤ b implies that xay ≤ xby. A group G is orderable if there exists a relation ≤
such that (G,≤) is an ordered group. Nilpotent torsion-free groups are examples
of orderable groups.

Let G be an ordered group and let S be a finite subset of G of size |S| = k ≥ 2.
We proved in [2] that if |S| > 2 and |S2| ≤ 3|S| − 3, then 〈S〉 is abelian, and if
|S2| ≤ 3|S| − 4, then S is a subset of a geometric progression.

In this talk we present some recent results, contained in [3] and in [4], concerning
the structure of the subset S of an ordered group and the structure of 〈S〉, if
|S2| ≤ 3|S| − 3 + b, for some integer b ≥ 1.
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mathematical monographs, v. 37. American Mathematical Society, Providence,
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[2] G. A. Freiman, M. Herzog, P. Longobardi, M.Maj, Small doubling in ordered
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Mercede Maj, University of Salerno, Italy

email: mmaj@unisa.it

The gonality sequence of an algebraic curve

Gerriet Martens

For a smooth irreducible projective curve X defined over the complex numbers,
let dr = dr(X) denote the minimal degree of a linear series on X of dimension
r > o. These numbers form a strictly increasing sequence which is called the
gonality sequence of X since d1 is the gonality of X (i.e. the minimal number
of sheets of a covering of X over P1). One expects a certain pattern in the
growth of this sequence which, however, is violated for some families of curves
with special moduli. In this talk I want to present some new results about such
families.

Univ. Erlangen-Nürnberg

email: martens@mi.uni-erlangen.de

Prime numbers, determinism and
pseudorandomness

Christian Mauduit

The difficulty of the transition from the representation of an integer in a num-
ber system to its multiplicative representation (as a product of prime factors)
is at the source of many important open problems in mathematics and com-
puter science. We will present a survey on recent results concerning the study
of independence between the multiplicative properties of integers and various
”deterministic function”, i. e. function produced by a dynamical system of zero
entropy or defined using a simple algorithm, in connection with the Chowla and
Sarnak conjectures on Mobius randomness principle. Universit d’Aix-Marseille

email: mauduit@iml.univ-mrs.fr
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GIT and birational geometry of moduli spaces
of curves

Ian Morrison

Geometric questions about the moduli space Mg of stable curves of genus g are
of interest in many cognate areas of algebraic geometry. For example, Mg has
been extensively studied as a test case for general questions from the minimal
model program in birational geometry, where its modular interpretation pro-
vides extra tools for answering these questions. A paradoxical aspect of this
work is that, although the questions deal with the intrinsic geometry of Mg,
their solutions often depend on extrinsic constructions of GIT quotients, and
on interpretations of these quotients as alternate compactifications of Mg. I
will review the history of these interactions and the parallel progress in our
understanding of the birational geometry of Mg and of these GIT quotients.

Fordham University

email: morrison@fordham.edu

web: http://www.fordham.edu/morrison

How big is 4

Christophe Ritzenthaler

The aim of the talk is to introduce some arithmetic properties of plane curves
over finite fields, in particular the distribution of their number of points. Con-
sidering the case of conics, cubics and quartics, we will wonder how close we get
to the typical behavior. University Rennes 1

email: christophe.ritzenthaler@univ-rennes1.fr

Covering Sets

Arne Winterhof

For a set M = {−µ,−µ + 1, . . . , λ} \ {0} with non-negative integers λ, µ < q
not both 0, a subset S of the residue class ring Zq modulo an integer q ≥ 1 is
called a (λ, µ; q)-covering set if

MS = {ms mod q : m ∈M, s ∈ S} = Zq.

Small covering sets play an important role in codes correcting limited-magnitude
errors. Note that any (λ, µ; q)-covering set is of size at least dq/(λ+ µ)e.

We give an explicit construction of a (λ, µ; q)-covering set S which is of the
size q1+o(1) max{λ, µ}−1/2 for almost all integers q ≥ 1 and of optimal order of
magnitude (that is up to a multiplicative constant) pmax{λ, µ}−1 if q = p is
prime.
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Furthermore, using a bound on the fourth moment of character sums of Cochrane
and Shi that there is a (λ, µ; q)-covering set of size at most

q1+o(1) max{λ, µ}−1/2

for any integer q ≥ 1, however the proof of this bound is not constructive.

The proof of the first result is elementary. For the proof of the second result we
include a short tutorial on character sums.

References

[1] Z. Chen, I.E. Shparlinski, A. Winterhof: Covering sets for limited-magnitude
errors, IEEE Trans. Inf. Th., to appear.

RICAM, Austrian Academy of Sciences

email: arne.winterhof@oeaw.ac.at

web: http://www.ricam.oeaw.ac.at/people/page.cgi?firstn=Arne;lastn=

Winterhof

9



Workshop Talks

Index of Hom-Lie Algebras By Central
Extension

H.Adimi

A Hom-algebra structure is a multiplication on a vector space where the struc-
ture is twisted by a homomorphism. In this paper we introduse the notation of
the index of hom-Lie algebras in the case of coadjoint and an arbitrary repre-
sentation. give also the index of semidirect products of hom Lie algebras. and
we give The index of a Hom Lie algebra by central extension.

References

[1] Adimi H. and A Makhlouf.,Index of Graded Filiform and Quasi Filiform Lie
Algebras, Filomat 27:3 (2013), 467–483 DOI 10.2298/FIL1303467A

[2] Andriy Panasyuk Reduction by stages and the Räıs-type formula for the
index of a Lie algebra with an ideal. Ann Glob AnalGeom (2008) 33:1-10
DOI 10.1007/s10455-007-9070-z

[3] Yunhe Sheng, Representations of hom-Lie algebras, arXiv:1005.0140v2
[math-ph] (2011).

Bordj Bou-Arreridj University

email: h.adimi@univ-bba.dz

Piatetski Shapiro meets Chebotarev

Yıldırım Akbal

This is a joint work with Ahmet Muhtar Gülog̃lu.

In 1953 Ilya Piatetski-Shapiro proved in [2] an analog of the prime number the-
orem for primes of the form bncc, where bxc = max{n ∈ N : n ≤ x}, n runs
through positive integers and c > 0 is fixed. He showed that the number πc(x)
of these primes not exceeding a given number x is asymptotic to x1/c/ log x
provided that c ∈ (1, 12/11). Since then, the admissible range of c has been ex-
tended by many authors and the result is currently known for c ∈ (1, 2817/2426)
(cf. [3]). In this talk, we give an asymptotic formula for Shapiro primes lying
in a specified Chebotarev class. We shall also apply our theorem to show that
there are infinitely Shapiro primes of the form x2 + ny2.
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Bilkent University

email: yildirim.akbal@bilkent.edu.tr

Betti series of the universal modules of second
order derivations

Melis Tekin Akçin

Let R be a commutative k− algebra where k is a field of characteristic zero. We
have the following exact sequence

0→ I → R⊗k R
ϕ→ R→ 0

where ϕ is defined as ϕ(
n∑
i=1

ai ⊗ bi) =
n∑
i=1

aibi for ai, bi ∈ R and I is the kernel

of ϕ. Here, kerϕ is generated by the set {1⊗ r − r ⊗ 1 : r ∈ R}.
Let dn : R→ (R⊗k R)/In+1 be a k−linear map defined as

dn(r) = 1⊗ r − r ⊗ 1 + In+1 and dn(1) = 0.

Here dn is called the universal derivation of order n. The left R−module I
In+1

is called the universal module of nth order derivations and is denoted by Ωn(R).
Let m be a maximal ideal of R, the Betti series of Ωn(R) is defined to be the
series

B(Ωn(R), t) =
∑
i≥0

dimR/mExt
i(Ωn(R),

R

m
)ti for all n ≥ 1.

We proved that the Betti series of Ω2(Rm) is a rational function under some
conditions, where R is a coordinate ring of an affine irreducible curve represented

by k[x1,x2,...,xs]
(f) and m be a maximal ideal of R.

References

[1] Çimen, N., Erdoğan, A., Projective dimension of the universal modules for
the product of a hypersurface and affine t-space, Comm. Algebra 27(10), (1999),
4737-4741 .

[2] Erdoğan, A., Results on Betti series of the universal modules of the second
order derivation, Hacet.J.Math. Stat. 40(3), (2011), 449-452.

[3] Erdoğan, A., Homological dimension of the universal modules for hypersur-
faces, Comm. Algebra 24(5), (1996), 1565-1573.

[4] Nakai, Y., High order derivations 1, Osaka J.Math.7, (1970), 1-27.
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Hacettepe University

email: hmtekin@hacettepe.edu.tr

Strongly (non)cosingular modules

Yusuf Alagöz

Let R be a ring with an identity element and M be a unital right R-module. A
submodule N of M is called a small submodule of M if, whenever N + L = M
for some submodule L of M , we have M = L. M is called small module if it is a
small submodule of its injective hull E(M). For an R-module M , the submodule
Z∗(M) = {m ∈M | Rm is a small module } is called the cosingular submodule
of M . If Z∗(M) = M , then M is called cosingular (see, [3,5]). Small modules are
cosingular. In [6], the authors call M noncosingular module if M has no small
homomorphic image. Motivated by the noncosingular modules, we investigate
strongly noncosingular modules. Namely we call M strongly noncosingular if
M has no cosingular homomorphic image. Strongly noncosingular modules are
properly contained in the class of noncosingular modules. An R-module M is
strongly noncosingular if and only if it is noncosingular and coatomic. In this
talk we shall investigate some properties of strongly noncosingular modules, and
their relation with some classes of rings and modules.

This is a joint work with Yılmaz Durg̃un.
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Izmir Institute of Technology, Izmir, Turkey
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Generalized Derivations with Some Related
Conditions on Lie Ideals

Emine ALBAŞ

This is joint work with V. De Filippis and N. Argaç. Let R be a prime ring of
characteristic different from 2. In this talk unless specially states Z(R) always
denotes the center of R, U the Utumi quotient ring of R and C = Z(U), the
center of U (C is usually called the extended centroid of R). A well known result
of Posner [7] states that if d is a derivation of R such that [d(x), x] ∈ Z(R), for
any x ∈ R, then either d = 0 or R is commutative. Later in [4] Lanski proves
that if d is a nonzero derivation of R so that [d(x), x] ∈ Z(R) for all x ∈ L,
a non-central Lie ideal of R, then char(R) = 2 and R ⊆ M2(C), the ring of
2 × 2 matrices over C. More recently Chebotar, Lee and Wong [1] generalize
the previous results in case the characteristic of R is different from 2 or 3. More
precisely they prove that if L is a non central Lie ideal of R, then the additive
subgroup S generated by {[d(x), x] : x ∈ L} contains a non central Lie ideal W of
R. In particular S is not contained in Z(R), unless d = 0. Moreover, since both
the left (right) annihilator AnnR(W ) and the centralizer CR(W ) of a Lie ideal
W of a prime ring are trivial, that is AnnR(W ) = (0) and CR(W ) = Z(R), then
both the left (right) annihilator and centralizer of S are trivial and these facts
in a prime ring are natural tests which evidence that the set {[d(x), x] : x ∈ L}
is rather large in R.
This work follows the line of investigation of the previous ones, by replacing
the derivation d with some additive maps which generalize the concept of usual
derivation on R.
An additive map G : R→ R is called generalized derivation of R if there exists
a derivation d of R such that G(xy) = G(x)y + xd(y), for all x, y ∈ R. The
simplest example of generalized derivation is a map of the form g(x) = ax+xb,
for some a, b ∈ R: such generalized derivations are called inner. Generalized
inner derivations have been primarily studied on operator algebras. Therefore
any investigation from the algebraic point of view might be interesting (see for
example [3], [5], [6]). Here we will consider some related problems concerning
identities with generalized derivations in prime rings. In [2], V. De Filippis et
al. prove that if R is a prime ring of characteristic different from 2, L a non-
central Lie ideal of R and F is a non-zero generalized derivations of R such that
[F (u), u]F (u) = 0, for all u ∈ L, then one of the following holds:

1. there exists α ∈ C such that F (x) = αx, for all x ∈ R;

2. R ⊆M2(C) and there exist a ∈ U and α ∈ C, such that F (x) = ax+xa+
αx, for all x ∈ R.

In this talk, we aim to generalize this study as follows:

Theorem. Let R be a non-commutative prime ring of characteristic differ-
ent from 2 with Utumi quotient ring U and extended centroid C, L a non-
central Lie ideal of R, F and G two non-zero generalized derivations of R. If
[F (u), u]G(u) = 0 for all u ∈ L, then one of the following holds:

1. there exists λ ∈ C such that F (x) = λx, for all x ∈ R;
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2. R ⊆M2(C), the ring of 2× 2 matrices over C, and there exist a ∈ U and
λ ∈ C such that F (x) = ax+ xa+ λx, for all x ∈ R.
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On Quadratic Functions and Artin-Schreier
Curves

Nurdagül Anbar

For an odd prime p and an even integer n with gcd(n, p) = 1, we consider
quadratic functions from Fpn to Fp of codimension k. For various values of k, we
obtain classifications of quadratic functions giving rise to maximal and minimal
Artin-Schreier curves over Fpn . We completely classify all maximal and minimal
curves obtained from quadratic functions of codimension 2 whose coefficients lie
in the prime field Fp. In particular, to obtain these results we compute the sign
of Walsh coefficients of special classes of (non-monomial) quadratic functions.
This is a joint work with Wilfried Meidl.
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Zaitsev Type Results

Ahmet Arıkan

This is a joint work with Aynur Arıkan and Nadir Trabelsi. In a series of
papers [2, 3, 4, 5], Zaitsev has been proved many interesting results on soluble
and nilpotent groups (see also [1]). In particular he proved that “every infinite
soluble (nilpotent) group of derived length d (of class c) has a proper subgroup
of derived length d (of class c)”. In the present talk we generalize his results
to general contexts, in particular to groups which satisfy an outer commutator
law.
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[3] Zăıcev, D. I., The existence of stably nilpotent subgroups in locally nilpotent
groups. (Russian) Mat. Zametki 4 (1968), 361-369.
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Infinitely generated periodic groups

Aynur Arıkan

Let G be a group and let ℘ be a group theoretical property. If every proper
subgroup of G satisfies ℘ but G itself dose not satisfy ℘, Then G is called a
minimal non-℘-group (MNP -group for short). For example ℘ may stand for
“solvable”, “hypercentral”, “finite exponent”, “finite conjugacy class” and then
the group may be called as MNS-group, MNHC-group, MNFE-group or
MNFC-group, respectively.

In the present paper we consider infinitely generated periodic groups and give
positive result about the problem stated in [3, p.262].
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Definition. Let G be a group. As is well-known, G is called an FC-group if for
all x ∈ G,

|G : CG(x)| <∞.

G is called a minimal non FC-group if every proper subgroup of G is an FC-
group but does not have this property.

Let us consider the following problem given in [3, p.262]

Problem. Suppose that the group G is the union of conjugates of a subgroup
H. What conditions on H and G allow us to deduce that G = H?

The following is a positive result about this problem.

Theorem 1. Let G be an infinitely generated perfect periodic group in which
every proper subgroup is hypercentral and residually (nilpotent of finite exponent)
and every proper normal subgroup is an FC-group. Then there exists a proper
subgroup of G that contains a conjugate of every element of G.

Corollary 2. Let G be a perfect locally finite barely transitive group such that
a point stabilizer is hypercentral and every proper normal subgroup is an FC-
group. Then there exist a proper subgroup of G that contains a a conjugate of
every element of G. In particular G cannot be an MNFE-group.

In general it is not known whether a barely transitive group can be the union of
the conjugates of a proper subgroups. However a group of finitary permutations
on a infinitary set has this property by [3, Theorem 1].
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G-Dedekind primeness of Morita context

Pınar Aydoğdu

A short time after Morita had come up with the idea of Morita contexts in
1958, it was understood that Morita contexts are a very useful and connective
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tool. For instance, in 1962, Bass used Morita contexts to prove Wedderburn
Theorems on the structure of simple rings. In 1971, Amitsur used it to prove
Wedderburn Theorems for semisimple rings and Goldie Theorems for the quo-
tient rings of semisimple rings, and to work on the endomorphism ring of a
module. Morita contexts are very suitable structures to work on transfering
properties from a ring R to a ring S. In this work, the problem of determining
the G-Dedekind primeness of Morita contexts is investigated. We extend the
usage of Morita contexts from the point of view of order rings. This work is
essentially a continuation of the paper [1]. This is a joint work with E. Akalan,
H. Marubayashi and B. Saraç.

References

[1] Marubayashi, Hidetoshi; Zhang, Yang; Yang, Po; On the rings of the Morita
context which are some well-known orders. Comm. Algebra 26 (1998), no. 5,
14291444.

Hacettepe University email: paydogdu@hacettepe.edu.tr

Groups Whose Proper Subgroups Have
Polycyclic-By-Finite Conjugacy Classes

Mounia Bouchelaghem

This is a joint work with Nadir Trabelsi (University Setif 1, Algeria).

A group G is said to be an FC-group (respectively, PC-group, PFC-group), if
G/CG(xG) is a finite (respectively, polycyclic, polycyclic-by-finite) group for all
x ∈ G. Note that the classes of PC-groups and PFC-groups are generalizations
of the familiar property of being an FC-group. If X is a class of groups, then
G is said to be a minimal non-X-group if it is not an X-group but all of whose
proper subgroups are X-groups. Many results have been obtained on minimal
non-X-groups, for various choices of X. In particular, in [1] and [2], Belyaev
and Sesekin characterized minimal non-FC-groups when they have a non-trivial
finite or abelian factor group. They proved that such minimal non-FC-groups
are finite cyclic extensions of divisible p-groups of finite rank, where p is a prime.
In [3], De Giovanni and Trombetti studied minimal non-PC-groups that have
a non-trivial abelian factor group and they proved that if G is such a minimal
non-PC-group, then G is a minimal non-FC-group. Here we generalize the
previous result to minimal non-PFC-groups, we prove that if G is a group that
has a non-trivial abelian factor group then G is a minimal non-PFC-group if
and only if G is a minimal non-FC-group.
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New infinite families of 2-edge-balanced graphs

Cafer Çalışkan

A graph G of order n is called t-edge-balanced if G satisfies the property that
there exists a positive λ for which every graph of order n and size t is contained
in exactly λ distinct subgraphs of Kn isomorphic to G. We call λ the index of
G. In this talk, I present how to obtain new infinite families of 2-edge-balanced
graphs.
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On the fast computation of Toeplitz matrix
vector products over F2

Murat Cenk

Toeplitz matrix vector products (TMVP) over F2 are required for cryptographic
computations and digital signal processing. The recent work has revealed that
finite field multiplications can be represented by such kind of products, and
several efficient algorithms have been proposed [1], [2], [3]. In this work, after
presenting known efficient algorithms for TMVP, the relation between the poly-
nomial multiplication and TMVP is introduced. Then, the algebraic method
for the binary polynomial multiplication proposed in [3] is presented. Finally,
we show how the computational complexity of TMVP can be further improved
significantly.
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Cohomology and Deformations of
Hom-bialgebras and Hom-Hopf algebras

K. Dekkar

In Hom-bialgebra structures, the associativity, and the coassociativity condi-
tions (xy)z = x(yz) and (∆⊗ id) ◦∆ = (id⊗∆) ◦∆ are twisted to α(x)(yz) =
(xy)α(z) and (∆⊗ α) ◦ ∆ = (α⊗∆) ◦ ∆, respectively, with α a map in the
appropriate category. In the present paper, we consider the deformation the-
ory of Hom-bialgebra, there is a natural concept of infinitesimal deformation.
These infinitesimals are elements of a cohomology group, there is also a natural
concept of rigidity.
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On Leibniz algebras

Ismail Demir

Leibniz algebras are certain generalization of Lie algebras. In studying the prop-
erties of the homology of Lie algebras, Loday observed that the antisymmetry of
the product was not needed to prove the derivation property defined on chains.
This motivated him to introduce the notion of Leibniz algebras. Since the in-
troduction of Leibniz algebras around 1993 several researchers have tried to find
analogs of important theorems in Lie algebras. We define an analogue of the
Killing form and show that if the Leibniz algebra is semisimple then this form
is nondegenerate, but the converse is not true. We prove the classification of
non-Lie nilpotent three dimensional Leibniz algebras using a new approach in-
volving the canonical forms for the congruence classes of matrices for bilinear
forms which can easily be used to classify higher dimensional Leibniz algebras.
This is a joint work with Kailash C. Misra and Ernie Stitzinger.
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Linearly Independent Latin Squares

Fatih Demirkale

In this talk, we will first define the linear independence of Latin squares. Later
we will identify a set of s(s−1)2 Latin squares and represent these as vectors. We
will show these vectors can be used to form intercalates which form a basis for a
linear space which contains all Latin trades. We will also show that (s− 1)3 + 1
of these vectors are linearly independent. We will use this theory to study an
asymptotic formula for the number of OA(N, 3, s, 2) for s ≥ 3, and we will show

that for a given s, the number of OA(N, 3, s, 2) is λ(s−1)3(1−o(1)) as λ→∞.
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On large sets of projective planes of orders 3
and 4

Emre Kolotoğlu

A t-(v, k, λ) design is a pair (X,B), where X is a set of v elements, called points,
and B is a set of k-subsets of X, called blocks, where each t-subset of X is
contained in precisely λ blocks.

Let
(
X
k

)
denote the set of all k-subsets of a set X. A large set LS[N ](t, k, v) is

a pair (X,B = {Bi}Ni=1), where (X,Bi) is a t-(v, k, λ) design for all Bi ∈ B, and
{Bi}Ni=1 is a partition of

(
X
k

)
. Arithmetically, for a large set LS[N ](t, k, v), we

have N =
(
v−t
k−t
)
/λ.

A projective plane of order n, if such exists, is a 2-(n2 + n+ 1, n+ 1, 1) design.
It is known that a projective plane of order n exists when n is a prime power,
and these are the only orders for which a projective plane is known to exist. If a
large set of projective planes of order n exists, it is an LS[N ](2, n+1, n2 +n+1),

where N =
(
n2+n−1
n−1

)
.

In 1850, Cayley [1] proved by a brief argument that a large set LS[5](2, 3, 7) of
Fano planes (projective planes of order 2) does not exist. In 1978, Magliveras
conjectured that a large set of projective planes of order n will exist for all
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n ≥ 3, provided that n is the order of a projective plane. In 1983, Chouinard II
[2] constructed such large sets for n = 3, namely LS[55](2, 4, 13), by prescribing
an automorphism of order 11 which acts semiregularly on the set of 55 planes.
In 2013, Magliveras and I [3] constructed new large sets LS[55](2, 4, 13) by
prescribing an automorphism of order 13. We classified all such large sets and
determined their full automorphism groups.

The existence, or otherwise, of a large set of projective planes of order n for
n ≥ 4, is still an unsettled problem. For n = 4, such a large set would consist of
969 planes. Kramer and Magliveras have constructed over 600 mutually disjoint
projective planes of order 4 by probabilistic means. In our effort to construct
a large set LS[969](2, 5, 21), we constructed 912 mutually disjoint projective
planes of order 4 by prescribing C9

19 as an automorphism group.

In this talk, I will present the methods we used in these new constructions.

References

[1] A. Cayley, On the triadic arrangements of seven and fifteen things, London, Ed-
inburgh and Dublin Philos. Mag. and J. Sci. 37 (1850) 50–53.

[2] L. G. Chouinard II, Partitions of the 4-subsets of a 13-set into disjoint projective
planes, Discrete Math. 45 (1983) 297–300.
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Canonical Lifting of Abelian Varieties

Altan Erdoğan

In this talk we will give a brief review of Serre-Tate theorem on lifting abelian
varieties. We will also give some results on the canonical lifting of elliptic curves
in terms of the j-invariants and talk on possible generalizations of these results.
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A survey on recent advances about irreducible
representation of Leavitt path algebras

Songül Esin

This talk is a survey about irreducible representations (or simple modules) of
Leavitt path algebras.

For a field K and arbitrary graph E, Chen constructed irreducible representa-
tions of Leavitt path algebra,
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LK(E), by using sinks and tail-equivalent classes of infinite paths in the graph
E.

Chen’s construction was expanded by P. Ara and K.M. Rangaswamy to intro-
duce additional classes of non-isomorphic simple LK(E)-modules. Also, Ran-
gaswamy constructed a new class of simple modules over the Leavitt path alge-
bra LK(E) by using vertices that emit infinitely many edges in E.
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Some properties of a Generalized 3-Abelian
Groups

Meriem Hamitouche

Let n ≥ 2 be an integer, A group G is called generalized n-abelian whenever
there exist elements c1, ..., cn ∈ G such that the map x 7−→ xc1 ...xcn is an
endomorphism of G. For any non-zero integer n, a group G is called n-Levi if
[x, yn] = [x, y]

n
for all x, y ∈ G, It is called n-central if n ≥ 1 and [x, yn] = 1

for all x, y ∈ G. We show that there is a relation between generalized 3-abelian
groups G and n-Levi or n-central groups. We also prove that G is 3-nilpotent
of class at most 3.
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Injective hulls of simple modules over
differential operator rings

Can Hatipoğlu

We consider Noetherian rings over which injective hulls of simple modules are
locally Artinian. After a short motivation, we focus on the injective hulls of
simple modules over differential operator rings, providing sufficient conditions
under which these modules are not locally Artinian. As a consequence we char-
acterize Ore extensions S = K[x][y;σ, d] such that the injective hulls of simple
S-modules are locally Artinian.

This is a joint work with Paula Carvalho and Christian Lomp of the University
of Porto.
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On the maximal number of points on singular
curves over finite fields

Annamaria Iezzi
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1 Introduction

This in a joint with Yves Aubry.

Singular curves arise naturally in many Discrete Mathematics problems. A first
example from coding theory is the geometric constructions of error correcting
codes defined by the evaluation of points on algebraic varieties. The study of
hyperplane sections or more generally of sections of such varieties is needed
to find the fundamental parameters of these codes, and we often get singular
varieties. Another example comes from the theory of boolean functions. Indeed,
we have a geometric characterization of the APN property (Almost Perfect
Nonlinear) of a function by determining whether the rational points of a certain
algebraic set (which is a singular curve or a singular surface) are included in an
union of hyperplanes.

The zeta function of a singular curve has been studied in [1] and [2]. The
principal result is that the numerator of the zeta function of such a curve over
Fq is a polynomial not only with inverse root of modulus

√
q but also of modulus

1.

The geometric genus is not the only invariant which classifies singular curves,
there is also the arithmetic genus. For q a power of a prime, g and π non negative
integers such that π ≥ g, here we introduce a quantity of interest, denoted by
Nq(g, π), to be the maximal number of rational points over Fq that an absolutely
irreducible projective algebraic curve defined over Fq of geometric genus g and
arithmetic genus π can have. Its study should answer several problems listed
above.

2 Bounds for singular curves

Let us recall some results on singular curves from [1].

Let X be an absolutely irreducible projective curve defined over Fq of arithmetic

genus π and geometric genus g. If X̃ is the normalization of X, then:

|]X̃(Fq)− ]X(Fq)| ≤ π − g. (†)

The zeta function ZX(T ) of X is the product of the zeta function ZX̃(T ) of X̃
and a polynomial of degree

∆X = ](X̃(Fq)\X(Fq)).

Its structure allows to determine that:

]X(Fqn) = qn + 1−
2g∑
i=1

ωni −
∆X∑
i=1

βnj ,

for some algebraic integers ωi of absolute value
√
q and some roots of unity βj

in C.

In particular, the number of rational points on X verifies:
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|]X(Fq)− (q + 1)| ≤ g[2
√
q] + π − g ≤ π[2

√
q]. (‡)

3 The quantity Nq(g, π)

For q a power of a prime, g and π non negative integers such that π ≥ g, let us
define the quantity

Nq(g, π)

as the maximal number of rational points over Fq that an absolutely irreducible
projective algebraic curve defined over Fq of geometric genus g and arithmetic
genus π can have.

We have
Nq(g, g) = Nq(g),

where Nq(g) is the usual notation for the maximal number of rational points
over Fq that a smooth absolutely irreducible projective algebraic curve defined
over Fq of geometric genus g can have (since a curve is smooth if and only if its
arithmetic genus equals its geometric one).

If X is an absolutely irreducible projective algebraic curve defined over Fq of
geometric genus g and arithmetic genus π, we obtain from (†):

]X(Fq) ≤ ]X̃(Fq) + π − g ≤ Nq(g) + π − g.

Hence:
Nq(g, π) ≤ Nq(g) + π − g (§)

and using the Serre-Weil bound for smooth curves, we obtain as discussed in
the previous section:

]X(Fq) ≤ q + 1 + g[2
√
q] + π − g. (¶)

4 Singular curves with many points

Using the construction of Serre of singular curves developed in [4, Chapter 4,
3.4 ] (adapted to the case of a non-algebraically closed field) and descent theory,
we can prove the following theorem:

Theorem 3. Let Y be a smooth absolutely irreducible algebraic projective curve
of genus g defined over Fq. Let π be an integer of the form

π = g + a2 + 2a3 + 3a4 + · · ·+ (n− 1)an

with 0 ≤ ai ≤ Bi(Y ), where Bi(Y ) is the number of closed points of degree i on
the curve Y . Then there exists a (singular) absolutely irreducible algebraic pro-
jective curve X over Fq of arithmetic genus π such that Y is the normalization
of X (so that X has geometric genus g) and

]X(Fq) = ]Y (Fq)+a2+a3+a4+· · ·+an = ]Y (Fq)+π−g−(a3+2a4+· · ·+(n−2)an).
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In particular if ]Y (Fq) = Nq(g), i.e. Y is an optimal curve, then Theorem 3
implies that we can construct a curve X such that:

]X(Fq) = Nq(g) + π − g − (a3 + 2a4 + · · ·+ (n− 2)an).

Let Yq(g) be the set of smooth absolutely irreducible algebraic projective curves
Y defined over Fq with an optimal number of rational points, i.e. such that:

]Y (Fq) = Nq(g).

Let B2(Yq(g)) be the maximum number of points of degree 2 that a curve of
Yq(g) can have. Then, we have:

Proposition 4. For every g ≤ π ≤ g + B2(Yq(g)) there exists a (singular)
curve X of geometric genus g and arithmetic genus π that attains (§), i.e.

]X(Fq) = Nq(g) + π − g.

In other words for every g ≤ π ≤ g +B2(Yq(g)) we have

Nq(g, π) = Nq(g) + π − g.

4.1 The case of rational curves

Let start from Y = P1, the projective line, over a finite field Fq. In this case
the number of closed points of degree 2 is:

B2(P1) =
q2 − q

2
.

It follows from Proposition 4:

Corollary 5. If π ≤ q2−q
2 , then

Nq(0, π) = Nq(0) + π = q + 1 + π.

In [3], the curve B proposed by Fukasawa, Homma and Kim is an explicit

example of rational singular curve that attains Nq(0,
q2−q

2 ). In the same paper,
the curve Bn, that is a generalization of the curve B, is an explicit example of
rational singular curve such that:

]Bn(Fq) = q + 1 +B2(P1) +B3(P1) + · · ·+Bn(P1)

Thus we propose the following question:

For all n ≥ 2,

Nq(0, B2(P1)+2B3(P1)+· · ·+(n−1)Bn(P1)) = q+1+B2(P1)+B3(P1)+· · ·+Bn(P1)?
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5 Maximal curves

In the set of not necessarily smooth curves, we define maximal curves:

Definition. A (not necessarily smooth) absolutely irreducible projective alge-
braic curve X defined over Fq is called maximal if it reaches the bound from
equation (¶), i.e. if

]X(Fq) = q + 1 + g[2
√
q] + π − g.

We find the classical definition of maximal curve when X is smooth (i.e. it
reaches the Serre-Weil bound).

The curve B provided by Fukasawa, Homma and Kim in [3] is an example of
maximal singular curve.

Proposition 6. If X is a maximal curve defined over Fq with q a square, of
geometric genus g and arithmetic genus π, then:

2g(
√
q + q − 1) + 2π ≤ q2 − q.

For such a curve X the zeta function is:

ZX(T ) =
(1 +

√
qT )2g(1 + T )π−g

(1− T )(1− qT ).

Remark: In the case of maximal rational curves, the hypothesis of q a square is
not necessary and Proposition 6 implies:

π ≤ q2 − q
2

.

It is interesting to note that the maximal singular curve provided by Fukasawa,

Homma and Kim in [3] has maximal arithmetic genus π = q(q−1)
2 .

As a consequence of the previous remark and Corollary 5, we can state the
following result:

Proposition 7. We have

Nq(0, π) = q + 1 + π

if and only if π ≤ q2−q
2 .
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On the minimum distance of cyclic codes

Leyla Işık

Estimation of the minimum distance of cyclic codes is a classical problem in
coding theory. Using the trace representation of cyclic codes and Hilbert’s 90
Theorem, Wolfmann found a general estimate for the minimum distance of cyclic
codes in terms of the number of the rational points on certain Artin-Schreier
curves. In this talk, we present some of conditions, under which the Wolfmann’s
bound can be improved by the use of permutation polynomials.
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Representations of Leavitt and Cohn-Leavitt
path algebras

Ayten Koç

This is a joint work with Murad Özaydın.

Leavitt and Cohn-Leavitt path algebras of a directed graph Γ are generated by
the vertices and the arrows of Γ with relations (also determined by Γ) analo-
gous to those of Cuntz-Krieger C*-algebras. We study their representations, in
particular we determine all finite dimensional representations in terms of the
semigroup of the digraph Γ and dimension functions. We give an effective algo-
rithm to determine the existence of a finite dimensional representation when Γ
is finite.
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The Test Rank of A Soluble Product of Free
Abelian Lie Algebras

Nazar Şahin ÖĞÜŞLÜ

Let L be the lth solvable product of free abelian Lie algebras of finite rank. We
prove that the test rank of L is one less than the number of the factors. We
also give a test set for endomorphisms of L.

This is a joint work with Naime EKİCİ.

Key words: Free Lie algebras, soluble algebras, test rank

Mathematics Subject Classification: 17B01, 17B40
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Involution of Structural Matrix Algebras

Özkay Özkan

This is a joint work with Mustafa Akkurt.

The involutions and automorphism groups of structural matrix algebras and
incidence algebras were studied by several authors. Coelho [1] stated the con-
ditions for automorphism group of a structural matrix algebra . Spiegel [2] had
the similar results for incidence algebras. Spiegel stated that when a poset has a
comparable element then the automorphism group of incidence algebra defined
on this poset just consists of inner automorphisms and [3] gave us the involu-
tions of an incidence algebra. But [3] includes some error. So Brusamarello and
Lewis [5] published some new results on involutions. They also surveyed some
basic results about incidence algebras and their automorphism groups. In [5],
when a finite partially ordered set has a comparable element, they presented
necessary and sufficient conditions for two involutions on the incidence algebra
of X to be equivalent.
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The Hamilton - Waterloo Problem with
Uniform Cycle Sizes

Sibel Özkan

Decomposing graphs into edge-disjoint cycles is may be the most studied graph
decomposition problem. If we add the condition that the cycles must be resolved
into parallel classes, then this problem becomes a 2-factorization problem where
each 2-factor is a parallel class of cycle(s).

A {Crm, Csn}-decomposition of the complete graph on v vertices, Kv, asks for
a 2-factorization of Kv, where r of the 2-factors consists of m-cycles, and s of
the 2-factors consists of n-cycles. (For even v, it is a decomposition of Kv − F ,
where F is a 1-factor.) This is a case of the Hamilton-Waterloo Problem(the
HWP) with uniform cycle sizes m and n. The HWP is an extension of the well-
known Oberwolfach problem which asks for isomorphic 2-factors. Main focus of
this talk will be on the HWP with uniform cycle sizes; some new results on the
various lengths of cycles will be presented.
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Multidimensional Quasi-Cyclic and
Convolutional Codes

Buket Özkaya

For m, l integers with gcd(m, q) = 1, a quasi-cyclic (QC) code of length ml and
index l over Fq is a linear code C ⊂ Fmlq which is invariant under the shift of
codewords by l positions (where l is the minimal such number). It is well-known
that such a QC code can be viewed algebraically as an R-module of Rl, where
R = Fq[x]/〈xm − 1〉. Alternatively, we can let S = Fq[x, y]/〈xm − 1, yl − 1〉 and
view a QC code of length ml and index l as an R-submodule of S.

One can decompose a QC code over Fq into its constituent codes, which are
linear codes over certain extensions of Fq ([3]). Also, a concatenated decom-
position structure can be described for QC codes where the inner codes in the
decomposition are minimal cyclic codes ([2]). It has been shown in [1] that the
constituents in the sense of Ling-Solé and the outer codes in the concatenated
structure given by Jensen are the same.

We define multidimensional generalizations of QC codes and investigate their
properties. For n ≥ 1, we let

Rn = Fq[x1, x2, . . . , xn]/〈xm1
1 − 1, . . . , xmn

n − 1〉

and define the Q-nD-C code of size m1 × · · · × mn+1 as an Rn-submodule of
Rn+1. It is clear the for n = 1, we obtain QC codes (of length m1m2 and index
m2). Q-nD-C codes are linear codes of length m1 · · ·mn+1 over Fq and they can
also be viewed as QC codes of index l = m2 · · ·mn+1. However, they have extra
shift-invariance properties than ordinary QC codes.
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Being QC codes, we can talk about the decomposition of Q-nD-C codes into
constituents (or the concatenated structure). We prove that the constituents (or
the outer codes in Jensen’s concatenated decomposition) of a length m1 · · ·mn+1

Q-nD-C code are Q-(n-1)D-C codes (over various extensions of Fq) of length
m2 · · ·mn+1. We also prove that the family of Q-nD-C codes are asymptotically
good for any n ≥ 1.

Quasi-cyclic codes are naturally related to convolutional codes which are defined
as rank k Fq[x]-submodules of Fq[x]`. Free distance of a convolutional code can
be lower bounded by the minimum distance of an associated QC code (see
[4]). Multidimensional generalizations of convolutional codes have also been
introduced and studied ([5]). We show that one can naturally associate a QnDC
code to any nD convolutional code and prove an analogue of Lally’s result for
a particular class of nD convolutional codes.
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Pell Form and Pell Equation in terms of Oblong
Numbers

Arzu Özkoç

In this work, we determine the cycle, proper cycle and the set of proper auto-
morphisms of Pell forms F∆k

(x, y) = x2 −Oky2 of discriminant ∆k = 4Ok and
determine all integer solutions of the Pell equation F∆k

(x, y) = 1 via oblong
numbers Ok which are the numbers of the form k(k + 1) for an integer k ≥ 0.

References

[1] E.J. Barbeau. Pell’s Equation. Springer-Verlag New York, Inc, 2003.

[2] J. Buchmann and U. Vollmer. Binary Quadratic Forms: An Algorithmic Ap-
proach. Springer-Verlag, Berlin, Heidelberg, 2007.

31



[3] D.E. Flath. Introduction to Number Theory. Wiley, 1989.

[4] M. Jacobson and H. Williams. Solving the Pell Equation, CMS Books in Mathe-
matics. Springer, 2010.

[5] R.A. Mollin. Fundamental Number Theory with Applications. Second Edition
(Discrete Mathematics and Its Applications) Chapman & Hall/ CRC, Boca Ra-
ton, London, New York, 2008.
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Factorization of places in coverings of algebraic
curves

Özgür Deniz Polat

In this talk we consider the following question: Given a finite separable non-
Galois extension F/K of a global field K, how a prime P of K decomposes in
the field F.

We study the Galois extension L/K where L is the Galois closure of F/K. We
obtain a one to one correspondence between the double coset space of G with
respect to certain subgroups of G (depending on P and F ) and the set of primes
of F lying over P . Under this correspondence ramification indices and inertia
degrees are explicitly determined.

Then we investigate the case where G is a finite group of Lie type defined over
Fq and F is the intermediate field corresponding to a parabolic subgroup of G.
Under these assumption we obtain that the number of primes of F lying over
an unramified place with given residue degree can be obtained as polynomials
in q This polynomials are determined by the length function on the certain
subgroups of the Weyl group of G.
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Density Theorems for Rings of Krull type

Başak Ay Saylam

Let R be a commutative ring and I(R) denote the multiplicative group of all
invertible fractional ideals of R, ordered by A 6 B if and only if B ⊆ A. If R is
a Marot ring of Krull type, then R(Pi), where {Pi}i∈I are a collection of prime
regular ideals of R, is a valuation ring and that R =

⋂
R(Pi). We denote by Gi

the value group of the valuation associated with R(Pi). We prove that there is
an order homomorphism from I(R) into the cardinal direct sum

∐
i∈I Gi and

investigate the conditions that make this monomorphism onto for R.
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On minimal non-hypercentral groups

Azra Souad

Let X be a class of groups. A group is said to be minimal non-X if it is not an
X-group, while all its proper subgroups belong to X. In this note we prove that
a minimal non-hypercentral group a finitely generated is a perfect group which
has no proper subgroup of finite index and such that G/Frat(G) is an infinite
simple group, where Frat(G) stands for Frattini subgroup of G.

Mohamed El Bachir El Ibrahimi Bordj bou Arréridj University
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Arf Rings for Singularities

Nil Şahin

In this talk, we describe Arf rings and closures, and Arf’s method to com-
pute the Arf closures. Introducing an easily implementable new algo- rithm for
computing the Arf closure of an irreducible algebroid curve, we will read the
multiplicity sequences of branches from their Arf closures. Moreover, we will
talk about a conjecture by Arslan and Sertöz about the relation be- tween the
branches with the same regularity indices and give some examples supporting
the conjecture that is computed with the new Arf closure algorithm.
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Generalized Multipliers, Weil numbers and
Circulant Weighing Matrices

Ming Ming Tan

The study of some combinatorial objects such as relative difference sets and in-
teger weighing matrices is equivalent to the investigation of a certain identity in
suitable group rings. For this reason, the interplay of algebra and combinatorics
becomes very important. One such powerful algebraic approach is the concept
of multipliers.
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Definition. Let G be an abelian group of order v and D ∈ Z[G]. An integer t
with gcd(t, v) = 1 is called a multiplier of D if

D(t) = Dg

for some g ∈ G.

Arasu and Ma [1] extended the concept of multipliers to cyclotomic group ring
Z[ζ][G] where ζ is a suitable complex root of unity. One such application is on
circulant weighing matrices.

A circulant weighing matrix CW (v, n) is a square matrix of order v of the
form

M =


a1 a2 . . . av
av a1 . . . av−1

. . . . . . . . . . . .
a2 a3 . . . a1


where ai ∈ {0,±1} and MMT = nI, n is a positive integer and I is the identity
matrix. We use the generalized multipliers to derive some non-existence results
on infinite families of circulant weighing matrices. In particular, we settled
6 open cases in the Strassler’s table [2]. In addition, using other approaches
including field descent and weil numberes, we further solved 10 more open cases.

The generalized multiplier concept derived by Arasu and Ma cover only cyclic
groups. We generalize the result to abelian groups and give a simpler proof.
Such generalization will be useful in studying the structure of many combina-
torial objects over general abelian groups, e.g. integer weighing matrices. The
potential of further applications of the generalized multipliers on other combi-
natoric objects will be of interest for discussion.
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Tower Tableaux

Müge Taşkın

It is well known that any permutation ω in the symmetric group Sn can be
represented as the product of some finite adjacent transpositions si = (i, i+ 1),
where the index i runs from 1 to n − 1. Among all such representations the
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ones which uses the minimum number of generators are called reduced repre-
sentations for ω. The notion of reduced words has been catching high attention,
because of their appearances in many areas of mathematics. See for examples
[1, 2, 3, 4, 5, 6, 7].

We introduce a new combinatorial object called tower diagrams and introduce
an algorithm that allows one to slide words on Z+ to these objects. Using this
sliding algorithm, we construct a bijection between tower diagrams and finite
permutations and show that this bijection specializes to a bijection between
standard labelings of a given tower diagram and reduced expressions of the
corresponding permutation. We also demonstrate how these works interferes
with the studies on Schubert polynomials.

This is a joint work with Olcay Coşkun.
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The small index property for relatively free
algebras

Vladimir Tolstykh

Apart from countable structures, there is no standard definition for the small
index property for structures of arbitrary infinite cardinality.

Based on the results from the paper [1] by Dixon, Neumann and Thomas, we
suggest the following definition for the small index property for relatively free
algebras.
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Definition. Let F be an infinitely generated relatively free algebra. We say
that F has the small index property if every subgroup Σ of the automorphism
group Γ = Aut(F ) of index at most rank(F ) contains the pointwise stabilizer
Γ(U) of a subset U of F of cardinality less than rank(F ).

In our talk we shall discuss some properties of relatively free algebras with the
small index property and outline the proofs of the following results.

Proposition 8. Let N be an infinitely generated free nilpotent group. Then N
has the small index property.

Proposition 1 can be used to prove that

Proposition 9. All automorphisms of the group Aut(A), where A is an in-
finitely generated free abelian group, are inner.

Note that the automorphism groups of infinitely generated free nilpotent groups
of class > 2 are complete [2].
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On the Spectral Determination of Some Special
Graphs

Hatice Topçu

There are some kind of matrices which belongs to the graphs, such as
Degree matrix, Adjacency matrix, Laplacian matrix, Signless Laplacian matrix,
etc. According to any graph matrix M, when two graphs have the same M-
spectrum, they are called M-cospectral. Hence, for a given graph G, if all of the
M-cospectral graphs with G are isomorphic to G, then G is called determined by
its M-spectrum and it is denoted by DMS. Since the paper ”Which graphs are
determined by their spectrum?” has published, researchers have great attention
to find the answer of this question. Here, we will talk about some special kinds
of graphs which are determined by their spectrum. Then, we will present our
work on some special graphs whether they are DMS or non-DMS. Additionally,
we will give some open problems about this topic.

This talk is based on joint work with my supervisor Sezer Sorgun.
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Recursive Artin-Schreier Towers of Function
Fields over F2

Seher Tutdere

Let Fq be a finite field (q = pk with p a prime and k ≥ 1 an integer) and
F/Fq be an algebraic function field of one variable with the field Fq as its full
constant field. We denote by Br(F ) and g(F ) the number of places of degree r
for any positive integer r and the genus of F/Fq, respectively. When r = 1, for
all k ≥ 2 and when r ≥ 2, for all k ≥ 1 there are many examples of recursive
towers F = (Fn)n≥0 over Fq with positive limit βr(F) = limn→∞Br(Fn)/g(Fn).
However, it is not known whether there are any recursive towers over prime fields
with positive β1. We call a recursive tower F = (Fn)n≥0 an Artin-Schreier tower
if each extension Fn+1/Fn (with n ≥ 0) is an Artin-Schreier extension of degree
p. In this talk we discuss all polynomials which define recursive Artin-Schreier
towers over the field F2 and the limit βr of those towers for all r ≥ 1.

This is a joint work with Henning Stichtenoth who was partially supported by
TÜBİTAK under the grant no: TBAG-111T234 and Seher Tutdere was partially
supported by TÜBİTAK under the grant no: TBAG-112T011.
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email: stutdere@gmail.com

web: http://www.gyte.edu.tr/tr/personel/573/26219106/display.aspx

Brauer indecomposability of Scott modules of
Park-type groups

İpek Tuvay
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Let p be a prime number, G be a finite group, P be a p-subgroup of G, and k
be an algebraically closed field of characteristic p. We prove that the kG-Scott
module with vertex P is Brauer indecomposable for some families of groups
closely related to groups constructed by Park in the context of fusion systems.

Gebze Institute of Technology
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Smaller Generators for Some Class Fields

Osmanbey Uzunkol

In this talk, it will be shown that smaller powers of certain quotients of the
values of Siegel functions are primitive elements of ray class fields of imaginary
quadratic number fields. These values yield smaller generators of such class
fields, as in the case of class invariants for Hilbert class fields. Joint work with
Ömer Kücüksakalli (METU).

Tübitak Bilgem
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A polynomial embedding of pairs of orthogonal
partial latin squares

Emine Şule Yazıcı

Let N represent a set of n distinct elements. A non-empty subset P of N×N×N
is said to be a partial latin square, of order n, if for all (x1, x2, x3), (y1, y2, y3) ∈ P
and for all distinct i, j, k ∈ {1, 2, 3},

xi = yi and xj = yj implies xk = yk.

If |P | = n2, then we say that P is a latin square, of order n.

Two partial latin squares P and Q, of the same order are said to be orthogonal
if they have the same non-empty cells and for all r1, c1, r2, c2, x, y ∈ N

{(r1, c1, x), (r2, c2, x)} ⊆ P implies {(r1, c1, y), (r2, c2, y)} 6⊆ Q.

In 1960 Evans proved that a partial latin square of order n can always be
embedded in some latin square of order t for every t ≥ 2n. In the same paper
Evans raised the question as to whether a pair of finite partial latin squares which
are orthogonal can be embedded in a pair of finite orthogonal latin squares. We
show that a pair of orthogonal partial latin squares of order t can be embedded
in a pair of orthogonal latin squares of order at most 16t4 and all orders greater
than or equal to 48t4. This is the first polynomial embedding result of its kind.
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38



Posters

New classes of permutation polynomials over
finite fields of odd characteristic

Sedat Akleylek, Zülfükar Saygı

We present some new classes of permutation polynomials over finite fields of

odd characteristic. The classes are related to the form (xp
k − x + δ)s + L(x)

where k, s are integers, L(x) is a linearized polynomial in Fp[x] and δ ∈ Fp \{0}.
The focus is given to finding suitable s. A complete permutation polynomial
family is also studied for some cases.

Ondokuz Mayıs University and Middle East Technical University
TOBB University of Economics and Technology

email: sedat.akleylek@bil.omu.edu.tr,zsaygi@etu.edu.tr

Conjugacy classes of extended generalized Hecke
groups

Bilal Demir

This is a joint work with zden Koruolu and Recep ahin from Balkesir University.

Lehner studied more general class Hp,q of Hecke groups H2,q = Hq, by taking

X =
−1

z − λp
and V = z + λp + λq,

where 2 ≤ p ≤ q, p + q > 4. Here if we take Y = XV = − 1
z+λq

, then we have

the presentation,

Hp,q =< X,Y : Xp = Y q = I >' Cp ∗ Cq.

We call these groups as generalized Hecke groups Hp,q. All Hecke groups Hq

are included in generalized Hecke groups Hp,q.

Now we define extended generalized Hecke groups Hp,q, by adding the reflection
R(z) = 1/z to the generators of generalized Hecke groups Hp,q. Then, extended
generalized Hecke groups Hp,q have a presentation

Hp,q =< X,Y,R : Xp = Y q = R2 = I, RX = X−1R,RY = Y −1R > .

In this study, we determine the conjugacy classes of the torsion elements in
extended generalized Hecke groups Hp,q. The conjugacy classes of extended
modular group have been studied by Jones and Pinto in [3]. The non-elliptic
conjugacy classes of Hecke Groups Hq have been studied by Hoang and Ressler
in [4]. Also, the conjugacy classes of the torsion elements in Hecke Hq and
extended Hecke groups Hq have been found by Yılmaz Ozgur and Sahin in [5].
Here, we generalize the results given in [5] to extended generalized Hecke groups
Hp,q by similar methods.
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On The Hamilton-Waterloo Problem

Uğur Odabaşı

A 2 − factor in a graph G is a 2−regular spanning subgraph of G, and a
2− factorization of graph G is a decomposition of all the edges of G into edge-
disjoint 2−factors. The Hamilton −Waterloo problem is a generalization of
the well known Oberwolfach problem and asks for a 2−factorization of K2v+1

in which r of the 2−factors are isomorphic to a given 2−factor R and s of
the 2−factors are isomorphic to a given 2−factor S, with r + s = v. The
2−factorization is called uniform when R consists of cycles of length m and
S consists of cycles of length n. The family of such 2−factorizations for all
possible r and s is denoted by (m,n) − HWP (2v + 1; r, s). There exists no
2−factorization of K2n since the degree of each vertex is odd. In this case, the
2−factorization of K2v − I where I is a 1−factor of K2v is considered and such
a factorization also denoted by (m,n)−HWP (2v; r, s).

In this study, some early results and basic constructions on this problem are
considered and some new results are discussed.
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Modular Multiplication Algorithms For Finite
Field Multiplication in Fp

Ahmet Sınak, Murat Cenk

Finite field arithmetic plays an important role in applications such as coding
theory and cryptography. Since some encryption and signing algorithms such
as RSA, DSA, ECC in public key cryptosystems require modular multiplica-
tions, the efficiency of modular multiplication for long integers is a significant
part of the implementation of these algorithms. The implementation of modular
multiplication has to be accelerated in order to obtain practical cryptosystems.
Modular multiplication includes both multiplication of integers and reduction
of the product modulo an integer. In order for a cryptographic system to be
practical, one should use efficient algorithms for both steps. In literature, many
efficient modular multiplication algorithms have been constructed for this pur-
pose [2, 3, 4, 5]. The most popular algorithms are Karatsuba multiplication,
Montgomery multiplication, Barrett reduction, Toom-Cook multiplication and
Fourier transform. The performance of these algorithms vary depending on
the implementation platform and the structure of prime p. In this work, we
survey the existing multiplication algorithms from the aspect of computational
complexity. Moreover, we show that better results can be obtained by using
combination of the algorithms mentioned above. To this end, we use recursive
designing techniques and search the best possible algorithm in each recursion
level that yields improved complexities.

References

[1] Aranha, D.F., Fuentes-Castaeda, L., Knapp, E., Menezes, A., Rodrguez-
Henrquez, F. Implementing pairings at the 192-bit security level, 7708 LNCS,
pp. 177-195, Springer- Verlag, 2013.

[2] Bluemel, R., Laue, R. and Huss, Sorin A. A highly efcient modular Multiplication
Algorithm for Finite Field Arithmetic in GF(P). In Proceedings of ECRYPT
Workshop, Cryptographic Advances in Secure Hardware, 2005.

[3] Hankerson, D., Menezes, A., and Vanstone, S. Guide to elliptic curve cryptogra-
phy. Springer Professional Computing. Springer-Verlag, New York, 2004.

[4] Koc, C. Kaya, Acar, T. and J. Kaliski, B.S., Analyzing and comparing Mont-
gomery multiplication algorithms, IEEE Micro, vol. 16, no. 3, pp.26 33, jun 1996.

41



[5] Montgomery, Peter L. Modular Multiplication Without Trial Division.
Mathematics of Computation 4A, 170 (April 1985), 519-521. Available
at http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282
X/S0025-5718-1985-0777282-X.pdf

Institute of Applied Mathematics, Middle East Technical University, Ankara,
Turkey

email: sahmet@metu.edu.tr,mcenk@metu.edu.tr

Neat and P-Pure Proper Classes

Zübeyir TÜRKOĞLU

Let R be a ring with unity. A short exact sequence E of left R-modules is
said to be neat-exact if every simple left R-module is projective with respect
to it. We call it P-pure-exact if for every left primitive ideal P of R, the
sequence obtained by taking the tensor product of E from the left by R/P
is exact. These give proper classes of short exact sequences of left R-modules.
The characterization of N -domains, that is, the commutative domains such that
neatness and P-purity coincide, has been given recently by László Fuchs: they
are the commutative domains where every maximal ideal is projective (and so
necessarily finitely generated in the commutative domain case). We extend this
sufficient condition to commutative rings using the Auslander-Bridger tranpose
of simple R-modules, that is, we prove that if R is a commutative ring where
every maximal ideal is projective and finitely generated, then neatness and P-
purity coincide. Conversely, we show that the necessary condition holds for
commutative rings with zero socle, that is, we show that if R is a commutative
ring where neatness and P-purity coincide and if R has zero socle, then every
maximal ideal of the ring R is projective and finitely generated.
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