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Invited talks

How many rational points can a high genus curve over
a �nite �eld have?

Alp Bassa

In this talk we will be interested in the question of how many rational
points a high genus curve over a �nite �eld can have. We will introduce
several approaches to this problem and present a recent result (joint work
with Beelen, Garcia, Stichtenoth) over all non-prime �nite �elds.

Sabanc� Üniversitesi, Orta Mahalle, Üniversite Caddesi No: 27, 34956
Tuzla-�stanbul

bassa@sabanciuniv.edu

http://people.sabanciuniv.edu/~bassa/

The Hrushovski Programme

Alexandre Borovik

The aim of the talk is to discuss an approach to classi�cation of simple
groups of �nite Morley rank via study of groups of �xed points of their
generic automorphisms. It has been proposed by Udi Hrushovski (about
a decade ago) and promises a synthesis of the theories of �nite groups
and algebraic groups with the model theory�as well as new insights into
the nature of classi�cation of �nite simple groups�much deeper than the
ones currently achieved in the theory of groups of �nite Morley rank.
I will explain some recent results by Omaima Alshanqiti, P�nar U§urlu,

and �ükrü Yalç�nkaya closely related to this programme.

University of Manchester

alexandre.borovik@gmail.com

http://www.maths.manchester.ac.uk/~avb/
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A functor approach to modular representations of GLn

Marcin Chaªupnik

I will explain how natural constructions in linear algebra help to un-
derstand representations of the general linear groups. We will focus on
homological problems such us computing Ext-groups between modular
representations of GLn. I will describe combinatorial structures govern-
ing these Ext-groups and discuss a surprising connection between mod-
ular representations of GLn and representations of Kac-Moody algebras
of type An.

Uniwersytet Warszawski

mchal@mimuw.edu.pl

Exponential polynomials

Paola D'Aquino

I will consider exponential polynomials over algebraically closed �elds of
characteristic 0 with an exponentiation. I will describe a factorization
theorem for such polynomials extending a result of Ritt [2]. I will also
examine some consequences of Schanuel's Conjecture in transcendental
number theory for exponential polynomials over the complex �eld, and
more in general over the exponential �elds introduced by Zilber [3]. In
particular, I will relate Schanuel's Conjecture to another conjecture due
to Shapiro going back to 1956 on a system of two exponential polynomials.

References

[1] P. D'Aquino, A. Macintyre and G. Terzo, On Shapiro Conjecture, submitted.

[2] J.F. Ritt, On the zeros of exponential polynomials, Transactions of American
Mathematical Society, 31, (1929), 680-686.

[3] B. Zilber, Pseudo-exponentiation on algebraically closed �elds of characteristic
zero, Annals of Pure and Applied Logic, 132, (1), (2004), 67-95.

Seconda Università di Napoli

paola.daquino@unina2.it
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Pairs of algebraically closed �elds

Françoise Delon

A �pair of algebraically closed �eld� consists of an algebraically closed
�eld enriched with an additional unary predicate interpreted as an alge-
braically closed sub�eld. We propose a language in which they eliminate
quanti�ers, and which has the advantage of adapting to some expansions.
We consider more precisely dense and �separated� pairs of algebraically
closed valued �elds. The latter had been axiomatized by Baur, who had
also proved that any pair in which the small �eld is maximal is separated.

References

[1] Walter Baur, On the elementary theory of pairs of real closed �elds II, JSL 47

(1982), 669-679.

[2] Françoise Delon, Extensions séparées et immédiates de corps valués, JSL 53

(1988), 421-428.

[3] Françoise Delon, Élimination des quanti�cateurs dans les paires de corps al-
gébriquement clos, Con�uentes Mathematici, to appear.

Université Paris-Diderot, France

delon@math.univ-paris-diderot.fr
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Polynomial-Exponential Equations

Ayhan Günayd�n

We consider polynomial-exponential equations over complex numbers
where the variables run through rational numbers. Classically, the integer
solutions of such equations are considered and there are several �niteness
results in the literature for those solutions (for instance [2] and [3]). We
present a method to reduce the rational solutions to integer ones and
give a description of them using the earlier results. As a corollary, we
get a �niteness result. If time permits, we present connections with the
Mordell-Lang Conjecture.

References

[1] Günayd�n, A., Rational solutions of polynomial-exponential equations, to appear
in Int. J. Number Theory;

[2] Laurent M., Équations diophantiennes exponentielles, Invent. Math., 1984, 78,
299�327;

[3] Schlickewei, H. P. and Schmidt, W. M., On polynomial-exponential equations,
Math. Ann., 1993, 2, 339�361.

Universidade de Lisboa

ayhan@ptmat.fc.ul.pt

www.ptmat.fc.ul.pt/~ayhan
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Valued di�erence �elds and the tree property of the
second kind

Martin Hils

In model theory, important dividing lines are usually de�ned in therms
of combinatorial properties of de�nable sets, e.g. stable and NIP theories
are de�ned in this manner. Recall that a formula ϕ(x, y) is said to have
the independence property, if one may shatter arbitrarily large �nite sets,
using instances ϕ(x, a) of ϕ. A theory is NIP if no formula has the
independence property. Valued �elds provide examples par excellence of
unstable NIP theories: (the theory of) every algebraically closed valued
�elds is NIP, as is any henselian valued �eld of residue characteristic 0,
provided the residue �eld is NIP.
Combining Hrushovski's very deep results on the non-standard Frobe-

nius automorphism [3] with the work of Azg�n on valued �elds with a
contracting automorphism [1], one may obtain an axiomatisation of the
�rst-order structure given by an algebraically closed valued �eld of residue
characteristic 0 equipped with a non-standard Frobenius automorphism.
This structure, a valued di�erence �eld, is not NIP, since the induced
�eld automorphism on the residue �eld is `generic'. But one may show
that it is next best: it does not have the tree property of the second kind,
i.e. is NTP2. More generally, in the context of an Ax-Kochen-Ersov prin-
ciple for valued di�erence �elds (see [1]), NTP2 transfers from the value
group (with automorphism) and the residue di�erence �eld to the valued
di�erence �eld itself.
The property NTP2 had already been introduced by Shelah in 1980,

but only recently it has been shown to provide a fruitful `tameness' as-
sumption, e.g. when dealing with independence notions in unstable NIP
theories (work of Chernikov and Kaplan [2]).
In the talk, all the above notions will be de�ned and put into a larger

context. Moreover, we will sketch the proof of our main result, namely
that certain valued di�erence �elds are NTP2. This is joint work with
Artem Chernikov.

References

[1] Salih Azg�n, Valued �elds with contractive automorphism and Kaplansky �elds,
J. Algebra 324 (2010), 2757�2785.
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[2] Artem Chernikov and Itay Kaplan, Forking and dividing in NTP2 theories, J.
Symbolic Logic 77 (2012), 1�20.

[3] Ehud Hrushovski, The elementary theory of the Frobenius automorphisms,
preprint, 2004 (arXiv:math/0406514v1 [math.LO]).

Institut de Mathématiques de Jussieu, Université Paris-Diderot Paris 7

hils@math.univ-paris-diderot.fr

http://www.logique.jussieu.fr/~hils/

Multiple zeta values from L. Euler to F. Brown

Amir Jafari

In this expository talk I will explain the relation between multiple
zeta values, de�ned by Euler centuries ago, and recent topics such as
Hodge, p-adic and motivic periods. I will also explain the relations that
such numbers satisfy and the relation between them and the motivic
fundamental group of the sphere minus three points.

Sharif University

ajafari@sharif.ir
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Automorphism Groups of Rational Elliptic Surfaces with
Section

Tolga Karayayla

The aim of this talk is to describe the classi�cation of the automor-
phism groups of relatively minimal rational elliptic surfaces with section
de�ned over the base �eld C. Let B be such an elliptic surface and
Aut(B) be the group of automorphisms of B (biholomorphic maps on
the complex manifold B). As an elliptic surface, B has a projection map
β : B → P1 to the complex projective line P1 such that the generic �ber
is an elliptic curve and there are �nitely many singular �bers which can
be of certain types. An equivalent description of B is that it can be ob-
tained from the projective plane P2 by blowing up the 9 base points of
a pencil of generically smooth cubics. The con�guration of the singular
�bers gives important information about Aut(B). Oguiso and Shioda
[2] have shown that the Mordell-Weil group MW (B) of B (the group of
the sections of the surface), which naturally embeds in Aut(B), is deter-
mined by the con�guration of the singular �bers on B. In [1], we show
that Aut(B) = MW (B)oAutσ(B) where Autσ(B) denotes the subgroup
of the automorphisms of B preserving the zero section σ, and for the sur-
faces B with non-constant J maps we list all possible groups which can
arise as Autσ(B) corresponding to each con�guration of singular �bers
on B. In this presentation I will show how the con�guration of singular
�bers on the surface gives some criteria on Autσ(B and how these criteria
can be used to determine the possible groups Autσ(B).

References

[1] T. Karayayla, The classi�cation of automorphism groups of rational elliptic sur-
faces with section, Advances in Mathematics 230 (2012) 1�54.

[2] K. Oguiso, T. Shioda, The Mordell-Weil lattice of a rational elliptic sur-
face,Comment. Math. Univ. St. Pauli 40 (1991) 83�99.

Middle East Technical University

tkarayay@metu.edu.tr
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On model-theoretic connected components in some
group extensions

Krzysztof Krupi«ski

This is joint work with Jakub Gismatullin.
For a group G de�nable in a monster model and for a small set of pa-

rameters B, we denote by G00
B the smallest B-type-de�nable subgroup

of bounded index and by G000
B the smallest B-invariant subgroup of

bounded index. It was an open problem to �nd a group G for which
G00

B ̸= G000
B . The �rst example, found by Conversano and Pillay, is

the universal cover S̃L2(R) of SL2(R). Their proof uses the fact that

S̃L2(R) is a central extension of SL2(R) by Z given by a de�nable 2-
cocycle h : SL2(R) × SL2(R) → Z with �nite image, and also the facts

that both groups SL2(R) and S̃L2(R) are perfect (i.e. equal to their
commutator subgroups).
This led us to the following general question.

Question. When does an extension G̃ of a group G by an abelian group
A satisfy G̃00

B ̸= G̃000
B for some parameter set B (working in a monster

model)?

We consider this problem in a general algebraic context, i.e. without
assuming that G̃ is a universal cover of a topological group or that G is
de�nable in an o-minimal structure. The only restriction that we make is
the assumption that the 2-cocycle h : G×G → A de�ning our extension
is de�nable and has �nite image.
Our goal was to �nd su�cient (and necessary, at least in some situ-

ations) conditions on h for which G̃00
B ̸= G̃000

B , and our main theorem
provides such conditions.
Using this theorem, we obtain new classes of examples of extensions

(including the example of Conversano and Pillay) for which G̃00
B ̸= G̃000

B ,
e.g. some central extensions of SL2(k) for k being any ordered �eld. In
order to apply our theorem to get these new examples, we use Matsumoto-
Moore theory.
During my lecture, I will discuss the main theorem, and, if time per-

mits, I will present some of the examples which we have obtained applying
our theorem.
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Uniwersytet Wrocªawski

Krzysztof.Krupinski@math.uni.wroc.pl

http://www.math.uni.wroc.pl/~kkrup/

Automatic quanti�er elimination and mutually algebraic
structures

Chris Laskowski

A series of results indicate that su�ciently strong model theoretic hy-
potheses imply a bound on the quanti�er complexity, regardless of the
presentation of the model. For example, the elementary diagram of any
model of a trivial, strongly minimal theory is model complete. We are
now able to understand such examples by introducing the notions of mu-
tually algebraic formulas, theories, and structures. We prove that every
structure has a mutually algebraic hull and give a number of characteriza-
tions of a theory being mutually algebraic. The most striking equivalence
is that a theory T is mutually algebraic if and only if no expansion of a
model of T by adding unary predicates has the �nite cover property.

University of Maryland

mcl@math.umd.edu

www.math.umd.edu/~mcl
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Valued di�erence �elds

Gönenç Onay

Let (K, v) be a valued �eld with a distinguished automorphism σ which
preserves the valuation ring OK , hence inducing automorphisms: σv on
the ordered value group of (K, v) and σ̄ on the residue �eld of (K, v). In
[1], S.Durhan (formerly S.Azg�n) considered the case where σv is contrac-
tive (: σv(γ) > nγ ∀γ > 0 and ∀n ∈ N); in [3], K.Pal considered the
case where σv is multiplicative (: σv : γ 7→ ργ, for some ρ > 0 in some real
closed �eld) while my thesis (cf. [2]) involves study of σ-linear equations
(i.e. equations of the form

∑
i aiσ

i(x) = b), where σv is auto-increasing
(: σv(γ) > γ for γ > 0).
In this talk, after recalling these results, I will present some new ones

on the way of Ax-Kochen and Ershov type theorems which permit one
to recognise the �rst order theory of the valued di�erence �eld (K, v, σ)
by those of its value group and residue �eld with no assumption on

σv while keeping already present hypotheses in above works on residue
�eld. This is an ongoing work joint with Salih Durhan.

References

[1] Azg�n; S. Valued �elds with contractive automorphism and Kaplansky �elds.
Journal of Algebra, 324(10):2757-2785, 2010.

[2] Onay; G. Modules valués: en vue d'applications à la théorie des corps valués de
caractéristique positive. Thèse de doctorat [2011], Université Paris VII, France.

[3] Pal; K. Multiplicative valued di�erence �elds. J. Symbolic Logic Volume, 77,
(2012), 545-579.

Mimar Sinan Güzel Sanatlar Üniversitesi & Université Paris Diderot-
Paris VII

gonenc@logique.jussieu.fr
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Alternatives for pseudo�nite groups.

Françoise Point

I will present a joint work ([1]) with A. Ould Houcine on alternatives
for pseudo�nite groups of the same �avour as the Tits alternative for
linear groups.
We show that an ℵ0-saturated pseudo�nite group either contains the

free subsemigroup of rank 2 or is nilpotent-by-(uniformly locally �nite).
We strengthen the result to pseudo�nite groups satisfying a �nite dis-
junction of Milnor identities by showing that such group is nilpotent-
by-(uniformly locally �nite). Then we show that whether the following
dichotomy holds for ℵ0-saturated pseudo-�nite groups, namely it either
contains a free non abelian subgroup or it is amenable, is equivalent to
whether a �nitely generated residually �nite group which satis�es a non-
trivial identity is amenable (respectively uniformly amenable).
A class of �nite groups is weakly of bounded r-rank if the class of the

radicals is of r-bounded (Prüfer) rank and the index of the sockels are
r-bounded. We obtain the following dichotomies for an ℵ0-saturated
pseudo-(�nite weakly of bounded rank) group G: either G contains a
nonabelian free group or G is nilpotent-by-abelian-by-(uniformly locally
�nite). This strenghtens former results of S. Black [2] who considered a
"�nitary Tits alternative� (for a class of �nite groups).
Using a result of E. Khukhro ([3]) on classes of �nite soluble groups

satisfying some uniform conditions on centralizer dimension, we show that
an ℵ0-saturated pseudo-(�nite of bounded centralizer dimension) group
either contains a nonabelian free group or is soluble-by-(uniformly locally
�nite).

References

[1] A. Ould Houcine, F. Point, Alternatives for pseudo�nite groups, preprint.

[2] S. Black, A �nitary Tits' alternative, Arch. Math. 72 (1999), no. 2, 86-91.

[3] E. I. Khukhro, On solubility of groups with bounded centralizer chains, Glasgow
Mathematical Journal 51 (2009) 49-54.

Françoise Point
Department of Mathematics, Mons University,
20, place du Parc, B-7000 Mons, Belgium.

Francoise.Point@umons.ac.be.
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The diameter of permutation groups

Ákos Seress

For a group G and a set of generators S of G, the Cayley graph Γ(G,S)
is de�ned to have vertex set G and g, h ∈ G are adjacent if and only if
gs = h or hs = g for some s ∈ S. The diameter of Γ(G,S) is the
maximum distance among pairs of vertices; equivalently, the diameter is
the minimum number d such that every group element can be written as a
word of length at most d in terms of the elements of S and their inverses.
The diameter problem may be interesting for a particular group and set
of generators (how many turns do we need to solve Rubik's cube?), but
the mathematically most challenging questions are about estimating

diam(G) := maxS{diam(Γ(G,S))}

with the maximum taken over all sets of generators of G, and for G in
an appropriate family of groups.
The challenge driving most recent activities is Babai's conjecture, which

states that for all �nite nonabelian simple groups, diam(G) < (log |G|)c,
for some absolute constant c. The conjecture was proven by Pyber, Szabó
and Breillard, Green, Tao in 2011 for Lie-type groups of bounded rank,
but the case of alternating groups cannot be handled by their machinery.
For alternating groups An, Babai's conjecture requires a polynomial, nc,
diameter bound. We can prove a slightly weaker quasipolynomial result:

diam(An) < exp(O((log n)4 log log n)).

This is joint work with Harald Helfgott (ENS, Paris).

The Ohio State University and The University of Western Australia

akos@math.ohio-state.edu
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The Bloch-Beilinson Conjectures

Vasudevan Srinivas

The Bloch-Beilinson Conjectures are some of the deepest open ques-
tions in mathematics today, relating aspects of algebraic geometry, alge-
braic K-theory and number theory.
The conjectures have roots, on the one hand, in classical results (Euler,

Riemann, Dedekind, Hilbert, Artin, etc.) on special values and zeroes
of zeta functions, in the period upto the early 20th century. Another
source, somewhat more recent (going upto the mid 1970's) is work of
Tate, Iwasawa, Lichtenbaum, Quillen and Borel, which brought in the
role of algebraic K-theory.
The most recent inspiration, beginning with several key calculations

of Bloch, relate these to algebraic geometry. Bloch's vision was articu-
lated in a general, more precise form by Beilinson, around 1982, resulting
in what we now call the Bloch-Beilinson Conjectures. There are also
re�nements (e.g. the Bloch-Kato conjectures).
In fact there is tantalising, but rather meagre, evidence to support

these conjectures, in spite of some 30 years of e�ort by mathematicians.
Some new insights seems to be needed, to lead to a solution of these open
questions!
My lecture will give an introduction to this important circle of ideas.

Some references are provided for further study.

References

[1] S. Bloch, Lectures on Algebraic Cycles, Duke Univ. Math. Series IV, 1980; Sec-
ond edition, New Mathematical Monographs, 16. Cambridge University Press,
Cambridge, 2010.

[2] S. Bloch, Algebraic cycles and the Beilinson conjectures, in The Lefschetz cen-
tennial conference, Part I (Mexico City, 1984), Contemp Math. 58, Amer. Math.
Soc. (1986) pp. 65-79.

[3] A. A. Beilinson, Higher Regulators and values of L-functions, J. Soviet Math. 30
(1985) pp. 2036-2070.

[4] D. Ramakrishnan, Regulators, algebraic cycles, and values of L-functions, in
Algebraic K-theory and algebraic number theory (Honolulu, HI, 1987), Contemp.
Math., 83, Amer. Math. Soc. (1989) pp. 183-310.

[5] M. Rapaport, N. Schappacher, R. Schneider, Beilinson's Conjectures on Special
Values of L-Function, Persepctives in Math. Vol. 4, Academic Press (1988).
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School of Mathematics, Tata Institute of Fundamental Research, Homi
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Decidable and undecidable real closed rings

Marcus Tressl

Real closed �elds are ordered �elds satisfying the intermediate value
property for polynomials. Tarski showed that these �elds are precisely
those which have the same �rst order theory as the �eld of real numbers.
It is a formal consequence of this result that the truth of �rst order
sentences of the �eld of real numbers can be veri�ed by a computer (this
property is called decidability of the �eld of real numbers).
Real closed rings occur in the topological study of semi-algebraic sets,

i.e. sets described by polynomial inequalities (e.g. the closed unit disc is
such a set). Real closed rings play a similar role in the class of partially
ordered rings as real closed �elds play in the class of ordered �elds. To
name some examples of real closed rings: the ring of real valued contin-
uous (semi-algebraic) functions de�ned on the unit disc is a real closed
ring. Also the ring of germs of continuous functions about a point, and
the ring of germs at ∞ of bounded functions on the real line is real closed
(the latter is also a valuation ring).
I will give precise de�nitions and say what happens with Tarski's decid-

ability result in various real closed rings. Here are some (local) examples:

• Convex subrings of real closed �elds are real closed and decidable
by Cherlin-Dickmann.

• Rings of germs of continuous functions about a point are decidable
if and only if the ambient space is of dimension 1.

• This example uses some terminology from model theory, to be ex-
plained in the talk: Every pair of real closed �elds is bi-interpretable
with a real closed ring; we know by Baur and Macintyre that there
are undecidable such pairs, but we also have decidable pairs such as
dense pairs (e.g. real algebraic numbers sitting in the reals) or tame
pairs (e.g. the reals sitting in a non-standard real closed �eld).

University of Manchester, UK

marcus.tressl@manchester.ac.uk

http://personalpages.manchester.ac.uk/staff/Marcus.Tressl/
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Contributed Talks

Generalized Skew Derivations on Lie Ideals of Prime
Rings

Emine Alba³

This is a joint work with N. Argaç (Ege University), V. De
Filippis (University of Messina), Ç. Demir (Ege University).

In this talk, R will represent an associative ring with cen-
ter Z(R), Q its right Martindale quotient ring, and C its
extended centroid. Let α be an automorphism of R. An ad-
ditive mapping D : R → R is called an α-derivation (or a
skew derivation) on R if

D(xy) = D(x)y + α(x)D(y)

for all x, y ∈ R. In this case, α is called the associated au-
tomorphism of D. Let b ∈ Q be a �xed element. Then it
is easy to see that the mapping D : R → R de�ned by
D(x) = bx − α(x)b, x ∈ R, is an α-derivation. Such an
α-derivation is called an inner α-derivation (an inner skew
derivation) de�ned by b. If a skew derivation D is not inner,
then it is outer.

An additive mapping F : R → R is called a generalized
skew derivation on R if there exists a skew derivation D of R
with associated automorphism α such that

F (xy) = F (x)y + α(x)D(y)

for all x, y ∈ R.
Many researchers investigated generalized skew derivations

satisfying certain algebraic conditions from various point of
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views ([1], [3]). More recently in [3], Chou and Liu contin-
ued the line of investigation concerning the Engel-conditions
[F (x), x]k = 0 for all x ∈ S, a suitable subset of R, with F
additive mapping in R. More precisely, if S = L denotes a
non-central Lie ideal of R, they proved the following: If R is
a prime ring, d a non-zero skew derivation of R, and k > 1
a �xed integer such that [d(x), x]k = 0, for all x ∈ L, then
char(R) = 2 and R satis�es s4, the standard identity in 4
variables.

By continuing the same line of investigation, we obtained
the following:

Theorem. Let R be a prime ring, Q its two-sided Martindale
quotient ring, C its extended centroid, L a non-central Lie
ideal of R, F : R → R be a nonzero generalized skew deriva-
tion of R and k > 1 a �xed integer. If [F (u), u]k = 0, for all
u ∈ L then either there exists λ ∈ C such that F (x) = λx, for
all x ∈ R, or R satis�es s4 and one of the following holds:

1. char(R) = 2;

2. there exist a ∈ Q and λ ∈ C such that F (x) = ax+xa+
λx, for all x ∈ R.
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Curves of Every Genus with a Prescribed Number of
Rational Points

Nurdagül Anbar

This is a joint work with Henning Stichtenoth. A fundamental problem
in the theory of curves over �nite �elds is to determine the sets

Mq(g) := {N ∈ N | there is a curve over Fq of genus g with exactly
N rational points.}

A complete description of Mq(g) is out of reach. So far, mostly bounds
for the numbers Nq(g) := maxMq(g) have been studied. In particular,
Elkies et al. proved that there is a constant γq > 0 such that for any
g > 0 there is some N ∈ Mq(g) with N > γqg. This implies that
lim infg→∞ Nq(g)/g > 0, and solves a long-standing problem by Serre.
We extend the result of Elkies et al. substantially and show that there
are constants αq, βq > 0 such that for all g > 0, the whole interval
[0, αqg − βq] ∩ N is contained in Mq(g).
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On Fitting p-groups with all proper subgroups satisfying
an outer commutator law

Ahmet Ar�kan

This is a joint work with Aynur Ar�kan. In this talk we consider cer-
tain Fitting p-groups in which every proper subgroup satis�es an outer
commutator identity and obtained some conditions for such groups to be
imperfect. We also give an application of the main theorem to obtain an
idea of the abundance of the groups under consideration.
The following key result due to Khukhro and Makarenko will play a

crucial role to obtain the main results in the talk.

Theorem 1. ([1, Theorem 1],[2, Theorem 1] or [3]) If a group G has a
subgroup H of �nite index n satisfying the identitiy

ω(H, . . . ,H︸ ︷︷ ︸
w

) = 1,

where ω is an outer commutator word of weight w, then G has also a
characteristic subgroup C of �nite (n,w)-bounded index satisfying the
same identity

ω(C, . . . , C︸ ︷︷ ︸
w

) = 1.

We say that a group G has the property EI if for every �nitely gener-
ated proper subgroup W of G and for every element a in G rW , there
is a �nitely generated subgroup V containing W , a generating subset Y
and a proper subgroup L of G such that

a ∈ (
∩

y∈YrL

⟨V, y⟩)r V.

We call Y an associated set for EI with respect to W . Clearly in this
case a /∈ V , but a ∈ ⟨V, y⟩ for all y ∈ Y r L.

Here are the main results which will be introduced in the talk.

Theorem 2. Let G be a countable Fitting p-group with the property EI
such that G is the associated set with respect to every �nite subgroup. If
for every proper subgroup K of G, there exits an outer commutator word
ω of weight > 2 such that K ∈ Xω, then G′ ̸= G.
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Theorem 3. Let G be a non-trivial locally nilpotent p-group with all
proper normal subgroups soluble. Assume that for every proper subgroup
K of G there exits an outer commutator word ω of weight > 2 such that
K ∈ Xω. If G contains a proper subgroup U such that |N : N ∩ U | is
�nite for every proper normal subgroup of G, then

G ̸= G′.

Furthermore if U ∈ Xu for some outer commutator word u of weight > 2,
then γ3(G) ∈ Xu.
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Unique Decomposition for Reduced Commutative
Noetherian Rings

Ba³ak Ay

A class C of modules is said to have the Krull-Schmidt property if every
module in C is a direct sum of indecomposable members of C, and such
a direct decomposition is unique up to isomorphism and order of the
indecomposable summands. Let R be a reduced commutative Noethe-
rian ring. In [1], the authors characterize R satisfying the Krull-Schmidt
property for ideals. In the �rst part of this talk, this characterization will
be provided together with some examples. In the last part of this talk,
we show that if R is both local and one-dimensional satisfying the Krull-
Schmidt property for ideals, then it has the Krull-Schmidt property for
direct sums of rank one modules. We end the talk with the conjecture
that the latter should also hold even R is not necessarily local.

References

[1] B. Ay, L. Klingler, Unique Decomposition into Ideals for Reduced Commutative
Noetherian Rings, Transactions of the American Mathematical Society, Volume
363, Issue 7, 3703-3716.

Izmir Institute of Technology

basakay@iyte.edu.tr



24 AAD XIV

Model theory and nilpotence in groups with bounded
chains of centralizers

Paul Baginski

A group G has bounded chains of centralizers (MC) if every chain
of centralizers of arbitrary subsets of G stabilizes after �nitely many
steps. Many classic groups from group theory possess the MC property,
as do stable groups from model theory. However, unlike stability, MC

is not an elementary property, nor is it preserved under quotients, even
particularly natural ones. This frustrates many classical lines of proof
from group theory and logic. We will discuss recent advances showing
that despite these logical obstacles, the class of MC groups possess many
de�nable subgroups. In particular, we shall demonstrate the construction
of a descending chain of de�nable subgroups above any subgroup H of
G; when H is nilpotent, this construction allows us to �nd a de�nable
nilpotent envelope of H.
This talk reports on continuing work between the speaker and Tuna

Altinel.
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Generalized α-derivations on Lie ideals with annihilating
conditions

Nihan Baydar Yarbil

The talk will focus on a recent progress in a joint work with N.Argaç.
An additive map d from R into itself satisfying the rule d(xy) =

d(x)y + xd(y) for all x, y ∈ R, is called a derivation of R. Let α be an
automorphism of R. An α−derivation of R is an additive mapping d
satisfying d(xy) = d(x)y + α(x)d(y) for all x, y ∈ R. α−derivations are
sometimes called skew derivations. An additive mapping f : R → R is
called generalized α−derivation if there exists a α−derivation d : R → R
such that f(xy) = f(x)y + α(x)d(y) for all x, y ∈ R. Let α and β be
automorphism of R then by a generalized (α, β)-derivation; we mean an
additive map from R into itself such that f(xy) = f(x)α(y) + β(x)d(y)
for all x, y ∈ R, where d is an (α, β)-derivation.

I.N. Herstein in [5] proved that if d is a derivation of a prime ring
R such that d(x)n = 0 for all x ∈ R, where n > 1 is a �xed integer,
then d = 0 and the annihilating condition for the same case is studied by
M.Bre²ar in [1]. He proved that if ad(x)n = 0 for all x ∈ R, where n > 1
is a �xed integer,then a = 0 provided charR = (n− 1)!.

Later in [6] Lee and Lin obtained the same conclusion assuming
that ad(x)n = 0 for all x in some noncentral Lie ideal of R without the
assumption on characteristic.

In [4], C. M. Chang and T. K. Lee proved the following: Let R
be a prime ring, L a noncommutative Lie ideal of R and d a nonzero
derivation of R and 0 ̸= a ∈ R. Suppose that ad(x)n ∈ Z(R) for all
x ∈ L, where n is a �xed positive integer. Then dimCRC = 4.

When it comes to generalized α- derivations in prime rings, the
case f(x)n ∈ Z(R) for all x ∈ I, a nonzero ideal of R, and for some �xed
positive integer n, is studied by I.C. Chang in [3]. In this case he proved
that R is either commutative or is an order in a 4-dimensional simple
algebra.

More recently, in [2], J.C. Chang proved the following: Let R be a
prime ring, f a generalized α- derivation and a ∈ R. If af(x)n = 0 for all
x ∈ R, where n is a �xed positive integer, then af(x) = 0 for all x ∈ R.
Moreover, if d ̸= 0 or f ̸= 0, then a = 0.
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Motivated by these results, our main objective in this talk is to
describe the situation when the problem above is studied for Lie ideals.
More precisely, we have the following;
Theorem. Let R be a prime ring and α an automorphism of R. Let
f be a generalized α-derivation of R and a ∈ R . Suppose that L is a
noncommutative Lie ideal of R. If af(x)n = 0 for all x ∈ L, where n is a
�xed positive integer, then af(x) = 0 for all x ∈ R.
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Some rigid moieties of various relational homogeneous
structures

Do�gan Bilge

Given a countable set X, a moiety of X is a subset which is countable
and co-countable. A rigid embedding of a structureM into a structure N
is an embedding where each automorphism of M extends uniquely to an
automorphism of N . We show the existence of rigid moieties in various
homogeneous relational structures including universal Kn-free graphs,
Henson's continuous family of digraphs and the universal structure in a
�nite relational language. We �nally prove the following:



AAD XIV 27

Theorem 1. Let K be a not totally disconnected free amalgamation class
in a �nite relational language L and assume that all the one-point sets in
K are isomorphic. Then every countably in�nite L-structure K, whose
age lies in K, can be embedded as a rigid moiety into the Fraïssé limit of
K, denoted K. Moreover, there are 2ω many such embeddings which are
not conjugate in Aut(K).

Institut Camille Jordan (UMR 5208 du CNRS)
Université Claude Bernard
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Derivatives of Bivariate Fibonacci Polynomials

Tuba Çakmak

This is a joint study with Erdal Karaduman.
In this study, it is given new algebraic properties related to bivariate

Fibonacci polynomials. Also, we present the partial derivatives of this
polynomials in the form of convolution of bivariate Fibonacci polynomials
and we give asymptotic behaviour of the quotient of consecutive terms.
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On Products of Conjugacy Classes and Irreducible
Characters in Finite Groups

M. R. Darafsheh

Let G be a �nite group. For irreducible complex characters χ and φ
of G the irreducible constituents of χφ is denoted by η(χφ). If A and B
are two conjugacy classes in G, then AB is a union of conjugacy classes
in G and η(AB) denotes the number of distinct conjugacy classes of G
contained in AB. In this paper we investigate the current research on
the impact of these η-functions on the structure of G as well as some
similarity between them.
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Superderivations of Associative Superalgebras

Ça§r� Demir

Let Z2 denote the integers modulo 2. A Z2-graded associative algebra
A over a unital commutative ring Φ is called an associative superalgebra.
This means that there exist Φ-submodules A0 and A1 of A such that
A = A0 ⊕ A1 and A0A0 ⊆ A0 (A0 is a subalgebra of A), A0A1 ⊆ A1,
A1A0 ⊆ A1 (A1 is an A0-bimodule), and A1A1 ⊆ A0. An element
ai ∈ Ai, i = 0 or i = 1, is said to be homogeneous of degree i, and we
write |ai| = i to indicate the homogeneity degree of ai.
A superderivation of degree 0 is a Φ-linear map d0 : A → A such that

d0(A0) ⊆ A0, d0(A1) ⊆ A1 and d0(xy) = d0(x)y + xd0(y) for all x, y ∈
A0∪A1. A superderivation of degree 1 is a Φ-linear map d1 : A → A such
that d1(A0) ⊆ A1, d1(A1) ⊆ A0 and d1(xy) = d1(x)y + (−1)|x|xd1(y)
for all x, y ∈ A0 ∪ A1. A superderivation d : A → A is a sum of a
superderivation d0 of degree 0 and a superderivation d1 of degree 1.
The supercommutator of any given homogeneous elements a, b ∈ A0 ∪

A1 is de�ned to be [a, b]s = ab − (−1)|a||b|ba. We then de�ne the su-
percommutator of any pair of elements a, b ∈ A by linearly extending
the above de�nition on homogeneous elements, that is [a, b]s = [a0, b0] +
[a0, b1] + [a1, b0] + [a1, b1]s, where a = a0 + a1 and b = b0 + b1. Let
a = a0 + a1 ∈ A be a �xed element and de�ne the mapping d : A → A
by d(x) = ads(a)(x) = [a, x]s for all x ∈ A. Then d is a superderivation
of A with d0(x) = [a0, x]s = [a0, x] and d1(x) = [a1, x]s for all x ∈ A.
Such superderivations are called inner superderivations.
Let A be a unital associative superalgebra and U(A) denote the mul-

tiplicative group of units in A. If d is a superderivation of A such that
d(A) ⊆ U(A) ∪ {0}, then we say that d is a superderivation with zero or
invertible values. In the present talk, we will mainly focus on the problem
of describing the structure of unital superalgebras those having a nonzero
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superderivation with zero or invertible values. This problem is originally
inspired by the works of Bergen, Herstein and Lanski in [1] and of Bergen
and Herstein in [2] in which they initiated the study of certain kinds of
mappings with zero or invertible values on arbitrary unital rings.
Our main result reads as follows:

Theorem. Let A = A0 ⊕ A1 be a nontrivial unital superalgebra (i.e.
A1 ̸= (0)) over Φ and d be a nonzero superderivation of A such that d(x)
is either zero or invertible for all x ∈ A. If Φ contains the element 1

2 ,
then A is either a division superalgebra D, or M2(D), or it is a local
superalgebra with a unique maximal graded ideal M such that M2 = (0).

We will also describe in details the local superalgebras that are possible.
This is a joint work with E. Alba³, N. Argaç and A. Fo²ner. The work

has been supported by TÜB�TAK Grant #110T586.
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A Closure of Proper Classes Induced by a Class of
Homomorphisms

Y�lmaz Mehmet Demirci

Throughout, R is an associative ring with identity unless otherwise stated
and modules are unital R-modules. Let F and G be families of homomor-
phisms of R-modules closed under compositions and P be a class of short
exact sequences. We say that (F, G) a �compatible" pair for the class P
if for every short exact sequence E, there is f ∈ F such that f∗(E) ∈ P
if and only if there is g ∈ G such that g∗(E) ∈ P with one (or both) of
the following conditions satis�ed:
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(i) F is closed under pushout diagrams.

(ii) G is closed under pullback diagrams.

For a class P of short exact sequences and a compatible pair (F, G) we
de�ne the class P̂G

F as

P̂G
F = {E|f∗(E) ∈ P for some f ∈ F}

= {E|g∗(E) ∈ P for some g ∈ G}.

Theorem 1. For every proper class P and a compatible pair (F, G) for
P the class P̂G

F is proper.

In case F and G contain identity endomorphisms the class P̂G
F contains

P.
Over the ring Z of integers, for a proper class P the class P̂ = {E | nE ∈
P for some 0 ̸= n ∈ Z} is a proper class is shown in [1]. For a class R
and a positive integer k, we de�ne the class R̂k as R̂k = {E | ktE ∈ R
for some positive integer t}.

Proposition 2. P̂k is a proper class for every proper class P and every
positive integer k.

Let us denote the quasi-splitting short exact sequences by Split. The
direct sum of proper classes is de�ned in [2]. We have the following
corollary using the same de�nition.

Corollary. ˆSplit =
⊕
p

ˆSplitp, where p ranges over all prime numbers.

Joint work with: Rafail Alizade, Ya³ar University
rafail.alizade@yasar.edu.tr
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Valued Di�erence Fields and Valued Fields of Positive
Characteristic

Salih Durhan

I will present the similarities surrounding valued di�erence �elds and
valued �elds of positive characteristic. To answer model theoretic ques-
tions (which all the time boil down to algebraic questions), valued �elds
of positive characteristic have been analysed using global Galois theory.
Such a strong tool is not available for valued di�erence �elds and hence
one is forced to use much more elementary methods. I will illustrate the
basic tools and concepts which apply simultaneously to certain valued
di�erence �elds and valued �elds of positive characteristic. These tools
have been introduced in [1] but not yet utilized to their full power. I will
mention some recent developments on the issue which bear the promise
of an Ax-Kochen type result for the transseries �eld equipped with the
right-shift automorphism (considered as a valued di�erence �eld). For
positive characteristic valued �elds same techniques can be applied, thus
eliminating the non-constructive results stemming from Galois theory, to
obtain a new understanding of tame �elds whose model theoretic prop-
erties have been established by Franz-Viktor Kuhlmann.
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Homotopes of algebras

A.S. Dzhumadil'daev

Let A = (A, ◦) be an algebra with vector space A and multiplication ◦.
We consider operations on A derived by ◦ and some elements of A. For
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example, we endow A by a new multilication ⋆ given by a ⋆ b = (a ◦u) ◦ b
or a ⋆ b = (a ◦ b) ◦ u or a ⋆ b = (a ◦ u) ◦ (b ◦ v), etc. Algebras consructed
in a such way are called homotopes of algebra A. We show that these
kind of operations may give us new interesting algebraic structures. We
apply such approach for Novikov algebras, Leibniz algebras and Zinbiel
algebras to construct new classes of non-associative algebras.
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SGQ-Projective Modules

Berke Kalebo§az

Joined work with : Prof. Dr. Derya Keskin Tütüncü
In this work all rings are associative with identity and all modules

are unitary right modules. S will denote the endomorphism ring of any
module M , and J(R) will denote the Jacobson radical of any ring R.
In this work we de�ne the right ideal D(s) = {φ ∈ S | Imφ ⊆ Ims}

of S. Actually D(s) = Hom(M,Ims) for any endomorphism s of M . In
this paper we introduce SGQ-projective modules by means of D(s). Let
M be any module. Then we call M SGQ-projective if for any 0 ̸= s ∈ S,
there exists a right ideal X of S such that D(s) = sS ⊕X.
In this work, mainly, we prove the following facts:
Theorem 1: Let M be an SGQ-projective module. Then
(1)∇ ⊆ J(S)
(2)If every proper submodule ofM is contained in a proper co-M -cyclic

submodule of M , then ∇ = J(S).
Theorem 2: Let M be a weakly supplemented SGQ-projective π-

projective module. Then S is regular if and only if ∇ = 0.
Theorem 3: The following are equivalent for a module M :
(1)Every R-module is SGQ-projective.
(2)Every R-module is semi-Hop�an.
(3)R is semisimple.
Theorem 4: Let M be any module and K any direct summand of M .

If M is SGQ-projective, then K is SGQ-projective.
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Any direct sum of two SGQ-projective module need not be SGQ-
projective.
Theorem 5: Let Ai be SGQ-projective for each i ∈ I such that

M = ⊕i∈IAi. If every Ai is fully invariant in M , then M is SGQ-
projective.
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A Generalization of Co�nitely Lifting Modules

Burcu Ni³anc� Türkmen

(This is joint work with Ali Pancar) Throughout the whole text, all
rings are to be associative, identity and all modules are left unitary. Let
R be a ring and let M be an R-module. The notation N 6 M means
that N is a submodule of M . A submodule K of M is called co�nite
(in M) if the factor module M

K is �nitely generated. A submodule S of
M is called small (in M), denoted as S << M , if M ̸= S + L for every
proper submodule L of M . By Rad(M) we denote the intersection of all
maximal submodules of M . For any ring R, an R-module M is called
(co�nitely) supplemented if every (co�nite) submodule N of M has a
supplement, that is a submodule K minimal with respect to M = N+K.
Equivalently, M = N +K and N ∩K << K [9].
A module M is called lifting if for every submodule N of M there

exists a direct summand K of M such that K 6 N and N
K << M

K .
Mohamed and Müller has generalized the concept of lifting modules to ⊕-
supplemented modules. M is called ⊕-supplemented if every submodule
N of M has a supplement that is a direct summand of M [7]. Then,
Çal�³�c� and Pancar have de�ned a moduleM ⊕-co�nitely supplemented if
every co�nite submodule ofM has a supplement that is a direct summand
of M [7].
Wang and Wu call a module M co�nitely lifting if every co�nite sub-

module N of M there exists a direct summand K of M such that K 6 N
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and N
K << M

K [14]. It is shown in [14, Proposition 2.4] that every
co�nitely lifting module is ⊕-co�nitely supplemented.
Let M be an R-module and let N and K be any submodules of M . If

M = N +K and N ∩K ⊆ Rad(K), then K is called a Rad-supplement
of N in M [8]. Since Rad(K) is the sum of all small submodules of K,
every supplement submodule is a Rad-supplement in M . One calls a
module M (co�nitely) Rad-supplemented if every (co�nite) submodule
has a Rad-supplement in M as in [2] and [5]. On the other hand, M is
called (co�nitely) Rad-⊕-supplemented if every (co�nite) submodule of
M has a Rad-supplement that is a direct summand of M ([5] and [11]).
Recall from Al-Khazzi and Smith [1] that a module M is said to have

the property (P ∗) if for every submodule N of M there exists a direct
summand K of M such that K 6 N and N

K ⊆ Rad(MK ). Radical mod-
ules have the property (P ∗). It is clear that every lifting module has
the property (P ∗) and every module with the property (P ∗) is Rad-⊕-
supplemented.
As motivated by the above de�nitions, it is natural to introduce a

generalization of modules with the property (P ∗). We say that a module
M is co�nitely Rad-lifting if for every co�nite submodule N of M there
exists a direct summand K of M such that K 6 N and N

K ⊆ Rad(MK ). A
module with the property (P ∗) is co�nitely Rad-lifting. Also, a �nitely
generated co�nitely Rad-lifting is lifting. It is clear that every co�nitely
lifting module is co�nitely Rad-lifting.
In this study, we provide the properties of co�nitely Rad-lifting mod-

ules. Some examples are given to separate co�nitely lifting modules,
co�nitely Rad-lifting modules and modules with the property (P ∗). We
show that a co�nitely Rad-lifting module which has a small radical is
co�nitely lifting. We give some conditions for direct summands of a
co�nitely Rad-lifting to be co�nitely Rad-lifting. We prove that a π-
projective co�nitely (Rad-) ⊕-supplemented module is co�nitely (Rad-)
lifting. We obtain a new characterization of semiperfect rings by using
this result.
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Normal Subgroups in Models of Arithmetic

Ermek Nurkhaidarov

We will be presenting our joint with Erez Shochat research on closed
normal subgroups of the automorphism group of saturated model of arith-
metic. Let M be a saturated model of Peano Arithmetic of cardinality λ.
We can consider the automorphism group ofM(Aut(M)) as a topological
group by letting the stabilizers of subsets of M of cardinality less than λ
be the basic open subgroups.
Let I be a cut in a model M . We say I is invariant if for every

f ∈ Aut(M), f(I) = I. It is not di�cult to see that if I is an invariant
cut, then Aut(M)(I) (the pointwise stabilizers of I) is a closed normal
subgroup in automorphism group of M . Kaye [1] shows that in countable
recursively saturated models the converse is true. [2] proves that result
for saturated models in weaker topology. We prove the similar result for
saturated models of PA:

Theorem. Let H 6 Aut(M). Then H is a closed normal subgroup
in Aut(M) i� there exists an invariant cut I ⊂ M such that H =
Aut(M)(I).
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Base Change

Gülümsen Onarl�

Within the theory of modules and more generally of Abelian cate-
gories, there is a very important set of results known as Morita Theory
describing between categories of modules. The idea is that let ϕ : S → R
be a ring homomorphism and let M be a R-module, then we can ob-
tain S-module ϕ∗ (M) by means of ϕ for which the action is given by
s ·m = ϕ(s)m, for s ∈ S,m ∈ M. Then there is a functor

ϕ∗ : Mod/R −→ Mod/S .

This functor has a left adjoint

ϕ∗ : Mod/S −→ Mod/R .

Then each S-module N de�nes a R-module ϕ∗(N) = R⊗S N. This con-
struction is also known as �change of base� in a module theory. In this
section we will see the corresponding idea with 2-crossed modules.
This is joint work with Ummahan Ege Arslan.
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Galois Cohomology, Spectral Sequences, and Local
Class Field Theory

Matteo Paganin

In this talk, I will introduce an extension of the well known Lindon-
Hochschild-Serre Spectral Sequence for a pro�nite group G and an open
normal subgroup H that also takes into account the Tate Cohomology
of the �nite group G/H. Under certain conditions, this spectral sequence
converges to zero. In particular situations, this fact implies the existence
of families of isomorphisms and long exact sequences. In the case of a
�nite Galois extension of local �elds, with Prof. David Vauclair of the
University of Caen Basse-Normandie, we proved that the results obtained
provide a di�erent interpretation of the Reciprocity Map of the Local
Class Field Theory.
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Fibres of coverings of curves over �nite �elds

Özgür Deniz Polat

We consider �nite separable coverings of curves f : X → Y over a
�eld of characteristic p. We are interested in describing the �bres of this
cover in terms of double BwH cosets for some subgroups B,H of the
monodromy group of f . We also compute the cardinality of �bres of a
point for certain types of covering.
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Simple Polyadic Groups

M. Shahryari

Collaborated with: H. Khodabandeh
Let G be a non-empty set and n be a positive integer. If f : Gn →

G is an n-ary operation, then we use the compact notation f(xn
1 ) for

the elements f(x1, . . . , xn). In general, if xi, xi+1, . . . , xj is an arbitrary
sequence of elements in G, then we denote it as xj

i . In the special case,
when all terms of this sequence are equal to a constant x, we show it

by
(t)
x , where t is the number of terms. During this note, we assume

that n > 2. We say that an n-ary operation is associative, if for any
1 6 i < j 6 n, the equality

f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) = f(xj−1

1 , f(xn+j−1
j ), x2n−1

n+j )

holds for all x1, . . . , x2n−1 ∈ G. An n-ary system (G, f) is called an n-ary
group or a polyadic group, if f is associative and for all a1, . . . , an, b ∈ G
and 1 6 i 6 n, there exists a unique element x ∈ G such that

f(ai−1
1 , x, ani+1) = b.

One of the most fundamental theorems of polyadic group is the follow-
ing, now known as Hosszú -Gloskin's theorem. We will use it frequently
in this article and the reader can use [1] for detailed discussions.

Theorem 1. Let (G, f) be an n-ary group. Then
1. on G one can de�ne an operation · such that (G, ·) is a group,
2. there exist an automorphism θ of (G, ·) and b ∈ G, such that θ(b) =

b,
3. θn−1(x) = bxb−1, for every x ∈ G,
4. f(xn

1 ) = x1θ(x2)θ
2(x3) · · · θn−1(xn)b, for all x1, . . . , xn ∈ G.

According to this theorem, we use the notation derθ,b(G, ·) for (G, f)
and we say that (G, f) is (θ, b)-derived from the group (G, ·).
Before going to explanation of the motivations for the recent work, we

recall the de�nition of normal polyadic subgroups from [1]. An n-ary
subgroup H of a polyadic group (G, f) is called normal if

f(x,
(n−3)
x , h, x) ∈ H
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for all h ∈ H and x ∈ G. If every normal subgroup of (G, f) is singleton
or equal to G, then we say that (G, f) is group theoretically simple or
it is GTS for short. If H = G is the only normal subgroup of (G, f),
then we say it is strongly simple in the group theoretic sense or GTS∗ for
short. For any normal subgroup H of an n-ary group (G, f), we de�ne
the relation ∼H on G, by

x ∼H y ⇐⇒ ∃h1, . . . , hn−1 ∈ H : y = f(x, hn−1
1 ).

Now, it is easy to see that such de�ned relation is an equivalence on G.
The equivalence class of G, containing x is denoted by xH and is called
the left coset of H with the representative x. On the set G/H = {xH :
x ∈ G}, we introduce the operation

fH(x1H,x2H, . . . , xnH) = f(xn
1 )H.

Then (G/H, fH) is an n-ary group derived from the group retH(G/H, fH),
see [1]. One of the main aims of this article is to classify all GTS polyadic
groups. We will give a necessary and su�cient condition for a polyadic
group (G, f) to be GTS in terms of the ordinary group (G, ·) and the
automorphism θ. It is possible to de�ne another kind of simpleness for
polyadic groups, universal algebraically simpleness. Note that an equiv-
alence relation R over G is said to be a congruence, if

1. ∀i : xiRyi ⇒ f(xn
1 )Rf(yn1 ),

2. xRy ⇒ xRy.
For example, ifH is a normal polyadic subgroup of (G, f), then R =∼H

is a congruence, see [1]. We say that (G, f) is universal algebraically
simple or UAS for short, if the only congruence is the equality and G×G.
We prove the following two theorems concerning simple polyadic groups,

see [3] for proofs.

Theorem 2. (G, f) is UAS i� the only normal θ-invariant subgroups of
(G, ·) are trivial subgroups.

Theorem 3. A polyadic group (G, f) is GTS∗ i� whenever K is a θ-
invariant normal subgroup of (G, ·) with θK inner, then K = G.
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Products of homogeneous subspaces in free Lie algebras

Ralph Stöhr

Let L be a free Lie algebra of �nite rank over a �eld K and let Ln

denote the degree n homogeneous component of L. Formulae for the
dimension of the subspaces [Lm, Ln] for all m and n were obtained in
[1]. In this talk I will report about recent work on subspaces of the
form [Ln, Lm, Lk] = [[Lm, Ln], Lk]. Surprisingly, in contrast to the case
of a product of two homogeneous components, the dimension of such
products may depend on the characteristic of the �eld K. For example,
the dimension of [L2, L2, L1] over �elds of characteristic 2 is di�erent from
the dimension over �elds of characteristic other than 2. Our main result
are formulae for the dimension of [Lm, Ln, Lk]. Under certain conditions
on m, n and k they lead to explicit formulae that do not depend on the
characteristic of K, and express the dimension of [Lm, Ln, Lk] in terms
of Witt's dimension function. This is joint work with Nil Mansuro�glu.
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The Fibonacci Sequence in Finite Rings of Order p2

Yasemin Ta³yurdu

This is a joint work with �nci GÜLTEK�N.
In this paper, we obtain the period of Fibonacci sequence in �nite 4

rings, up to isomorphism, having the presentations
A =

⟨
a ; p2a = 0 , a2 = a

⟩
,

E =
⟨
a ; pa = pb = 0 , a2 = a, b2 = b, ab = a, ba = b

⟩
,

F =
⟨
a ; pa = pb = 0 , a2 = a, b2 = b, ab = b, ba = a

⟩
,

G =
⟨
a ; pa = pb = 0 , a2 = 0, b2 = b, ab = a, ba = a

⟩
of order p2 by using equality recursively de�ned by Fn+2 = A1Fn+1 +

A0Fn , for n > 0, where F0 = 0, F1 = 1 and A0 , A1 are generator
elements of these �nite rings of order p2. Also, we get some results
between the period of the Fibonacci sequence in �nite rings of order p2

and characteristic of these rings.
The notion of Wall number was �rst proposed by D. D. Wall [1] in 1960

and gave some theorems and properties concerning Wall number of the
Fibonacci sequence. K. Lü and J. Wang [8] contributed to the study of
the Wall number for the -step Fibonacci sequence. D. J. DeCarli [6] gave
a generalized Fibonacci sequence over an arbitrary ring in 1970. Special
cases of Fibonacci sequence over an arbitrary ring have been considered
by R. G. Buschman [4] , A. F. Horadam [2] and N. N. Vorobyov [3] where
this ring was taken to be the set of integers . O. Wyler[5] also worked
with such a sequence over a particular commutative ring with identity.
Classi�cation of all �nite rings of order with a prime have been studied
by B. Fine [7].
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Groups whose proper subgroups are Chernikov-by-Baer

Nadir Trabelsi

If X is a class of groups, then a group G is called a minimal non-X-
group if it is not an X-group but all its proper subgroups belong to X. We
will denote the minimal non-X-groups by MNX. Many results have been
obtained on MNX-groups, for several choices of X. In particular, in [1]
a complete description of locally nilpotent MNN-groups having a max-
imal subgroup is given, where N is the class of nilpotent groups. These
groups are metabelian Chernikov p-groups, for some prime p, and hence
hypercentral. Later in [2], locally nilpotent MNN-groups without maxi-
mal subgroups were studied and it was proved, among many results, that
they are countable p-groups in which every subgroup is subnormal. In [3],
it is proved that locally graded MNRN-groups are precisely the locally
nilpotent MNN-groups without maximal subgroups, where R denotes
the class of groups of �nite rank.
In this note we study MNCN-groups, where C is the class of Chernikov

groups and we prove that locally graded MNCN-groups are precisely the
locally nilpotent MNN-groups without maximal subgroups and hence
they are MNRN-groups.
In [4] a characterization of locally graded MNB-groups, where B is

the class of Baer groups, is given in terms of MNN-groups.
Here we also study MNCB-groups and we prove that locally graded

MNCB-groups are locally �nite and coincide with the normal closure



46 AAD XIV

of an element and that locally nilpotent MNCB-groups are precisely
MN(D ∩ C)B-groups, where D denotes the class of divisible abelian
groups.
Recall that G is called a Baer group if all its cyclic subgroups are sub-

normal in G, and that G is of �nite rank if there exists a positive integer
r such that every �nitely generated subgroup of G can be generated by r
elements. Also G is said to be locally graded if every non-trivial �nitely
generated subgroup has a non-trivial �nite image.
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Hilbert-Kunz function and Hilbert-Kunz multiplicity

Vijaylaxmi Trivedi

In this talk we recall the notions of characteristic p invariants of a
ring (commutative and Noetherian), namely Hilbert-Kunz function and
Hilbert-Kunz multiplicity. They seem an analogue of the Hilbert-Samuel
function and the classical multiplicity. Here we concentrate on HK mul-
tiplicity, which is a more subtle invariant of a ring (compare to classical
multiplicity): It is related to characteristic p features of the singularities
of the ring. Since standard techniques, used to study the multiplicity,
such as reduction, induction on the dimension etc., do not work, very
few examples of the HK multiplicity have been computed so far. Here
we will give an overview of results and known computations of the HK
multiplicity and discuss some open problems.
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On invariants of towers of function �elds over �nite
�elds

Seher Tutdere

Let F = (Fn)n>0 be a tower of function �elds over a �nite �eld Fq,
and let r > 1 be an integer. Then the limit

βr(F) := lim
n→∞

(the number of places of Fn/Fq of degree r )/(genus of Fn)

exists, and it is called an invariant of the tower F . In this talk we de-
scribe a method for constructing towers over any �nite �eld with many
prescribed invariants being positive. Such towers are useful to obtain
both good algebraic geometric codes and bounds for multiplication com-
plexity in �nite �elds. They also have large asymptotic class number.
Our method is based on explicit extensions of function �elds. Moreover,
we give some examples of recursive towers with various invariants being
positive.

References

[1] F. Hess, H. Stichtenoth, and S. Tutdere, On Invariants of Towers of Function
Fields over Finite Fields, submitted 2011.



48 AAD XIV

Sabanc� University, Istanbul

stutdere@gmail.com

http://myweb.sabanciuniv.edu/sehertutdere/

Rad-Discrete Modules

Ergül Türkmen

(This is joint work with Y�ld�z Ayd�n) Throughout this study, all rings
are associative rings with unity and all modules are unital left modules
unless indicated otherwise. Let R be such a ring and M be an R-module.
A submodule S of M is called small in M , denoted by S << M , if
S + L ̸= M for every proper submodule L of M . For a module M ,
Rad(M) indicates the radical of M . By a supplement of N in M we
mean a submodule V which is minimal in the collection of submodules L
of M such that M = N +L. Equivalently, M = N +V and N ∩V << V
[9]. It is clear that supplement submodules are a generalization of direct
summands. If M = N + V and N ∩ V ⊆ Rad(V ), then V is called a
Rad-supplement of N in M [8]. Under given de�nitions, we have the
following implication on submodules:

direct summand =⇒ supplement =⇒ Rad-supplement

As generalizations of the notion of semisimple modules, one calls a
module M (Rad-) supplemented if every submodule has a (Rad-) supple-
ment in M (see [9], [2] and [3]). On the other hand, a module M is called
(Rad-) ⊕-supplemented if every submodule has a (Rad)-supplement that
is a direct summand of M (see [7] and [5]).
A module M is called π-projective if for every two submodules U and

V of M with M = U + V , there exists a homomorphism f : M −→ M
with f(M) ⊆ U and (1− f)(M) ⊆ V [9].
It is well known that a π-projective module M is supplemented if and

only if it is ⊕-supplemented.
For a module M , consider the following conditions:
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(D1) For every submodule N of M there exists a direct summand L of
M such that M = L⊕K, L ⊆ N and N ∩K << K.

(D2) If N is a submodule of M such that M
N is isomorphic to a direct

summand of M , then N is a direct summand of M .

(D3) For every direct summands K and L of M with M = K+L, K ∩L
is a direct summand of M .

Every module M with the property (D2) satis�es the property (D3).
A module M is called discrete if M satis�es these properties (D1) and

(D2) [7]. This is equivalent to M is ⊕-supplemented, π-projective and
satis�es the property (D2). The module M is called quasi-discrete if it
satis�es these properties (D1) and (D3) [7]. We know that M is quasi-
discrete if and only if it is ⊕-supplemented and π-projective. The concept
of these modules are extensively studied by many authors.
The aim of this talk is to generalize (quasi-) discrete modules to (quasi-

) Rad-discrete modules. In particular, we obtain various properties and
characterizations of such modules.
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Gröbner-Shirshov Bases for A�ne Weyl Group of Type
Ãn

U§ur Ustao§lu

This is a joint work with Dr. Erol Y�lmaz.
Gröbner-Shirshov bases and normal form of the elements were already

found for the Coxeter groups of type An, Bn and Dn in [1]. They also
proposed a conjecture for the general form of Gröbner-Shirshov bases
for all Coxeter groups. In [2], an example was given an to show that
the conjecture is not true in general. The Gröbner-Shirshov bases of
the other �nite Coxeter groups are given in [3] and [4]. This paper is
another example of �nding Gröbner-Shirshov bases for groups, de�ned
by generators and de�ning relations. We deal with the a�ne Weyl group
Ãn which is an in�nite Coxeter group. Using de�ning relations, we able
to �nd the reduced Gröbner-Shirshov bases of Ãn and classify all reduced
words of the a�ne Weyl group Ãn.
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The strong cell decomposition property for weakly
o-minimal structures

Roman Wencel

A linearly ordered �rst order structureM = (M,6, . . .) is called weakly
o-minimal if every subset ofM , de�nable inM, is a �nite union of convex
sets.
Weakly o-minimal structures in general appear to be much more dif-

�cult to handle than the o-minimal ones. The main problem is that
they lack so called �niteness properties, and therefore one cannot ex-
pect a reasonable cell decomposition for sets de�nable in them. As weak
o-minimality is not preserved under elementary equivalences, one intro-
duces a notion of a weakly o-minimal theory, that is a �rst-order theory
whose all models are weakly o-minimal structures. Although in a model
of such a theory one can prove a weak form of cell decomposition, the
topological dimension for de�nable sets does not behave as well as it does
in the o-minimal setting. For example, it does not satisfy the addition
property. One can, for instance, de�ne a set of dimension one whose
projection onto some coordinate has in�nitely many in�nite �bers.
A class of weakly o-minimal structures in which one can smoothly

develop an o-minimal style description of de�nable sets was considered
in [MMS]. The authors prove that sets de�nable in weakly o-minimal
expansions of ordered �elds without non-trivial de�nable valuations are
�nite unions of so called strong cells, which are constructed more or less
as cells in the o-minimal setting. It turns out that this result can be
generalized to certain weakly o-minimal expansions of ordered groups.
It was proved in [We1] that every weakly o-minimal expansion of an
ordered group without a non-trivial de�nable subgroup has the strong
cell decomposition property (SCDP). This paper also shows that every
weakly o-minimal structureM with SCDP has some canonical o-minimal
extension M.
During my talk I am going to discuss further properties of weakly o-

minimal structures with SCDP. One of the basic results is that SCDP
for weakly o-minimal structures is preserved under elementary equiva-
lences. Combining this with some relativization of the construction of the
canonical o-minimal extension, we obtain a covariant functor between the
category of elementary embeddings of M to the category of elementary
embeddings of M.
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It turns out that in the context of weakly o-minimal structures with
SCDP, de�nable sets (functions, relations) share many properties of sets
de�nable in o-minimal structures. One can for instance generalize clas-
sical results of Speissegger from [Sp] concerning �berwise properties of
de�nable sets and functions.
An obstacle that one faces when working with weakly o-minimal struc-

tures is that the usual notion of de�nable connectedness does not work
properly. Namely, the number of de�nably connected components of a
de�nable set in general is in�nite, even assuming SCDP. Nevertheless, it
could be shown that equivalence relations de�nable in weakly o-minimal
structures with SCDP share several typical properties of equivalence re-
lations de�nable in the o-minimal context. These lead to the conclusion
that if M = (M,6, . . .) is a weakly o-minimal structure with SCDP and
one of the conditions (a), (b) holds:
(a) for any B,C ⊆ M , B and C are independent over dcl(B)∩ dcl(C);
(b) for any A ⊆ M , dcl(A) is an elementary substructure of M;

then M admits elimination of imaginaries.
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Envelopes, Weakly Prime and Weakly Primary Ideals

Erol Y�lmaz

Throughout this paper all rings are commutative with identity and all
modules are unitary.
A primary decomposition of a submodule N of M is representation of

N as a intersection of �nitely many primary submodule of M . Such a
primary decomposition N = ∩n

i=1Qi with pi-primary submodules Qi is
called minimal if pi's are pairwise distinct and Qj + ∩i ̸=j for all j =
1, . . . , n.
The di�erent de�nitions of a radical of an ideal in rings can be gener-

alize to two distinct concepts in module theory. One is the the radical of
a submodule which is de�ned to be intersection of all prime submodules
containing the submodule. The other is the envelope of a submodule. If
N is an submodule of an R-module M , then the envelope of N in M is
de�ned to be the set

EM (N) = {rm : r ∈ R,m ∈ M and rkm ∈ N for some k ∈ Z+}.

Since EM (N) is generally not a submodule, ⟨EM (N)⟩ denote the sub-
module generated by the envelope. Although there are some results
about computation of radical of a submodule(see [5] and [7]), there is
no such a result for the envelope. We give a formula for the computation
of ⟨EM (N)⟩ if a minimal primary decomposition of N is known. We use
the concepts and results of [4] in this section.
A proper submodule N of an R-module M is called a weakly prime

submodule if for each m ∈ M and a, b,∈ R; abm ∈ N implies that
am ∈ N or bm ∈ N . A proper submodule N of an R-module M is called
a weakly primary submodule if abm ∈ N where a, b,∈ R and m ∈ M ,
then either bm ∈ N or akm ∈ N for some k > 1. The weakly radical of
a submoduled N of M , denoted by wradM (N), is the intersection of all
weakly prime submodule containing N . The concepts of weakly prime
and weakly primary submodules are introduced a few years ago and they
have been studied by some authors (for example see [1], [2] and [3] ). In
section 2, we give an example to show the conjucture given in (see [4])
is false. Using the envelope of a submodule, we give a condition for a
submodule to be written as an intersection �nitely many weakly prime
ideal.
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Posters

Leibniz algebras in characteristic p

Saule Abdykassymova

We give de�nition of restrictness for Leibniz algebras in characteristic
p. We prove that cohomologies of Leibniz algebras with coe�cients in
irreducible module is trivial, if module is not restricted. The number of
irreducible antisymmetric modules with nontrivial cohomology is �nite.
Leibniz algebra is called simple, if it has no any proper ideal except ideal
generated by squares of its elements. We describe simple Leibniz algebras
with Lie factor isomorphic to 3-dimensional simple Lie algebra sl2 and
pm-dimensional Zassenhaus algebra W1(m).
This is a joint work with Askar Dzhumadil'dev.
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⊕-Co-coatomically Supplemented and Co-coatomically
Semiperfect Modules

Serpil Güngör

M will mean an R-module where R is an arbitrary ring with identity. A
moduleM is called coatomic if every submodule is contained in a maximal
submodule of M . A proper submodule N of M is called co-coatomic if
M/N is coatomic. A module M is ⊕-co-coatomically supplemented if
every co-coatomic submodule of M has a supplement that is a direct
summand of M .
The following example shows that arbitrary direct sum of⊕-co-coatomically

supplemented module need not be ⊕-co-coatomically supplemented.

Example 1. Let R denote the ring K[[x]] of all power series
∞∑
i=0

kix
i

in an indeterminate x and with coe�cients from a �eld K which is a
local ring. Then any direct sum of R, i.e. R-module R(N) is not ⊕-co-
coatomically supplemented module since although RadR(N) is co-coatomic
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submodule of R-module R(N), it does not have a supplement in R-module
R(N).

Proposition 2. For any ring R, any �nite direct sum of ⊕-co-coatomically
supplemented R-modules is ⊕-co-coatomically supplemented.

M is called ⊕-supplemented if every submodule ofM has a supplement
that is a direct summand of M . A ring R is left perfect if and only if
R(N) is a ⊕-supplemented (see [2]).

Theorem 3. A ring R is left perfect if and only if R(N) is a ⊕-co-
coatomically supplemented R-module.

M is called co-coatomically semiperfect if every coatomic factor module
ofM has a projective cover. For a projective moduleM , M is semiperfect
if and only if M is ⊕-supplemented (see [1]). Similarly, for a projective
module M , M is co�nitely semiperfect if and only if M is ⊕-co�nitely
supplemented (see [3]).

Proposition 4. LetM be a projective R-module. ThenM is co-coatomically
semiperfect module if and only if M is ⊕-co-coatomically supplemented
module.
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On the minimum distance of cyclic codes

Leyla I³�k

Estimation of the minimum distance of cyclic codes is a classical prob-
lem in coding theory. Using the trace representation of cyclic codes and
Hilbert's Theorem 90, Wolfmann found a general estimate for the min-
imum distance of cyclic codes in terms of the number of rational points
on certain Artin-Schreier curves. In this poster, we try to understand
if Wolfmann's bound can be improved by modifying equations of the
Artin-Schreier curves by the use of monomial and some nonmonomial
permutation polynomials. Our experiments show that an improvement
is possible in some cases.
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Torsion free covers in the category of representations of
quivers

Salahattin Özdemir

Joint with and Sergio Estrada.
Let R be a ring, R-Mod be the category of left R-modules and Q be
a quiver (i.e. a directed graph). We prove the existence of torsion free
covers, relative to a torsion theory, in the category of representations by
modules of a quiver, denoted by (Q,R-Mod), for a wide class of quivers
provided that any direct sum of torsion free and injective R-modules is
injective.
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Localization of supplemented modules

Esra Öztürk

Let R be a commutative ring with identity and M be an R−module.
We present the relation between an R−module M and an RP− localiza-
tion module MP in the view of being supplemented for all P maximal
ideals of R.

This is joint work with �enol EREN, Ondokuz May�s University
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Fibonacci-Gcd Matrisleri

Mehmet Sever

S = {x1, x2, ...xn} pozitif tamsay�lar�n s�ral� bir kümesi olsun.

(S) = (sij) = (xi, xj) , n× n

matrisine S kümesi üzerinde GCD MATR�S� denir. Pozitif tamsay�lar-
dan tan�ml� ve kompleks say�lar kümesi de§erli her fonksiyona aritmetik
fonksiyon denir. Örnek olarak Euler'in Phi fonksiyonu φ, Riemann'�n
zeta fonksiyonu ζ, Mobius'un mü fonksiyonu µ verilebilir. Literatürde

çal�³�lm�³ matrislerin ba³l�calar� (S) = (sij) = (xi, xj),
(
1
S

)
=

(
1

(xi,xj)

)
ve (Sn) = (xi, xj)

n matrisleridir. Burada matrisleri te³kil etmedeki en
büyük i³ matrisi meydana getiren aritmetik fonksiyonu bulmakt�r. GCD
matrisini φ fonksiyonu belirlemektedir. Biz bu çal�³mam�zda GCD ma-
trisinin her girdisine bir ekleyip kar³�l�k gelen Fibonacci dizisi de§erini
ald�k.

(S) = (sij) = (xi, xj) → F(S) = F(xi,xj)+1

ve bu matrisi üreten aritmetik fonksiyonu, bu matrisin determinanat�n�
ve yap�s�n� inceledik. ∑

d|n

g (d) = F(xi,xj)+1

Burada bir ekleme sebebimiz meydana gelen matrisin tekilli§ini kald�r-
makt�r.
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Benzer dü³üncelerle ∑
d|n

f (d) = (−1)
n
Fn

∑
d|n

h (d) =
Fn+1

Fn

aritmetik fonksiyonlar� yard�m� ile s�ras�yla alterne-�bonacci matrisi ve
reciprocal �bonacci matrisi meydana gelmektedir. Keza S kümesi pozitif
tamsay�lar�n bir kümesi olmak üzere bu küme üzerinde bir k�smi s�ralama
ba§�nt�s�(≼) tan�mlay�p ∑

xi≼xj

h (xi) = Fxi + Fxj

³eklinde bir aritmetik fonksiyon daha tan�mlay�p kümeyi ve üzerindeki
i³lemi genelledik.
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On (co�nitely) generalized amply weak supplemented
modules

Figen Yüzba³�

Let R be a ring and M be a left R−module. In this paper, we will
study some properties of (co�nitely) generalized amply weak supple-
mented modules (CGAWS) as a generalization of (co�nitely) amply weak
supplemented and give a new characterization of semilocal rings using
CGAWS-modules. Nevertheless, we will show that (1) M is Artinian
if and only if M is a GAWS-module and satis�es DCC on generalized
weak supplement submodules and on small submodules. (2) A ring R is
semilocal if and only if every left R-module is CGAWS-module.

This is joint work with �enol EREN, Ondokuz May�s University
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