Some inverse problems in Group Theory

Mercede MAJ

UNIVERSITÀ DEGLI STUDI DI SALERNO

Groups and Topological Groups

Mimar Sinan Fine Arts University, Istanbul, Turkey

January 17 - January 18, 2014
Definition

Let $G(\cdot)$ be a group. If S is a subset of G, then we denote

$$S^2 = \{xy \mid x, y \in S\}.$$

Problem

Let S be a finite subset of G of size k. Determine the structure of S if

$$|S^2| \leq f(k),$$

for some function of k.

Problems of this kind are called inverse problems.
Let $G(\cdot)$ be a group. If S is a subset of G, then we denote

$$S^2 = \{xy \mid x, y \in S\}.$$

Problem

Let S be a finite subset of G of size k. Determine the structure of S if

$$|S^2| \leq f(k),$$

for some function of k.

Problems of this kind are called inverse problems.
Definition
Let $G(\cdot)$ be a group. If S is a subset of G, then we denote

$$S^2 = \{xy \mid x, y \in S\}.$$
Suppose that S is a non-empty finite subset of G.

Since $xS \subseteq S^2$, for any $x \in S$ we have

$$|S^2| \geq |S|.$$

We shall consider problems of the following type:

Problem

What is the structure of S if $|S^2|$ satisfies

$$|S^2| \leq \alpha |S| + \beta$$

for some small $\alpha \geq 1$ and small $|\beta|$?

Such problems are called **inverse problems of small doubling** type.
Suppose that S is a non-empty finite subset of G.

Since $xS \subseteq S^2$, for any $x \in S$ we have

$$|S^2| \geq |S|.$$

We shall consider problems of the following type:

Problem

What is the structure of S if $|S^2|$ satisfies

$$|S^2| \leq \alpha |S| + \beta$$

for some small $\alpha \geq 1$ and small $|\beta|$?

Such problems are called *inverse problems of small doubling* type.
Background

Suppose that S is a non-empty finite subset of G.

Since $xS \subseteq S^2$, for any $x \in S$ we have

$$|S^2| \geq |S|.$$

We shall consider problems of the following type:

Problem

What is the structure of S if $|S^2|$ satisfies

$$|S^2| \leq \alpha |S| + \beta$$

for some small $\alpha \geq 1$ and small $|\beta|$?

Such problems are called inverse problems of small doubling type.
An example

If S is a finite subgroup of G, then $S^2 = S$, hence $|S^2| = |S|$. This is a **direct** result.

The corresponding **inverse** problem is:

Problem

What is the structure of S if $|S^2|$ satisfies $|S^2| = |S|$?

Proposition

*If S is a non-empty finite subset of a group G, then $|S^2| = |S|$ if and only if $S = aH$ where H is a subgroup of G normalized by a.***
An example

If \(S \) is a finite subgroup of \(G \), then \(S^2 = S \), hence \(|S^2| = |S|\).

This is a direct result.

The corresponding inverse problem is:

Problem

What is the structure of \(S \) if \(|S^2| \) satisfies \(|S^2| = |S|?

Proposition

If \(S \) is a non-empty finite subset of a group \(G \), then \(|S^2| = |S|\) if and only if \(S = aH \) where \(H \) is a subgroup of \(G \) normalized by \(a \).
An example

If S is a finite subgroup of G, then $S^2 = S$, hence $|S^2| = |S|$.

This is a **direct** result.

The corresponding **inverse** problem is:

Problem

What is the structure of S if $|S^2|$ satisfies $|S^2| = |S|$?

Proposition

*If S is a non-empty finite subset of a group G, then $|S^2| = |S|$ if and only if $S = aH$ where H is a subgroup of G normalized by a.***
This follows from the following theorem of Gregory Freiman that is the first inverse result of "small doubling" type.

Theorem (A)

Let S be a finite non-empty subset of a group G and suppose that

$$|S^2| < \frac{3}{2}|S|.$$

Then S^2 is a coset of a subgroup of G.
This follows from the following theorem of Gregory Freiman that is the first inverse result of "small doubling" type.

Theorem (A)

Let S be a finite non-empty subset of a group G and suppose that

$$|S^2| < \frac{3}{2}|S|.$$

Then S^2 is a coset of a subgroup of G.
This follows from the following theorem of Gregory Freiman that is the first inverse result of "small doubling" type.

Theorem (A)

Let S be a finite non-empty subset of a group G and suppose that

$$|S^2| < \frac{3}{2}|S|.$$

Then S^2 is a coset of a subgroup of G.
Proposition

If S is a finite non-empty subset of a group G then

$$|S^2| = |S|$$

if and only if $S = aH$ where H is a subgroup of G normalized by a.

Proof. Suppose $|S^2| = |S|$, then $S^2 = xS$ for every $x \in S$. By Theorem A, $xS = S^2 = uH$ for some subgroup H of G and some $u \in G$. It follows that $S = x^{-1}uH$, as claimed. Write $a = x^{-1}u$, then $S = aH$. In particular $|S^2| = |S| = |H|$. Furthermore we have:

$$|S^2| = |aHaH| = |a^2H^aH| = |H^aH|$$,

hence $|H^aH| = |H|$, then $H^aH = H$, since $H \subseteq H^aH$. Therefore $H^a \subseteq H$ and $H^a = H$, as required.
Proposition

If S is a finite non-empty subset of a group G then

$$|S^2| = |S|$$

if and only if $S = aH$ where H is a subgroup of G normalized by a.

Proof. Suppose $|S^2| = |S|$, then $S^2 = xS$ for every $x \in S$. By Theorem A, $xS = S^2 = uH$ for some subgroup H of G and some $u \in G$. It follows that $S = x^{-1}uH$, as claimed. Write $a = x^{-1}u$, then $S = aH$. In particular $|S^2| = |S| = |H|$. Furthermore we have:

$$|S^2| = |aHaH| = |a^2H^aH| = |H^aH|,$$

hence $|H^aH| = |H|$, then $H^aH = H$, since $H \subseteq H^aH$. Therefore $H^a \subseteq H$ and $H^a = H$, as required.
Proposition

If S is a finite non-empty subset of a group G then

$$|S^2| = |S|$$

if and only if $S = aH$ where H is a subgroup of G normalized by a.

Proof. Suppose $|S^2| = |S|$, then $S^2 = xS$ for every $x \in S$. By Theorem A, $xS = S^2 = uH$ for some subgroup H of G and some $u \in G$. It follows that $S = x^{-1}uH$, as claimed. Write $a = x^{-1}u$, then $S = aH$. In particular $|S^2| = |S| = |H|$. Furthermore we have:

$$|S^2| = |aHaH| = |a^2H^aH| = |H^aH|,$$

hence $|H^aH| = |H|$, then $H^aH = H$, since $H \subseteq H^aH$. Therefore $H^a \subseteq H$ and $H^a = H$, as required.
Proposition

If S is a finite non-empty subset of a group G then

$$|S^2| = |S|$$

if and only if $S = aH$ where H is a subgroup of G normalized by a.

Proof. Suppose $|S^2| = |S|$, then $S^2 = xS$ for every $x \in S$. By Theorem A, $xS = S^2 = uH$ for some subgroup H of G and some $u \in G$. It follows that $S = x^{-1}uH$, as claimed. Write $a = x^{-1}u$, then $S = aH$. In particular $|S^2| = |S| = |H|$. Furthermore we have:

$$|S^2| = |aHaH| = |a^2HaH| = |HaH|,$$

hence $|HaH| = |H|$, then $HaH = H$, since $H \subseteq HaH$. Therefore $Ha \subseteq H$ and $Ha = H$, as required.
Proposition

If S is a finite non-empty subset of a group G then

$$|S^2| = |S|$$

if and only if $S = aH$ where H is a subgroup of G normalized by a.

Proof. Suppose $|S^2| = |S|$, then $S^2 = xS$ for every $x \in S$. By Theorem A, $xS = S^2 = uH$ for some subgroup H of G and some $u \in G$. It follows that $S = x^{-1}uH$, as claimed. Write $a = x^{-1}u$, then $S = aH$. In particular $|S^2| = |S| = |H|$. Furthermore we have:

$$|S^2| = |aHaH| = |a^2HaH| = |HaH|,$$

hence $|HaH| = |H|$, then $HaH = H$, since $H \subseteq HaH$. Therefore $Ha \subseteq H$ and $Ha = H$, as required.
Proposition

If S is a finite non-empty subset of a group G then

$$|S^2| = |S|$$

if and only if $S = aH$ where H is a subgroup of G normalized by a.

Proof. Suppose $|S^2| = |S|$, then $S^2 = xS$ for every $x \in S$. By Theorem A, $xS = S^2 = uH$ for some subgroup H of G and some $u \in G$. It follows that $S = x^{-1}uH$, as claimed. Write $a = x^{-1}u$, then $S = aH$. In particular $|S^2| = |S| = |H|$. Furthermore we have:

$$|S^2| = |aHaH| = |a^2H^aH| = |H^aH|,$$

hence $|H^aH| = |H|$, then $H^aH = H$, since $H \subseteq H^aH$. Therefore $H^a \subseteq H$ and $H^a = H$, as required.
The first version of Theorem A was published in 1951 in a Russian journal. It was the beginning of what is now called the

Freiman’s structural theory of set addition.

The foundations for this theory were laid in the book:

G.A. Freiman,

Foundations of a structural theory of set addition

M.B. Nathanson,

Additive number theory - Inverse problems and geometry of sumsets, Springer, New York, 1996.
The first version of Theorem A was published in 1951 in a Russian journal. It was the beginning of what is now called the

Freiman’s structural theory of set addition.

The foundations for this theory were laid in the book:

G.A. Freiman,
Foundations of a structural theory of set addition

M.B. Nathanson,
Additive number theory - Inverse problems and geometry of sumsets,
The first version of Theorem A was published in 1951 in a Russian journal. It was the beginning of what is now called the

Freiman’s structural theory of set addition.

The foundations for this theory were laid in the book:

G.A. Freiman,
Foundations of a structural theory of set addition

M.B. Nathanson,
Additive number theory - Inverse problems and geometry of sumsets,
By now, Freiman’s theory had been extended tremendously.

It was shown by Freiman and others that problems in various fields may be looked at and treated as Structure Theory problems, including Additive and Combinatorial Number Theory, Group Theory, Integer Programming and Coding Theory.

H. Halberstam, B.J. Green, I.Z. Ruzsa, T. Sanders, Y.V. Stanchescu, T.C. Tao, ...
Consider the group of the integers $\mathbb{Z}(+)$. If S is subset of the integers consider:

$$S + S = \{x + y | x, y \in S\}.$$

It is easy to prove that if S is finite with k elements, then:

$$|S + S| \geq 2k - 1, \quad |S + S| \leq k(k - 1)/2.$$
Background

Consider the group of the integers $\mathbb{Z}(+)$. If S is subset of the integers consider:

$$S + S = \{x + y \mid x, y \in S\}.$$

It is easy to prove that if S is finite with k elements, then:

$$|S + S| \geq 2k - 1, \quad |S + S| \leq k(k - 1)/2.$$
Moreover

\[|S + S| = 2k - 1 \]

if and only if \(S \) is an arithmetic progression of length \(k \).

An arithmetic progression of length \(k \) and difference \(d \) is a set

\[\{a, a + d, a + 2d, \ldots, a + (k - 1)d\}, \]

where \(a, d, k \) are integers, \(d, k \geq 1 \).

Problem

Let \(S \) be a finite subset of the integers of order \(k \). What is the structure of \(S \) if \(|S + S| \) is not much greater than the minimal value \(2k - 1 \)?
Moreover

$$|S + S| = 2k - 1$$

if and only if S is an arithmetic progression of length k.

An arithmetic progression of length k and difference d is a set

$$\{a, a + d, a + 2d, \ldots, a + (k - 1)d\},$$

where a, d, k are integers, $d, k \geq 1$.

Problem

Let S be a finite subset of the integers of order k. What is the structure of S if $|S + S|$ is not much greater than the minimal value $2k - 1$?
Moreover

\[|S + S| = 2k - 1 \]

if and only if \(S \) is an arithmetic progression of length \(k \).

An arithmetic progression of length \(k \) and difference \(d \) is a set

\[\{a, a + d, a + 2d, \ldots, a + (k - 1)d\}, \]

where \(a, d, k \) are integers, \(d, k \geq 1 \).

Problem

Let \(S \) be a finite subset of the integers of order \(k \). What is the structure of \(S \) if \(|S + S| \) is not much greater than the minimal value \(2k - 1 \)?
G. Freiman proved the following:

Theorem (B)

Let S be a finite set of integers with $k \geq 3$ elements and suppose that

$$|S + S| \leq 2k - 1 + b,$$

where $0 \leq b \leq k - 3$.

Then S is contained in an arithmetic progression of length $k + b$ and difference q,

$$P = \{a, a + q, a + 2q, \cdots, a + (k + b - 1)q\},$$

where a, q are integers with $q > 0$.

In particular $|P| \leq 2k - 3$.

G. Freiman proved the following:

Theorem (B)

Let S be a finite set of integers with $k \geq 3$ elements and suppose that

$$|S + S| \leq 2k - 1 + b,$$

where $0 \leq b \leq k - 3$. Then S is contained in an arithmetic progression of length $k + b$ and difference q,

$$P = \{a, a + q, a + 2q, \ldots, a + (k + b - 1)q\},$$

where a, q are integers with $q > 0$. In particular $|P| \leq 2k - 3$.
G. Freiman proved the following:

Theorem (B)

Let S be a finite set of integers with $k \geq 3$ elements and suppose that

$$|S + S| \leq 2k - 1 + b,$$

where $0 \leq b \leq k - 3$.

Then S is contained in an arithmetic progression of length $k + b$ and difference q,

$$P = \{a, a + q, a + 2q, \cdots, a + (k + b - 1)q\},$$

where a, q are integers with $q > 0$.

In particular $|P| \leq 2k - 3$.
G. Freiman proved the following:

Theorem (B)

Let S be a finite set of integers with $k \geq 3$ elements and suppose that

$$|S + S| \leq 2k - 1 + b,$$

where $0 \leq b \leq k - 3$.

Then S is contained in an arithmetic progression of length $k + b$ and difference q,

$$P = \{a, a + q, a + 2q, \cdots, a + (k + b - 1)q\},$$

where a, q are integers with $q > 0$.

In particular $|P| \leq 2k - 3$.
Corollary

Let S be a finite set of integers with $k \geq 3$ elements and suppose that

$$|S + S| \leq 3k - 4,$$

Then S is contained in an arithmetic progression.

Freiman studied also the case $|S + S| \leq 3|S| - 3$ and $|S + S| \leq 3|S| - 2$.

Theorem (C)

Let S be a finite set of integers with $k > 6$ elements and suppose that

$$|S + S| \leq 3k - 3,$$

Then either S is a subset of an arithmetic progression of length at most $2k - 1$ or S is a bi-arithmetic progression.

A set of the form $I \cup J$ is called a bi-arithmetic progression of length k with difference d if both I and J are arithmetic progressions of difference d, $|I| + |J| = k$, and $I + I$, $I + J$, $J + J$ are pairwise disjoint.
Corollary

Let S be a finite set of integers with $k \geq 3$ elements and suppose that

$$|S + S| \leq 3k - 4,$$

Then S is contained in an arithmetic progression.

Freiman studied also the case $|S + S| \leq 3|S| - 3$ and $|S + S| \leq 3|S| - 2$.

Theorem (C)

Let S be a finite set of integers with $k > 6$ elements and suppose that

$$|S + S| \leq 3k - 3,$$

Then either S is a subset of an arithmetic progression of length at most $2k - 1$ or S is a bi-arithmetic progression.

A set of the form $I \cup J$ is called a bi-arithmetic progression of length k with difference d if both I and J are arithmetic progressions of difference d, $|I| + |J| = k$, and $I + I, I + J, J + J$ are pairwise disjoint.
Corollary

Let S be a finite set of integers with $k \geq 3$ elements and suppose that

$$|S + S| \leq 3k - 4,$$

Then S is contained in an arithmetic progression.

Freiman studied also the case $|S + S| \leq 3|S| - 3$ and $|S + S| \leq 3|S| - 2$.

Theorem (C)

Let S be a finite set of integers with $k > 6$ elements and suppose that

$$|S + S| \leq 3k - 3,$$

Then either S is a subset of an arithmetic progression of length at most $2k - 1$ or S is a bi-arithmetic progression.

A set of the form $I \cup J$ is called a bi-arithmetic progression of length k with difference d if both I and J are arithmetic progressions of difference d, $|I| + |J| = k$, and $I + I, I + J, J + J$ are pairwise disjoint.
Corollary

Let S be a finite set of integers with $k \geq 3$ elements and suppose that

$$|S + S| \leq 3k - 4,$$

Then S is contained in an arithmetic progression.

Freiman studied also the case $|S + S| \leq 3|S| - 3$ and $|S + S| \leq 3|S| - 2$.

Theorem (C)

Let S be a finite set of integers with $k > 6$ elements and suppose that

$$|S + S| \leq 3k - 3,$$

Then either S is a subset of an arithmetic progression of length at most $2k - 1$ or S is a bi-arithmetic progression.

A set of the form $I \cup J$ is called a bi-arithmetic progression of length k with difference d if both I and J are arithmetic progressions of difference d, $|I| + |J| = k$, and $I + I, I + J, J + J$ are pairwise disjoint.
Corollary

Let S be a finite set of integers with $k \geq 3$ elements and suppose that

$$|S + S| \leq 3k - 4,$$

Then S is contained in an arithmetic progression.

Freiman studied also the case $|S + S| \leq 3|S| - 3$ and $|S + S| \leq 3|S| - 2$.

Theorem (C)

Let S be a finite set of integers with $k > 6$ elements and suppose that

$$|S + S| \leq 3k - 3,$$

Then either S is a subset of an arithmetic progression of length at most $2k - 1$ or S is a bi-arithmetic progression.

A set of the form $I \cup J$ is called a bi-arithmetic progression of length k with difference d if both I and J are arithmetic progressions of difference d, $|I| + |J| = k$, and $I + I, I + J, J + J$ are pairwise disjoint.
Ordered groups

Our aim is to generalize Freiman’s results to finite subsets of ordered groups.

Definition

Let G be a group and suppose that a total order relation \leq is defined on the set G.
We say that (G, \prec) is an ordered group if for all $a, b, x, y \in G$, the inequality $a \leq b$ implies that $xay \leq xby$.

Definition

A group G is orderable if there exists a total order relation \leq on the set G, such that (G, \prec) is an ordered group.
Our aim is to generalize Freiman’s results to finite subsets of ordered groups.

Definition

Let G be a group and suppose that a total order relation \leq is defined on the set G.
We say that $(G, <)$ is an *ordered group* if for all $a, b, x, y \in G$, the inequality $a \leq b$ implies that $xay \leq xby$.

Definition

A group G is *orderable* if there exists a total order relation \leq on the set G, such that $(G, <)$ is an ordered group.
Our aim is to generalize Freiman’s results to finite subsets of ordered groups.

Definition

Let G be a group and suppose that a total order relation \leq is defined on the set G.

We say that $(G, <)$ is an **ordered group** if for all $a, b, x, y \in G$, the inequality $a \leq b$ implies that $xay \leq xby$.

Definition

A group G is **orderable** if there exists a total order relation \leq on the set G, such that $(G, <)$ is an ordered group.
Obviously the group of the integers with the usual order is an ordered group.

Theorem (F.W. Levi)
An abelian group G is orderable if and only if it is torsion-free.

Theorem (K. Iwasawa - A.I. Mal’cev - B.H. Neumann)
The class of ordered groups contains the class of torsion-free nilpotent groups.
Ordered groups

Obviously the group of the integers with the usual order is an ordered group.

Theorem (F.W. Levi)

An abelian group G is orderable if and only if it is torsion-free.

Theorem (K. Iwasawa - A.I. Mal’cev - B.H. Neumann)

The class of ordered groups contains the class of torsion-free nilpotent groups.
Ordered groups

Obviously the group of the integers with the usual order is an ordered group.

Theorem (F.W. Levi)

An *abelian group* G is orderable if and only if it is *torsion-free*.

Theorem (K. Iwasawa - A.I. Mal’cev - B.H. Neumann)

The class of ordered groups contains the class of torsion-free nilpotent groups.
Ordered groups

More information concerning ordered groups may be found, for example, in

pause

Ordered groups

More information concerning ordered groups may be found, for example, in

pause

Proposition

Let \((G, \leq)\) be an ordered group and \(S\) a finite subset of \(G\) with \(k\) elements. Then

\[|S^2| \geq 2k - 1.\]

Moreover, if \(|S^2| = 2k - 1\), then \(S\) is a geometric progression, i.e. there exists \(g \in G, x \in S\) such that

\[S = \{x, xg, xg^2, \ldots, xg^{k-1}\}.\]

Problem

Let \((G, \leq)\) be an ordered group, \(S\) a finite subset of \(G\) of order \(k\). What is the **structure** of \(S\) if \(|S^2|\) is not much greater than the minimal value \(2k - 1\)?
Proposition

Let \((G, \leq)\) be an ordered group and \(S\) a finite subset of \(G\) with \(k\) elements. Then

\[|S^2| \geq 2k - 1. \]

Moreover, if \(|S^2| = 2k - 1\), then \(S\) is a geometric progression, i.e. there exists \(g \in G, x \in S\) such that

\[S = \{x, xg, xg^2, \ldots, xg^{k-1}\}. \]

Problem

Let \((G, \leq)\) be an ordered group, \(S\) a finite subset of \(G\) of order \(k\). What is the structure of \(S\) if \(|S^2|\) is not much greater than the minimal value \(2k - 1\)?
Ordered groups

Proposition

Let \((G, \leq)\) be an ordered group and \(S\) a finite subset of \(G\) with \(k\) elements. Then

\[|S^2| \geq 2k - 1.\]

Moreover, if \(|S^2| = 2k - 1\), then \(S\) is a geometric progression, i.e. there exists \(g \in G, x \in S\) such that

\[S = \{x, xg, xg^2, \ldots, xg^{k-1}\}.\]

Problem

Let \((G, \leq)\) be an ordered group, \(S\) a finite subset of \(G\) of order \(k\). What is the structure of \(S\) if \(|S^2|\) is not much greater than the minimal value \(2k - 1\)?
Ordered groups

Problem

Let \((G, \leq)\) be an ordered group, \(S\) a finite subset of \(G\) of order \(k\). What is the structure of \(S\) if \(|S^2|\) satisfies

\[|S^2| \leq 2k - 1 + b,\]

where \(0 \leq b < k - 2\)?

Problems

Let \((G, \leq)\) be an ordered group, \(S\) a finite subset of \(G\) of order \(k\). What is the structure of \(S\) if

\[|S^2| \leq 3k - 3?\]

Or

\[|S^2| \leq 3k - 2?\]

Or

\[|S^2| \leq 3k - 1?\]
Ordered groups

Problem

Let \((G, \leq)\) be an ordered group, \(S\) a finite subset of \(G\) of order \(k\). What is the structure of \(S\) if \(|S^2|\) satisfies

\[|S^2| \leq 2k - 1 + b,\]

where \(0 \leq b < k - 2\)?

Problems

Let \((G, \leq)\) be an ordered group, \(S\) a finite subset of \(G\) of order \(k\). What is the structure of \(S\) if

\[|S^2| \leq 3k - 3?\]

Or

\[|S^2| \leq 3k - 2?\]

Or

\[|S^2| \leq 3k - 1?\]
Let \((G, \leq)\) be an ordered group, \(S\) a finite subset of \(G\) of order \(k\). What is the structure of \(S\) if \(|S^2|\) satisfies

\[|S^2| \leq 2k - 1 + b,\]

where \(0 \leq b < k - 2\)?

Let \((G, \leq)\) be an ordered group, \(S\) a finite subset of \(G\) of order \(k\). What is the structure of \(S\) if

\[|S^2| \leq 3k - 3?\]

Or

\[|S^2| \leq 3k - 2?\]

Or

\[|S^2| \leq 3k - 1?\]
Ordered groups

Problem

Let \((G, \leq)\) be an ordered group, \(S\) a finite subset of \(G\) of order \(k\). What is the structure of \(S\) if \(|S^2|\) satisfies

\[|S^2| \leq 2k - 1 + b,\]

where \(0 \leq b < k - 2\)?

Problems

Let \((G, \leq)\) be an ordered group, \(S\) a finite subset of \(G\) of order \(k\). What is the structure of \(S\) if

\[|S^2| \leq 3k - 3?\]

Or

\[|S^2| \leq 3k - 2?\]

Or

\[|S^2| \leq 3k - 1?\]
Ordered groups

Now new problems arise.

Problem

Let \((G, \leq)\) be an ordered group, \(S\) a finite subset of \(G\) of order \(k\). What is the structure of \(\langle S \rangle\), the subgroup generated by \(S\), if \(|S^2|\) satisfies

\[|S^2| \leq 2k - 1 + b,\]

where \(0 \leq b \leq k\)?

In particular:

Problem

What is the maximal upper bound on \(|S^2|\) which implies that the subgroup \(\langle S \rangle\) is abelian?
Now new problems arise.

Problem

Let \((G, \leq)\) be an ordered group, \(S\) a finite subset of \(G\) of order \(k\). What is the **structure** of \(\langle S \rangle\), the subgroup generated by \(S\), if \(|S^2|\) satisfies

\[|S^2| \leq 2k - 1 + b,\]

where \(0 \leq b \leq k\)?

In particular:

Problem

What is the maximal upper bound on \(|S^2|\) which implies that the subgroup \(\langle S \rangle\) is abelian?
Now new problems arise.

Problem

Let \((G, \leq)\) be an ordered group, \(S\) a finite subset of \(G\) of order \(k\). What is the structure of \(\langle S \rangle\), the subgroup generated by \(S\), if \(|S^2|\) satisfies

\[|S^2| \leq 2k - 1 + b,\]

where \(0 \leq b \leq k\)?

In particular:

Problem

What is the maximal upper bound on \(|S^2|\) which implies that the subgroup \(\langle S \rangle\) is abelian?
Now new problems arise.

Problem

Let \((G, \leq)\) be an ordered group, \(S\) a finite subset of \(G\) of order \(k\). What is the **structure** of \(\langle S \rangle\), the subgroup generated by \(S\), if \(|S^2|\) satisfies

\[|S^2| \leq 2k - 1 + b, \]

where \(0 \leq b \leq k\)?

In particular:

Problem

What is the maximal upper bound on \(|S^2|\) which implies that the subgroup \(\langle S \rangle\) is abelian?
Gregory Freiman, Marcel Herzog, Patrizia Longobardi, M. M.

Gregory Freiman, Marcel Herzog, Patrizia Longobardi, M. M., Yonutz V. Stanchescu

Direct and inverse problems in additive number theory and in nonabelian group theory, European Journal of Combinatorics, to appear.
Gregory Freiman, Marcel Herzog, Patrizia Longobardi, M. M.

Gregory Freiman, Marcel Herzog, Patrizia Longobardi, M. M.,
Yonutz V. Stanchescu
*Direct and inverse problems in additive number theory and in non
Gregory Freiman, Marcel Herzog, Patrizia Longobardi, M. M., Yonutz V. Stanchescu

Small doubling in ordered nilpotent groups of class 2
work in progress.

Gregory Freiman, Marcel Herzog, Patrizia Longobardi, M. M., Alain Plagne, Yonutz V. Stanchescu

Generators of sets with small doubling
work in progress.
Gregory Freiman, Marcel Herzog, Patrizia Longobardi, M. M., Yonutz V. Stanchescu
Small doubling in ordered nilpotent groups of class 2
work in progress.

Gregory Freiman, Marcel Herzog, Patrizia Longobardi, M. M., Alain Plagne, Yonutz V. Stanchescu
Generators of sets with small doubling
work in progress.
Some results

Theorem (1)

Let \((G, \leq)\) be an ordered group and let \(S = \{x_1, x_2, \cdots, x_k\}\) be a finite subset of \(G\) of size \(k \geq 3\), with \(x_1 < x_2 < \cdots < x_k\).
Assume that \(t = |S^2| \leq 3k - 4\).
Then \(\langle S \rangle\) is abelian.
Moreover, there exists \(g \in G, g > 1\), such that \(gx_1 = x_1g\) and \(S\) is a subset of
\[
\{x_1, x_1g, x_1g^2, \cdots, x_1g^{t-k}\}.
\]
Some results

Theorem (1)

Let \((G, \leq)\) be an ordered group and let \(S = \{x_1, x_2, \ldots, x_k\}\) be a finite subset of \(G\) of size \(k \geq 3\), with \(x_1 < x_2 \cdots < x_k\).
Assume that \(t = |S^2| \leq 3k - 4\).
Then \(\langle S \rangle\) is abelian.
Moreover, there exists \(g \in G, g > 1\), such that \(gx_1 = x_1g\) and \(S\) is a subset of
\[
\{x_1, x_1g, x_1g^2, \ldots, x_1g^{t-k}\}.
\]
Some results

Theorem (1)

Let \((G, \leq)\) be an ordered group and let \(S = \{x_1, x_2, \cdots, x_k\}\) be a finite subset of \(G\) of size \(k \geq 3\), with \(x_1 < x_2 \cdots < x_k\).

Assume that \(t = |S^2| \leq 3k - 4\).

Then \(\langle S \rangle\) is abelian.

Moreover, there exists \(g \in G, g > 1\), such that \(gx_1 = x_1g\) and \(S\) is a subset of

\[
\{x_1, x_1g, x_1g^2, \cdots, x_1g^{t-k}\}.
\]
Some results

Theorem (2)

Let (G, \leq) be an ordered group and let $S = \{x_1, x_2, \cdots, x_k\}$ be a finite subset of G of size $k \geq 2$, with $x_1 < x_2 \cdots < x_k$.

Assume that

$$|S^2| \leq 3k - 3$$

Then $\langle S \rangle$ is abelian and at most 3-generated.

Theorem

There exists an ordered group G with a subset S of order k such that $\langle S \rangle$ is not abelian and $|S^2| \leq 3k - 2$.
Some results

Theorem (2)

Let \((G, \leq)\) be an ordered group and let \(S = \{x_1, x_2, \ldots, x_k\}\) be a finite subset of \(G\) of size \(k \geq 2\), with \(x_1 < x_2 \cdots < x_k\).

Assume that

\[|S^2| \leq 3k - 3\]

Then \(< S >\) is abelian and at most 3-generated.

Theorem

There exists an ordered group \(G\) with a subset \(S\) of order \(k\) such that \(< S >\) is not abelian and \(|S^2| \leq 3k - 2\).
Some results

Theorem (2)

Let \((G, \leq)\) be an ordered group and let \(S = \{x_1, x_2, \ldots, x_k\}\) be a finite subset of \(G\) of size \(k \geq 2\), with \(x_1 < x_2 \cdots < x_k\).

Assume that

\[|S^2| \leq 3k - 3 \]

Then \(\langle S \rangle\) is abelian and at most 3-generated.

Theorem

There exists an ordered group \(G\) with a subset \(S\) of order \(k\) such that \(\langle S \rangle\) is not abelian and \(|S^2| \leq 3k - 2\).
Some results

Theorem (2)

Let \((G, \leq)\) be an ordered group and let \(S = \{x_1, x_2, \ldots, x_k\}\) be a finite subset of \(G\) of size \(k \geq 2\), with \(x_1 < x_2 < \cdots < x_k\).

Assume that

\[|S^2| \leq 3k - 3 \]

Then \(<S>\) is abelian and at most 3-generated.

Theorem

There exists an ordered group \(G\) with a subset \(S\) of order \(k\) such that \(<S>\) is not abelian and \(|S^2| \leq 3k - 2\).
Example

Let $G = A \rtimes \langle b \rangle$ be a semidirect product of an abelian group $A(\cdot)$ isomorphic to the additive rational group $(\mathbb{Q}, +)$ by an infinite cyclic group $\langle b \rangle$, such that $a^b = a^2$ for each $a \in A$.

Then G is torsion-free and it is orderable.

Take $a \in A \setminus 1$ and let

$$S = \{b, ba, ba^2, \ldots, ba^{k-1}\}$$

Since $ab = ba^2$, it is easy to see that

$$S^2 = \{b^2, b^2a, b^2a^2, b^2a^3, \ldots, b^2a^{3k-3}\}.$$

Thus $\langle S \rangle$ is non-abelian and $|S^2| = 3k - 2$.
Example

Let $G = A \rtimes \langle b \rangle$ be a semidirect product of an abelian group $A(\cdot)$ isomorphic to the additive rational group $(\mathbb{Q}, +)$ by an infinite cyclic group $\langle b \rangle$, such that $a^b = a^2$ for each $a \in A$. Then G is torsion-free and it is orderable.

Take $a \in A \setminus 1$ and let

$$S = \{b, ba, ba^2, \ldots, ba^{k-1}\}$$

Since $ab = ba^2$, it is easy to see that

$$S^2 = \{b^2, b^2a, b^2a^2, b^2a^3, \ldots, b^2a^{3k-3}\}.$$

Thus $\langle S \rangle$ is non-abelian and $|S^2| = 3k - 2.$
Example

Let \(G = A \rtimes \langle b \rangle \) be a semidirect product of an abelian group \(A(\cdot) \) isomorphic to the additive rational group \((\mathbb{Q}, +) \) by an infinite cyclic group \(\langle b \rangle \), such that \(a^b = a^2 \) for each \(a \in A \).

Then \(G \) is torsion-free and it is orderable.

Take \(a \in A \setminus 1 \) and let

\[S = \{ b, ba, ba^2, \ldots, ba^{k-1} \} \]

Since \(ab = ba^2 \), it is easy to see that

\[S^2 = \{ b^2, b^2a, b^2a^2, b^2a^3, \ldots, b^2a^{3k-3} \} \].

Thus \(\langle S \rangle \) is non-abelian and \(|S^2| = 3k - 2 \).
Let $G = A \rtimes \langle b \rangle$ be a semidirect product of an abelian group $A(\cdot)$ isomorphic to the additive rational group $(\mathbb{Q}, +)$ by an infinite cyclic group $\langle b \rangle$, such that $a^b = a^2$ for each $a \in A$. Then G is torsion-free and it is orderable.

Take $a \in A \setminus 1$ and let

$$S = \{b, ba, ba^2, \ldots, ba^{k-1}\}$$

Since $ab = ba^2$, it is easy to see that

$$S^2 = \{b^2, b^2a, b^2a^2, b^2a^3, \ldots, b^2a^{3k-3}\}.$$

Thus $\langle S \rangle$ is non-abelian and $|S^2| = 3k - 2$.
An example

Example

Let $G = A \rtimes \langle b \rangle$ be a semidirect product of an abelian group $A(\cdot)$ isomorphic to the additive rational group $(\mathbb{Q}, +)$ by an infinite cyclic group $\langle b \rangle$, such that $a^b = a^2$ for each $a \in A$. Then G is torsion-free and it is orderable.

Take $a \in A \setminus 1$ and let

$$S = \{ b, ba, ba^2, \ldots, ba^{k-1} \}$$

Since $ab = ba^2$, it is easy to see that

$$S^2 = \{ b^2, b^2 a, b^2 a^2, b^2 a^3, \ldots, b^2 a^{3k-3} \}.$$

Thus $\langle S \rangle$ is non-abelian and $|S^2| = 3k - 2$.

An example

Example

Let

\[G = \langle a, b \mid a^b = a^2 \rangle, \]

and

\[S = \{ b, ba, ba^2, \ldots, ba^{k-1} \}. \]

Then, using \(ab = ba^2 \), it is easy to see that

\[S^2 = \{ b^2, b^2a, b^2a^2, b^2a^3, \ldots, b^2a^{3k-3} \}. \]

Thus \(\langle S \rangle \) is non-abelian and \(|S^2| = 3k - 2 \).

The group \(G \) is known as the Baumslag-Solitar group \(BS(1, 2) \).
An example

Example

Let

\[G = \langle a, b \mid a^b = a^2 \rangle, \]

and

\[S = \{ b, ba, ba^2, \ldots, ba^{k-1} \}. \]

Then, using \(ab = ba^2 \), it is easy to see that

\[S^2 = \{ b^2, b^2 a, b^2 a^2, b^2 a^3, \ldots, b^2 a^{3k-3} \}. \]

Thus \(\langle S \rangle \) is non-abelian and \(|S^2| = 3k - 2 \).

The group \(G \) is known as the Baumslag-Solitar group \(BS(1, 2) \).
An example

Example

Let

\[G = \langle a, b \mid a^b = a^2 \rangle, \]

and

\[S = \{ b, ba, ba^2, \ldots, ba^{k-1} \}. \]

Then, using \(ab = ba^2 \), it is easy to see that

\[S^2 = \{ b^2, b^2 a, b^2 a^2, b^2 a^3, \ldots, b^2 a^{3k-3} \}. \]

Thus \(\langle S \rangle \) is non-abelian and \(|S^2| = 3k - 2 \).

The group \(G \) is known as the Baumslag-Solitar group \(BS(1, 2) \).
Example

Let

\[G = \langle a, b \mid a^b = a^2 \rangle, \]

and

\[S = \{ b, ba, ba^2, \cdots, ba^{k-1} \}. \]

Then, using \(ab = ba^2 \), it is easy to see that

\[S^2 = \{ b^2, b^2a, b^2a^2, b^2a^3, \cdots, b^2a^{3k-3} \}. \]

Thus \(\langle S \rangle \) is non-abelian and \(|S^2| = 3k - 2 \).

The group \(G \) is known as the Baumslag-Solitar group \(BS(1, 2) \).
Example

Let

\[G = \langle a, b \mid a^b = a^2 \rangle , \]

and

\[S = \{ b, ba, ba^2, \ldots, ba^{k-1} \} . \]

Then, using \(ab = ba^2 \), it is easy to see that

\[S^2 = \{ b^2, b^2 a, b^2 a^2, b^2 a^3, \ldots, b^2 a^{3k-3} \} . \]

Thus \(\langle S \rangle \) is non-abelian and \(|S^2| = 3k - 2 \).

The group \(G \) is known as the Baumslag-Solitar group \(BS(1, 2) \).
The structure of S if $|S^2| \leq 3|S| - 3$

Let G be an ordered group and let S be a subset of G of finite size k. Suppose

$$|S^2| \leq 3|S| - 3.$$

If $|S| = 3$, then $|S^2| \leq 6 = 3k - 3$. So assume $k > 3$.

We know that $\langle S \rangle$ is abelian and at most 3-generated, then the structure of S can be described using previous results of G. Freiman.
Let G be an ordered group and let S be a subset of G of finite size k. Suppose
\[|S^2| \leq 3|S| - 3. \]

If $|S| = 3$, then $|S^2| \leq 6 = 3k - 3$. So assume $k > 3$.

We know that \langle S \rangle is abelian and at most 3-generated, then the structure of S can be described using previous results of G. Freiman.
Let G be an ordered group and let S be a subset of G of finite size k. Suppose

$$|S^2| \leq 3|S| - 3.$$

If $|S| = 3$, then $|S^2| \leq 6 = 3k - 3$. So assume $k > 3$.

We know that $\langle S \rangle$ is abelian and at most 3-generated, then the structure of S can be described using previous results of G. Freiman.
The structure of S if $|S^2| \leq 3|S| - 3$

Let G be an ordered group and let S be a subset of G of finite size k. Suppose

$$|S^2| \leq 3|S| - 3.$$

If $|S| = 3$, then $|S^2| \leq 6 = 3k - 3$. So assume $k > 3$.

We know that $\langle S \rangle$ is abelian and at most 3-generated, then the structure of S can be described using previous results of G. Freiman.
The structure of S if $|S^2| \leq 3|S| - 3$

Theorem (3)

Let G be an ordered group and let S be a subset of G of finite size $k > 3$. If

$$|S^2| \leq 3k - 3,$$

then one of the following holds:

1. $|S| \leq 6$;
2. S is a subset of a geometric progression;
3. S is a bi-geometric progression,

$$S = \{ac^t \mid 0 \leq t \leq t_1 - 1\} \cup \{bc^t \mid 0 \leq t \leq t_2 - 1\}.$$
The structure of S if $|S^2| \leq 3|S| - 3$

Theorem (3)

Let G be an ordered group and let S be a subset of G of finite size $k > 3$. If

$$|S^2| \leq 3k - 3,$$

then one of the following holds:

1. $|S| \leq 6$;
2. S is a subset of a geometric progression;
3. S is a bi-geometric progression,

$$S = \{ac^t \mid 0 \leq t \leq t_1 - 1\} \cup \{bc^t \mid 0 \leq t \leq t_2 - 1\}.$$
The structure of S if $|S^2| \leq 3|S| - 3$

Theorem (3)

Let G be an ordered group and let S be a subset of G of finite size $k > 3$. If $|S^2| \leq 3k - 3$, then one of the following holds:

1. $|S| \leq 6$;
2. S is a subset of a geometric progression;
3. S is a bi-geometric progression,

$$S = \{ac^t \mid 0 \leq t \leq t_1 - 1\} \cup \{bc^t \mid 0 \leq t \leq t_2 - 1\}.$$
Theorem (3)

Let G be an ordered group and let S be a subset of G of finite size $k > 3$. If

$$|S^2| \leq 3k - 3,$$

then one of the following holds:

1. $|S| \leq 6$;
2. S is a subset of a geometric progression;
3. S is a bi-geometric progression,

$$S = \{ac^t \mid 0 \leq t \leq t_1 - 1\} \cup \{bc^t \mid 0 \leq t \leq t_2 - 1\}.$$
The structure of $\langle S \rangle$ if $|S^2| \leq 3|S| - 2$

We proved the following theorem.

Theorem (4)

Let G be an ordered group and let S be a subset of G of finite size $k > 3$. If

$$|S^2| \leq 3k - 2,$$

then one of the following holds:

- (1) $\langle S \rangle$ is an at most 4-generated abelian group;
- (2) $\langle S \rangle = \langle a, b \mid [a, b] = c, [c, a] = [c, b] = 1 \rangle$;
- (3) $\langle S \rangle = \langle a, b \mid [a, b] = c, [c, a] = 1, c^b = c^2 \rangle$;
- (4) $\langle S \rangle = \langle a, b \mid [a, b] = c, [c, a] = 1, (c^2)^b = c \rangle$;
- (5) $\langle S \rangle = \langle a, b \mid a^b = a^2 \rangle$;
- (6) $\langle S \rangle = \langle a, b \mid ba^2 = ab^2, a^2ba^{-2} = bab^{-1} \rangle$.

The structure of \(\langle S \rangle \) if \(|S^2| \leq 3|S| - 2 \)

We proved the following theorem.

Theorem (4)

Let \(G \) be an ordered group and let \(S \) be a subset of \(G \) of finite size \(k > 3 \). If

\[
|S^2| \leq 3k - 2,
\]

then one of the following holds:

1. \(\langle S \rangle \) is an at most 4-generated abelian group;
2. \(\langle S \rangle = \langle a, b \ | [a, b] = c, [c, a] = [c, b] = 1 \rangle \);
3. \(\langle S \rangle = \langle a, b \ | [a, b] = c, [c, a] = 1, c^b = c^2 \rangle \);
4. \(\langle S \rangle = \langle a, b \ | [a, b] = c, [c, a] = 1, (c^2)^b = c \rangle \);
5. \(\langle S \rangle = \langle a, b \ | a^b = a^2 \rangle \);
6. \(\langle S \rangle = \langle a, b \ | ba^2 = ab^2, a^2ba^{-2} = bab^{-1} \rangle \).
The structure of $\langle S \rangle$ if $|S^2| \leq 3|S| - 2$

We proved the following theorem.

Theorem (4)

Let G be an ordered group and let S be a subset of G of finite size $k > 3$. If

$$|S^2| \leq 3k - 2,$$

then one of the following holds:

1. $\langle S \rangle$ is an at most 4-generated abelian group;
2. $\langle S \rangle = \langle a, b \mid [a, b] = c, [c, a] = [c, b] = 1 \rangle$;
3. $\langle S \rangle = \langle a, b \mid [a, b] = c, [c, a] = 1, c^b = c^2 \rangle$;
4. $\langle S \rangle = \langle a, b \mid [a, b] = c, [c, a] = 1, (c^2)^b = c \rangle$;
5. $\langle S \rangle = \langle a, b \mid a^b = a^2 \rangle$;
6. $\langle S \rangle = \langle a, b \mid ba^2 = ab^2, a^2 ba^{-2} = bab^{-1} \rangle$.
The structure of $\langle S \rangle$ if $|S^2| \leq 3|S| - 2$

We proved the following theorem.

Theorem (4)

Let G be an ordered group and let S be a subset of G of finite size $k > 3$. If

$$|S^2| \leq 3k - 2,$$

then one of the following holds:

1. $\langle S \rangle$ is an at most 4-generated abelian group;
2. $\langle S \rangle = \langle a, b \mid [a, b] = c, [c, a] = [c, b] = 1 \rangle$;
3. $\langle S \rangle = \langle a, b \mid [a, b] = c, [c, a] = 1, c^b = c^2 \rangle$;
4. $\langle S \rangle = \langle a, b \mid [a, b] = c, [c, a] = 1, (c^2)^b = c \rangle$;
5. $\langle S \rangle = \langle a, b \mid a^b = a^2 \rangle$;
6. $\langle S \rangle = \langle a, b \mid ba^2 = ab^2, a^2ba^{-2} = bab^{-1} \rangle$.
We proved the following theorem.

Theorem (4)

Let G be an ordered group and let S be a subset of G of finite size $k > 3$. If

$$|S^2| \leq 3k - 2,$$

then one of the following holds:

- (1) $\langle S \rangle$ is an at most 4-generated abelian group;
- (2) $\langle S \rangle = \langle a, b \mid [a, b] = c, [c, a] = [c, b] = 1 \rangle$;
- (3) $\langle S \rangle = \langle a, b \mid [a, b] = c, [c, a] = 1, c^b = c^2 \rangle$;
- (4) $\langle S \rangle = \langle a, b \mid [a, b] = c, [c, a] = 1, (c^2)^b = c \rangle$;
- (5) $\langle S \rangle = \langle a, b \mid a^b = a^2 \rangle$;
- (6) $\langle S \rangle = \langle a, b \mid ba^2 = ab^2, a^2 ba^{-2} = bab^{-1} \rangle$.
We proved the following theorem.

Theorem (4)

Let G be an ordered group and let S be a subset of G of finite size $k > 3$. If

$$|S^2| \leq 3k - 2,$$

then one of the following holds:

1. $\langle S \rangle$ *is an at most 4-generated abelian group;*
2. $\langle S \rangle = \langle a, b \mid [a, b] = c, [c, a] = [c, b] = 1 \rangle$;
3. $\langle S \rangle = \langle a, b \mid [a, b] = c, [c, a] = 1, c^b = c^2 \rangle$;
4. $\langle S \rangle = \langle a, b \mid [a, b] = c, [c, a] = 1, (c^2)^b = c \rangle$;
5. $\langle S \rangle = \langle a, b \mid a^b = a^2 \rangle$;
6. $\langle S \rangle = \langle a, b \mid ba^2 = ab^2, a^2ba^{-2} = bab^{-1} \rangle$.
We proved the following theorem.

Theorem (4)

Let G be an ordered group and let S be a subset of G of finite size $k > 3$. If

\[|S^2| \leq 3k - 2, \]

then one of the following holds:

1. $\langle S \rangle$ is an at most 4-generated abelian group;
2. $\langle S \rangle = \langle a, b \mid [a, b] = c, [c, a] = [c, b] = 1 \rangle$;
3. $\langle S \rangle = \langle a, b \mid [a, b] = c, [c, a] = 1, c^b = c^2 \rangle$;
4. $\langle S \rangle = \langle a, b \mid [a, b] = c, [c, a] = 1, (c^2)^b = c \rangle$;
5. $\langle S \rangle = \langle a, b \mid a^b = a^2 \rangle$;
6. $\langle S \rangle = \langle a, b \mid ba^2 = ab^2, a^2ba^{-2} = bab^{-1} \rangle$.
The structure of $\langle S \rangle$ if $|S^2| \leq 3|S| - 2$

We proved the following theorem.

Theorem (4)

Let G be an ordered group and let S be a subset of G of finite size $k > 3$. If

$$|S^2| \leq 3k - 2,$$

then one of the following holds:

1. $\langle S \rangle$ is an at most 4-generated abelian group;
2. $\langle S \rangle = \langle a, b \mid [a, b] = c, [c, a] = [c, b] = 1 \rangle$;
3. $\langle S \rangle = \langle a, b \mid [a, b] = c, [c, a] = 1, c^b = c^2 \rangle$;
4. $\langle S \rangle = \langle a, b \mid [a, b] = c, [c, a] = 1, (c^2)^b = c \rangle$;
5. $\langle S \rangle = \langle a, b \mid a^b = a^2 \rangle$;
6. $\langle S \rangle = \langle a, b \mid ba^2 = ab^2, a^2 b a^{-2} = bab^{-1} \rangle$.
Corollary

Let G be an ordered group and let S be a subset of G of finite size $k > 3$. If $|S^2| \leq 3k - 2$, then $\langle S \rangle$ is metabelian.

Corollary

Let G be an ordered nilpotent group and let S be a subset of G of finite size $k > 3$. If $|S^2| \leq 3k - 2$, then $\langle S \rangle$ has nilpotence class at most 2.
The structure of $\langle S \rangle$ if $|S^2| \leq 3|S| - 2$

Corollary

Let G be an ordered group and let S be a subset of G of finite size $k > 3$. If $|S^2| \leq 3k - 2$, then $\langle S \rangle$ is metabelian.

Corollary

Let G be an ordered nilpotent group and let S be a subset of G of finite size $k > 3$. If $|S^2| \leq 3k - 2$, then $\langle S \rangle$ has nilpotence class at most 2.
The structure of $\langle S \rangle$ if $|S^2| \leq 3|S| - 2$

Corollary

Let G be an ordered group and let S be a subset of G of finite size $k > 3$. If $|S^2| \leq 3k - 2$, then $\langle S \rangle$ is metabelian.

Corollary

Let G be an ordered nilpotent group and let S be a subset of G of finite size $k > 3$. If $|S^2| \leq 3k - 2$, then $\langle S \rangle$ has nilpotence class at most 2.
Corollary

Let G be an ordered group and let S be a subset of G of finite size $k > 3$. If $|S^2| \leq 3k - 2$, then $\langle S \rangle$ is metabelian.

Corollary

Let G be an ordered nilpotent group and let S be a subset of G of finite size $k > 3$. If $|S^2| \leq 3k - 2$, then $\langle S \rangle$ has nilpotence class at most 2.
The structure of S if $|S^2| \leq 3|S| - 2$

Proposition

Let G be an ordered group. Let $S \subseteq G$, $S = \{x_1, x_2, x_3\}$, $x_1 < x_2 < x_3$. If $|S^2| \leq 7$ then one of the following holds:

(i) $S \cap Z(\langle S \rangle) \neq \emptyset$,
(ii) $S = \{a, a^b, b\}$, where $aa^b = a^b a$,
(iii) $\langle S \rangle = \langle a, b \rangle$, where $ab^2 = ba^2$.
The structure of S if $|S^2| \leq 3|S| - 2$

Proposition

Let G be an ordered group. Let $S \subseteq G$, $S = \{x_1, x_2, x_3\}$, $x_1 < x_2 < x_3$. If $|S^2| \leq 7$ then one of the following holds:

(i) $S \cap Z(\langle S \rangle) \neq \emptyset$,
(ii) $S = \{a, a^b, b\}$, where $aa^b = a^b a$,
(iii) $\langle S \rangle = \langle a, b \rangle$, where $ab^2 = ba^2$.

The structure of S if $|S^2| \leq 3|S| - 2$

Proposition

Let G be an ordered group. Let $S \subseteq G$, $S = \{x_1, x_2, x_3\}$, $x_1 < x_2 < x_3$. If $|S^2| \leq 7$ then one of the following holds:

(i) $S \cap Z(\langle S \rangle) \neq \emptyset$,

(ii) $S = \{a, a^b, b\}$, where $aa^b = a^b a$,

(iii) $\langle S \rangle = \langle a, b \rangle$, where $ab^2 = ba^2$.
The structure of S if $|S^2| \leq 3|S| - 2$

Proposition

Let G be an ordered group. Let $S \subseteq G$, $S = \{x_1, x_2, x_3\}$, $x_1 < x_2 < x_3$. If $|S^2| \leq 7$ then one of the following holds:

(i) $S \cap Z(\langle S \rangle) \neq \emptyset$,
(ii) $S = \{a, a^b, b\}$, where $aa^b = a^b a$,
(iii) $\langle S \rangle = \langle a, b \rangle$, where $ab^2 = ba^2$.
Let G be an ordered group and let S be a subset of G of finite size $k > 3$. Suppose

$$|S^2| \leq 3|S| - 2.$$

If $\langle S \rangle$ is abelian, then the structure of S can be explicitly described using previous results due to G. Freiman.

If $\langle S \rangle = \langle a, b \mid a^b = a^2 \rangle$, then $\langle S \rangle = B(1, 2)$.
Let G be an ordered group and let S be a subset of G of finite size $k > 3$. Suppose

$$|S^2| \leq 3|S| - 2.$$

If $\langle S \rangle$ is abelian, then the structure of S can be explicitly described using previous results due to G. Freiman.

If $\langle S \rangle = \langle a, b \mid a^b = a^2 \rangle$, then $\langle S \rangle = B(1, 2)$.
Let G be an ordered group and let S be a subset of G of finite size $k > 3$. Suppose

$$|S^2| \leq 3|S| - 2.$$

If $\langle S \rangle$ is abelian, then the structure of S can be explicitly described using previous results due to G. Freiman.

If $\langle S \rangle = \langle a, b \mid a^b = a^2 \rangle$, then $\langle S \rangle = B(1, 2)$.

Let G be a torsion-free nilpotent group of class 2 and let $S \subseteq G$ be non-abelian and of order $k \geq 4$. Then

$$|S^2| = 3k - 2$$

if and only if

$$S = \{a, ac, ac^2, \ldots, ac^i, b, bc, bc^2, \ldots, bc^j\},$$

with $1 + i + 1 + j = k$ and $ab = bac$ or $ba = abc$, $c > 1$.

Theorem (5)
Let G be a torsion-free nilpotent group of class 2 and let $S \subseteq G$ be non-abelian and of order $k \geq 4$. Then

$$|S^2| = 3k - 2$$

if and only if

$$S = \{a, ac, ac^2, \ldots, ac^i, b, bc, bc^2, \ldots, bc^j\},$$

with $1 + i + 1 + j = k$ and $ab = bac$ or $ba = abc$, $c > 1$.

```
Torsion-free nilpotent groups of class 2

Theorem (5)

Let $G$ be a torsion-free nilpotent group of class 2 and let $S \subseteq G$ be non-abelian and of order $k \geq 4$. Then

$$|S^2| = 3k - 2$$

if and only if

$$S = \{a, ac, ac^2, \ldots, ac^i, b, bc, bc^2, \ldots, bc^j\},$$

with $1 + i + 1 + j = k$ and $ab = bac$ or $ba = abc$, $c > 1$. 

Let $G$ be a **torsion-free nilpotent group of class 2** and let $S \subseteq G$ with $\langle S \rangle$ non abelian. Assume $|S| = 3$. Then $|S^2| = 7$ if and only if one of the following holds: (i) $S \cap Z(\langle S \rangle) \neq \emptyset$; (ii) $S = \{a, ac, b\}$, with $c > 1$, $ab = bac$ or $ba = abc$; in particular, $c \in Z(G)$. 
Proposition

Let $G$ be a torsion-free nilpotent group of class 2 and let $S \subseteq G$ with $\langle S \rangle$ non abelian. Assume $|S| = 3$. Then $|S^2| = 7$ if and only if one of the following holds: (i) $S \cap Z(\langle S \rangle) \neq \emptyset$; (ii) $S = \{a, ac, b\}$, with $c > 1$, $ab = bac$ or $ba = abc$; in particular, $c \in Z(G)$. 
Proposition

Let $G$ be a torsion-free nilpotent group of class 2 and let $S \subseteq G$ with $\langle S \rangle$ non abelian. Assume $|S| = 3$. Then $|S^2| = 7$ if and only if one of the following holds: (i) $S \cap Z(\langle S \rangle) \neq \emptyset$; (ii) $S = \{a, ac, b\}$, with $c > 1$, $ab = bac$ or $ba = abc$; in particular, $c \in Z(G)$. 
Proposition

Let $G$ be a torsion-free nilpotent group of class 2 and let $S \subseteq G$ with $\langle S \rangle$ non abelian. Assume $|S| = 3$. Then $|S^2| = 7$ if and only if one of the following holds: (i) $S \cap Z(\langle S \rangle) \neq \emptyset$; (ii) $S = \{a, ac, b\}$, with $c > 1$, $ab = bac$ or $ba = abc$; in particular, $c \in Z(G)$. 
We could prove the following generalization of the previous Corollaries if $k$ is big enough.

**Theorem (6)**

Let $G$ be an ordered group and let $S$ be a subset of $G$ of finite size $k \geq 8$. If

$$|S^2| \leq 3k - 1,$$

then $\langle S \rangle$ is metabelian, and it is nilpotent of class 2 if $G$ is nilpotent.
Torsion-free nilpotent groups of class 2

**Theorem (7)**

Let $G$ be an ordered nilpotent group of class 2 and let $S$ be a subset of $G$ with $\langle S \rangle$ non-abelian of order $k \geq 5$. Then $|S^2| = 3k - 1$ if and only if one of the following holds:

(i)

$S = \{a, ac, \ldots, ac^{i-1}, b, bc, \ldots, bc^{j-1}\}$,

with $ab = bac^2$ or $ba = abc^2$, $c > 1$;

(ii)

$S = \{a, ac^2, b, bc, \ldots, bc^j\}, j \geq 2$,

with $ab = bac$ or $ba = abc$, $c > 1$. 
Torsion-free nilpotent groups of class 2

**Theorem (7)**

Let $G$ be an ordered nilpotent group of class 2 and let $S$ be a subset of $G$ with $\langle S \rangle$ non-abelian of order $k \geq 5$. Then $|S^2| = 3k - 1$ if and only if one of the following holds:

(i) $S = \{a, ac, \ldots, ac^{i-1}, b, bc, \ldots, bc^{j-1}\}$, with $ab = bac^2$ or $ba = abc^2$, $c > 1$;

(ii) $S = \{a, ac^2, b, bc, \ldots, bc^j\}$, $j \geq 2$, with $ab = bac$ or $ba = abc$, $c > 1$. 
Let $G$ be an ordered nilpotent group of class 2 and let $S$ be a subset of $G$ with $\langle S \rangle$ non-abelian of order $k \geq 5$. Then $|S^2| = 3k - 1$ if and only if one of the following holds:

(i) 
$$S = \{a, ac, \cdots, ac^{i-1}, b, bc, \cdots, bc^{j-1}\},$$
with $ab = bac^2$ or $ba = abc^2$, $c > 1$;

(ii) 
$$S = \{a, ac^2, b, bc, \cdots, bc^j\}, j \geq 2,$$
with $ab = bac$ or $ba = abc$, $c > 1$. 
A general result on the structure of $\langle S \rangle$

Arguing as in Theorem [3], it is possible to prove that for any positive integer $s$, if $k$ is big enough and $S$ is a subset of finite size $k$ of an ordered group $G$ and $|S^2| \leq 3k - 2 + s$, then $\langle S \rangle$ is metabelian, and it is nilpotent of class 2 if $G$ is nilpotent. In fact we have:

**Theorem (8)**

Let $G$ be an ordered group, $s$ be any positive integer, and let $k$ be an integer such that $k \geq 2^{s+2}$. If $S$ is a subset of $G$ of finite size $k$ and such that

$$|S^2| \leq 3k - 2 + s,$$

then $\langle S \rangle$ is metabelian, and it is nilpotent of class 2 if $G$ is nilpotent.
A general result on the structure of \langle S \rangle

Arguing as in Theorem [3], it is possible to prove that for any positive integer \( s \), if \( k \) is big enough and \( S \) is a subset of finite size \( k \) of an ordered group \( G \) and \( |S^2| \leq 3k - 2 + s \), then \( \langle S \rangle \) is metabelian, and it is nilpotent of class 2 if \( G \) is nilpotent. In fact we have:

**Theorem (8)**

Let \( G \) be an ordered group, \( s \) be any positive integer, and let \( k \) be an integer such that \( k \geq 2^{s+2} \). If \( S \) is a subset of \( G \) of finite size \( k \) and such that

\[
|S^2| \leq 3k - 2 + s,
\]

then \( \langle S \rangle \) is metabelian, and it is nilpotent of class 2 if \( G \) is nilpotent.
A general result on the structure of $\langle S \rangle$

Arguing as in Theorem [3], it is possible to prove that for any positive integer $s$, if $k$ is big enough and $S$ is a subset of finite size $k$ of an ordered group $G$ and $|S^2| \leq 3k - 2 + s$, then $\langle S \rangle$ is metabelian, and it is nilpotent of class 2 if $G$ is nilpotent. In fact we have:

**Theorem (8)**

Let $G$ be an ordered group, $s$ be any positive integer, and let $k$ be an integer such that $k \geq 2^{s+2}$. If $S$ is a subset of $G$ of finite size $k$ and such that

$$|S^2| \leq 3k - 2 + s,$$

then $\langle S \rangle$ is metabelian, and it is nilpotent of class 2 if $G$ is nilpotent.
Definizione

Let $A$ be a finite subset of an abelian group $G(+) \text{ and } B$ a finite subset of an abelian group $H(+)$. A map $\varphi : A \rightarrow B$ is a Freiman isomorphism if it is bijective and from

$$a_1 + a_2 = b_1 + b_2$$

it follows

$$\varphi(a_1) + \varphi(a_2) = \varphi(b_1) + \varphi(b_2).$$

A is Freiman isomorphic to $B$ if there exists a Freiman isomorphism $\varphi : A \rightarrow B$. 

Proof of Theorems 1 and 3
Definizione

Let $A$ be a finite subset of an abelian group $G(\cdot)$ and $B$ a finite subset of an abelian group $H(\cdot)$. A map $\varphi : A \rightarrow B$ is a Freiman isomorphism if it is bijective and from

\[ a_1 + a_2 = b_1 + b_2 \]

it follows

\[ \varphi(a_1) + \varphi(a_2) = \varphi(b_1) + \varphi(b_2). \]

$A$ is Freiman isomorphic to $B$ if there exists a Freiman isomorphism $\varphi : A \rightarrow B$. 
Proof of Theorems 1 and 3

**Definizione**

Let $A$ be a finite subset of an abelian group $G(+)$. A map $\varphi : A \rightarrow B$ is a Freiman isomorphism if it is bijective and from

$$a_1 + a_2 = b_1 + b_2$$

it follows

$$\varphi(a_1) + \varphi(a_2) = \varphi(b_1) + \varphi(b_2).$$

$A$ is Freiman isomorphic to $B$ if there exists a Freiman isomorphism $\varphi : A \rightarrow B$. 
If $H(\cdot)$ and $G(\cdot)$ are finite groups, an isomorphism $\varphi : G \rightarrow H$ is a Freiman isomorphism. Let $r \geq 5$,

$A = \{0, 1, 2, r, r + 1, 2r\} \subseteq \mathbb{Z},$

$B = \{(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (0, 2)\} \subseteq \mathbb{Z} \times \mathbb{Z}$

The map $\varphi$ defined by putting:

$\varphi(0) = (0, 0), \varphi(1) = (1, 0), \varphi(2) = (2, 0),$

$\varphi(r) = (0, 1), \varphi(r + 1) = (1, 1), \varphi(2r) = (0, 2)$

is a Freiman isomorphism.
If $H(+) \text{ and } G(+) \text{ are finite groups, an isomorphism } \varphi : G \rightarrow H \text{ is a Freiman isomorphism. Let } r \geq 5,$

$$A = \{0, 1, 2, r, r + 1, 2r\} \subseteq \mathbb{Z},$$

$$B = \{(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (0, 2)\} \subseteq \mathbb{Z} \times \mathbb{Z}$$

The map $\varphi$ defined by putting:

$$\varphi(0) = (0, 0), \varphi(1) = (1, 0), \varphi(2) = (2, 0),$$

$$\varphi(r) = (0, 1), \varphi(r + 1) = (1, 1), \varphi(2r) = (0, 2)$$

is a Freiman isomorphism.
Proof of Theorem 3

Remark

If $A$ and $B$ are Freiman isomorphic, then

$$|A| = |B|$$

and

$$|A + A| = |B + B|.$$
Proof of Theorem 3

Remark

If $A$ and $B$ are Freiman isomorphic, then

$$|A| = |B|$$

and

$$|A + A| = |B + B|.$$
Proof of Theorems 1 and 3

Let $G$ be a torsion free abelian group. If $S$ is a finite subset of $G$, we write $m(G)$ the rank of the abelian group $\langle S \rangle$, i.e. the number $m$ such that $\langle S \rangle$ is isomorphic to $\mathbb{Z}^m$.

**Definizione**

The Freiman dimension of $S$, $d(S)$, is the maximum positive integer $d$ such that there exists a Freiman isomorphism between $S$ and a subset $T$ of $\mathbb{Z}^d$, not situated on an affine hyperplane (where an affine hyperplane of a $d$-dimensional linear space $L$ is shift of a $(d-1)$-dimensional subspace by a vector of $L$).
Proof of Theorems 1 and 3

Let $G$ be a torsion free abelian group. If $S$ is a finite subset of $G$, we write $m(G)$ the rank of the abelian group $\langle S \rangle$, i.e. the number $m$ such that $\langle S \rangle$ is isomorphic to $\mathbb{Z}^m$.

**Definizione**

The Freiman dimension of $S$, $d(S)$, is the maximum positive integer $d$ such that there exists a Freiman isomorphism between $S$ and a subset $T$ of $\mathbb{Z}^d$, not situated on an affine hyperplane (where an affine hyperplane of a $d$-dimensional linear space $L$ is shift of a $(d-1)$-dimensional subspace by a vector of $L$).
Let $G$ be a torsion free abelian group. If $S$ is a finite subset of $G$, we write $m(G)$ the rank of the abelian group $\langle S \rangle$, i.e. the number $m$ such that $\langle S \rangle$ is isomorphic to $\mathbb{Z}^m$.

**Definizione**

*The Freiman dimension of $S$, $d(S)$, is the maximum positive integer $d$ such that there exists a Freiman isomorphism between $S$ and a subset $T$ of $\mathbb{Z}^d$, not situated on an affine hyperplane (where an affine hyperplane of a $d$-dimensional linear space $L$ is shift of a $(d-1)$-dimensional subspace by a vector of $L$).*
Let $G$ be a torsion free abelian group. If $S$ is a finite subset of $G$, we write $m(G)$ the rank of the abelian group $\langle S \rangle$, i.e. the number $m$ such that $\langle S \rangle$ is isomorphic to $\mathbb{Z}^m$.

**Definizione**

The Freiman dimension of $S$, $d(S)$, is the maximum positive integer $d$ such that there exists a Freiman isomorphism between $S$ and a subset $T$ of $\mathbb{Z}^d$, not situated on an affine hyperplane (where an affine hyperplane of a $d$-dimensional linear space $L$ is shift of a $(d-1)$-dimensional subspace by a vector of $L$).
Proof of Theorems 1 and 3

It is possible to prove that:

\[ m(S) \leq d(S) + 1. \]

Moreover Freiman proved that:

**Theorem**

If \( S \) is a finite subset of an abelian group, \( d = d(S) \) the Freiman dimension of \( S \), then

\[ |S^2| \geq (d + 1)|S| - d(d + 1)/2. \]
Proof of Theorems 1 and 3

It is possible to prove that:

\[ m(S) \leq d(S) + 1. \]

Moreover Freiman proved that:

**Theorem**

If \( S \) is a finite subset of an abelian group, \( d = d(S) \) the Freiman dimension of \( S \), then

\[ |S^2| \geq (d + 1)|S| - d(d + 1)/2. \]
Proof of Theorems 1 and 3

It is possible to prove that:

\[ m(S) \leq d(S) + 1. \]

Moreover Freiman proved that:

**Theorem**

If \( S \) is a finite subset of an abelian group, \( d = d(S) \) the Freiman dimension of \( S \), then

\[ |S^2| \geq (d + 1)|S| - d(d + 1)/2. \]
Proof of Theorems 1 and 3

Assume $|S| = k$, $\langle S \rangle$ abelian, $|S^2| \leq 3k - 4$. Let $d = d(S)$ be the Freiman dimension of $S$. Then we have:

$$3|S| - 4 \geq |S^2| \geq (d + 1)|S| - d(d + 1)/2,$$

or equivalently

$$d(d + 1)/2 - 4 \geq (d - 2)|S|.$$
Assume $|S| = k$, $\langle S \rangle$ abelian, $|S^2| \leq 3k - 4$. Let $d = d(S)$ be the Freiman dimension of $S$. Then we have:

$$3|S| - 4 \geq |S^2| \geq (d + 1)|S| - d(d + 1)/2,$$

or equivalently

$$d(d + 1)/2 - 4 \geq (d - 2)|S|.$$
Proof of Theorems 1 and 3

Assume $|S| = k$, $\langle S \rangle$ abelian, $|S^2| \leq 3k - 4$.
Let $d = d(S)$ be the Freiman dimension of $S$.
Then we have:

$$3|S| - 4 \geq |S^2| \geq (d + 1)|S| - d(d + 1)/2,$$

or equivalently

$$d(d + 1)/2 - 4 \geq (d - 2)|S|.$$
Proof of Theorems 1 and 3

Assume $|S| = k$, $\langle S \rangle$ abelian, $|S^2| \leq 3k - 4$.
Let $d = d(S)$ be the Freiman dimension of $S$.
Then we have:

$$3|S| - 4 \geq |S^2| \geq (d + 1)|S| - d(d + 1)/2,$$

or equivalently

$$d(d + 1)/2 - 4 \geq (d - 2)|S|.$$
Proof of Theorems 1 and 3

If \( d = 2 \), we obtain the contradiction

\[-1 \geq 0.\]

If \( d \geq 3 \), using \( |S| \geq d + 1 \) we obtain

\[d^2 + d - 8 \geq (d - 2)(d + 1),\]

and

\[d^2 - 3d + 4 \leq 0,\]

a contradiction. Therefore \( d = 1 \), then by Freiman Theorem (B), \( S \) is Freiman isomorphic to a set contained in an arithmetic progression, then \( S \) is contained in a geometric progression.
Proof of Theorems 1 and 3

If $d = 2$, we obtain the contradiction

$$-1 \geq 0.$$ 

If $d \geq 3$, using $|S| \geq d + 1$ we obtain

$$d^2 + d - 8 \geq (d - 2)(d + 1),$$

and

$$d^2 - 3d + 4 \leq 0,$$

a contradiction. Therefore $d = 1$, then by Freiman Theorem (B), $S$ is Freiman isomorphic to a set contained in an arithmetic progression, then $S$ is contained in a geometric progression.
Proof of Theorems 1 and 3

If $d = 2$, we obtain the contradiction

$$-1 \geq 0.$$ 

If $d \geq 3$, using $|S| \geq d + 1$ we obtain

$$d^2 + d - 8 \geq (d - 2)(d + 1),$$

and

$$d^2 - 3d + 4 \leq 0,$$

a contradiction. Therefore $d = 1$, then by Freiman Theorem (B), $S$ is Freiman isomorphic to a set contained in an arithmetic progression, then $S$ is contained in a geometric progression.
Proof of Theorems 1 and 3

If $d = 2$, we obtain the contradiction

$$-1 \geq 0.$$  

If $d \geq 3$, using $|S| \geq d + 1$ we obtain

$$d^2 + d - 8 \geq (d - 2)(d + 1),$$

and

$$d^2 - 3d + 4 \leq 0,$$

a contradiction. Therefore $d = 1$, then by Freiman Theorem (B), $S$ is Freiman isomorphic to a set contained in an arithmetic progression, then $S$ is contained in a geometric progression.
Proof of Theorems 1 and 3

If $d = 2$, we obtain the contradiction

$$-1 \geq 0.$$  

If $d \geq 3$, using $|S| \geq d + 1$ we obtain

$$d^2 + d - 8 \geq (d - 2)(d + 1),$$

and

$$d^2 - 3d + 4 \leq 0,$$

a contradiction. Therefore $d = 1$, then by Freiman Theorem (B), $S$ is Freiman isomorphic to a set contained in an arithmetic progression, then $S$ is contained in a geometric progression.
Proof of Theorems 1 and 3

If

\[ |S^2| \leq 3k - 3, \]

arguing similarly, we get that the only possibilities are

\[ d = 1 \]

or

\[ d = 2, \]

and Theorems (B) and (C) apply.
Let \((G, \leq)\) be an ordered group, \(S = \{x_1, x_2, \ldots, x_{k-1}, x_k\}\) a subset of \(G\), \(|S| = k\), \(|S^2| \leq 3k - v\), \(v \in \{1, 2, 3, 4\}\).

Suppose \(x_1 < x_2 < \cdots < x_{k-1} < x_k\).

Write

\[ T = \{x_1, \cdots, x_{k-1}\}. \]

We show that either

\[ |T^2| \leq 3(k - 1) - v, \text{ or } \langle T \rangle \text{ is abelian.} \]
Let \((G, \leq)\) be an ordered group, \(S = \{x_1, x_2, \ldots, x_{k-1}, x_k\}\) a subset of \(G\), \(|S| = k\), \(|S^2| \leq 3k - v\), \(v \in \{1, 2, 3, 4\}\). Suppose \(x_1 < x_2 < \cdots < x_{k-1} < x_k\). Write

\[ T = \{x_1, \ldots, x_{k-1}\}. \]

We show that either

\[ |T^2| \leq 3(k - 1) - v, \text{ or } \langle T \rangle \text{ is abelian}. \]
Proofs of Theorems concerning the structure of $\langle S \rangle$

Let $(G, \leq)$ be an ordered group, $S = \{x_1, x_2, \ldots, x_{k-1}, x_k\}$ a subset of $G$, $|S| = k$, $|S^2| \leq 3k - \nu$, $\nu \in \{1, 2, 3, 4\}$.
Suppose $x_1 < x_2 < \cdots < x_{k-1} < x_k$.
Write

$$T = \{x_1, \ldots, x_{k-1}\}.$$

We show that either

$$|T^2| \leq 3(k - 1) - \nu, \text{ or } \langle T \rangle \text{ is abelian.}$$
Theorem (2)

Let \((G, \leq)\) be an ordered group and let \(S = \{x_1, x_2, \cdots, x_k\}\) be a finite subset of \(G\) of size \(k \geq 2\), with \(x_1 < x_2 \cdots < x_k\). Assume that

\[|S^2| \leq 3k - 3.\]

Then \(<S>\) is abelian.
Proof of Theorem 2

Suppose that $S = \{x_1, x_2, \cdots, x_k\}$ is a subset of an ordered group, $x_1 < x_2 < \cdots < x_k$.
Assume $|S^2| \leq 3|S| - 3$.
We want to show that $\langle S \rangle$ is abelian.
If $k = 2$ or $k = 3$, we prove directly the result.
Suppose $k > 3$ and argue by induction on $k$. Write $T = \{x_1, \cdots, x_{k-1}\}$.
Then either $\langle T \rangle$ is abelian or $|T^2| = 3|T| - 3$, by the previous remarks.
By induction we can assume that $\langle T \rangle$ is abelian.
If $x_i x_k \in T^2$, for some $i < k$, then $x_k \in \langle T \rangle$ and $\langle S \rangle \subseteq \langle T \rangle$ is abelian,
as required. Hence we can assume that $x_1 x_k, \cdots, x_{k-1} x_k, x_k^2 \notin T^2$, then
$|T^2| \leq |S^2| - k = 3k - 3 - k = 2(k - 1) - 1$. Then
\[ T = \{a, ac, \cdots, ac^{k-2}\} \]
is a geometric progression with $[a, c] = 1$. 
Proof of Theorem 2

Suppose that \( S = \{x_1, x_2, \cdots, x_k\} \) is a subset of an ordered group, \( x_1 < x_2 < \cdots < x_k \).
Assume \( |S^2| \leq 3|S| - 3 \).
We want to show that \( \langle S \rangle \) is abelian.
If \( k = 2 \) or \( k = 3 \), we prove directly the result.
Suppose \( k > 3 \) and argue by induction on \( k \). Write \( T = \{x_1, \cdots, x_{k-1}\} \).
Then either \( \langle T \rangle \) is abelian or \( |T^2| = 3|T| - 3 \), by the previous remarks.
By induction we can assume that \( \langle T \rangle \) is abelian.
If \( x_i x_k \in T^2 \), for some \( i < k \), then \( x_k \in \langle T \rangle \) and \( \langle S \rangle \subseteq \langle T \rangle \) is abelian, as required. Hence we can assume that \( x_1 x_k, \cdots, x_{k-1} x_k, x_k^2 \notin T^2 \), then \( |T^2| \leq |S^2| - k = 3k - 3 - k = 2(k - 1) - 1 \). Then
\[
T = \{a, ac, \cdots, ac^{k-2}\}
\]
is a geometric progression with \([a, c] = 1\).
Proof of Theorem 2

Suppose that $S = \{x_1, x_2, \cdots, x_k\}$ is a subset of an ordered group, $x_1 < x_2 < \cdots < x_k$.
Assume $|S^2| \leq 3|S| - 3$.
We want to show that $\langle S \rangle$ is abelian.

If $k = 2$ or $k = 3$, we prove directly the result.
Suppose $k > 3$ and argue by induction on $k$. Write $T = \{x_1, \cdots, x_{k-1}\}$.
Then either $\langle T \rangle$ is abelian or $|T^2| = 3|T| - 3$, by the previous remarks.

By induction we can assume that $\langle T \rangle$ is abelian.

If $x_i x_k \in T^2$, for some $i < k$, then $x_k \in \langle T \rangle$ and $\langle S \rangle \subseteq \langle T \rangle$ is abelian, as required. Hence we can assume that $x_1 x_k, \cdots, x_{k-1} x_k, x_k^2 \notin T^2$, then $|T^2| \leq |S^2| - k = 3k - 3 - k = 2(k - 1) - 1$. Then

$$T = \{a, ac, \cdots, ac^{k-2}\}$$

is a geometric progression with $[a, c] = 1$. 
Proof of Theorem 2

Suppose that $S = \{x_1, x_2, \cdots, x_k\}$ is a subset of an ordered group, $x_1 < x_2 < \cdots < x_k$.
Assume $|S^2| \leq 3|S| - 3$.
We want to show that $\langle S \rangle$ is abelian.
If $k = 2$ or $k = 3$, we prove directly the result.
Suppose $k > 3$ and argue by induction on $k$. Write $T = \{x_1, \cdots, x_{k-1}\}$.
Then either $\langle T \rangle$ is abelian or $|T^2| = 3|T| - 3$, by the previous remarks.
By induction we can assume that $\langle T \rangle$ is abelian.
If $x_i x_k \in T^2$, for some $i < k$, then $x_k \in \langle T \rangle$ and $\langle S \rangle \subseteq \langle T \rangle$ is abelian, as required. Hence we can assume that $x_1 x_k, \cdots, x_{k-1} x_k, x_k^2 \notin T^2$, then $|T^2| \leq |S^2| - k = 3k - 3 - k = 2(k - 1) - 1$. Then

$$T = \{a, ac, \cdots, ac^{k-2}\}$$

is a geometric progression with $[a, c] = 1$. 
Proof of Theorem 2

Suppose that $S = \{x_1, x_2, \cdots, x_k\}$ is a subset of an ordered group, $x_1 < x_2 < \cdots < x_k$.

Assume $|S^2| \leq 3|S| - 3$.

We want to show that $\langle S \rangle$ is abelian.

If $k = 2$ or $k = 3$, we prove directly the result.

Suppose $k > 3$ and argue by induction on $k$. Write $T = \{x_1, \cdots, x_{k-1}\}$.

Then either $\langle T \rangle$ is abelian or $|T^2| = 3|T| - 3$, by the previous remarks.

By induction we can assume that $\langle T \rangle$ is abelian.

If $x_i x_k \in T^2$, for some $i < k$, then $x_k \in \langle T \rangle$ and $\langle S \rangle \subseteq \langle T \rangle$ is abelian, as required. Hence we can assume that $x_1 x_k, \cdots, x_{k-1} x_k, x_k^2 \notin T^2$, then $|T^2| \leq |S^2| - k = 3k - 3 - k = 2(k - 1) - 1$. Then

$$T = \{a, ac, \cdots, ac^{k-2}\}$$

is a geometric progression with $[a, c] = 1$. 
Proof of Theorem 2

Suppose that $S = \{x_1, x_2, \cdots, x_k\}$ is a subset of an ordered group, $x_1 < x_2 < \cdots < x_k$.
Assume $|S^2| \leq 3|S| - 3$.
We want to show that $\langle S \rangle$ is abelian.
If $k = 2$ or $k = 3$, we prove directly the result.
Suppose $k > 3$ and argue by induction on $k$. Write $T = \{x_1, \cdots, x_{k-1}\}$.
Then either $\langle T \rangle$ is abelian or $|T^2| = 3|T| - 3$, by the previous remarks.
By induction we can assume that $\langle T \rangle$ is abelian.
If $x_ix_k \in T^2$, for some $i < k$, then $x_k \in \langle T \rangle$ and $\langle S \rangle \subseteq \langle T \rangle$ is abelian, as required. Hence we can assume that $x_1x_k, \cdots, x_{k-1}x_k, x_k^2 \notin T^2$, then $|T^2| \leq |S^2| - k = 3k - 3 - k = 2(k - 1) - 1$. Then

$$T = \{a, ac, \cdots, ac^{k-2}\}$$

is a geometric progression with $[a, c] = 1$. 


Proof of Theorem 2

Suppose that \( S = \{x_1, x_2, \cdots, x_k\} \) is a subset of an ordered group, \( x_1 < x_2 < \cdots < x_k \).
Assume \( |S^2| \leq 3|S| - 3 \).
We want to show that \( \langle S \rangle \) is abelian.
If \( k = 2 \) or \( k = 3 \), we prove directly the result.
Suppose \( k > 3 \) and argue by induction on \( k \). Write \( T = \{x_1, \cdots, x_{k-1}\} \).
Then either \( \langle T \rangle \) is abelian or \( |T^2| = 3|T| - 3 \), by the previous remarks.
By induction we can assume that \( \langle T \rangle \) is abelian.
If \( x_i x_k \in T^2 \), for some \( i < k \), then \( x_k \in \langle T \rangle \) and \( \langle S \rangle \subseteq \langle T \rangle \) is abelian, as required. Hence we can assume that \( x_1 x_k, \cdots, x_{k-1} x_k, x_k^2 \notin T^2 \), then \( |T^2| \leq |S^2| - k = 3k - 3 - k = 2(k - 1) - 1 \). Then

\[
T = \{a, ac, \cdots, ac^{k-2}\}
\]

is a geometric progression with \([a, c] = 1\).
Proof of Theorem 2

Suppose that $S = \{x_1, x_2, \cdots, x_k\}$ is a subset of an ordered group, $x_1 < x_2 < \cdots < x_k$. 

Assume $|S^2| \leq 3|S| - 3$.

We want to show that $\langle S \rangle$ is abelian.

If $k = 2$ or $k = 3$, we prove directly the result.

Suppose $k > 3$ and argue by induction on $k$. Write $T = \{x_1, \cdots, x_{k-1}\}$.

Then either $\langle T \rangle$ is abelian or $|T^2| = 3|T| - 3$, by the previous remarks.

By induction we can assume that $\langle T \rangle$ is abelian.

If $x_i x_k \in T^2$, for some $i < k$, then $x_k \in \langle T \rangle$ and $\langle S \rangle \subseteq \langle T \rangle$ is abelian, as required. Hence we can assume that $x_1 x_k, \cdots, x_{k-1} x_k, x_k^2 \notin T^2$, then $|T^2| \leq |S^2| - k = 3k - 3 - k = 2(k - 1) - 1$. Then

$$T = \{a, ac, \cdots, ac^{k-2}\}$$

is a geometric progression with $[a, c] = 1$. 

Proof of Theorem 2

Suppose that $S = \{x_1, x_2, \cdots, x_k\}$ is a subset of an ordered group, $x_1 < x_2 < \cdots < x_k$. Assume $|S| \leq 3|S| - 3$. We want to show that $\langle S \rangle$ is abelian.

If $k = 2$ or $k = 3$, we prove directly the result. Suppose $k > 3$ and argue by induction on $k$. Write $T = \{x_1, \cdots, x_{k-1}\}$. Then either $\langle T \rangle$ is abelian or $|T^2| = 3|T| - 3$, by the previous remarks. By induction we can assume that $\langle T \rangle$ is abelian.

If $x_i x_k \in T^2$, for some $i < k$, then $x_k \in \langle T \rangle$ and $\langle S \rangle \subseteq \langle T \rangle$ is abelian, as required. Hence we can assume that $x_1 x_k, \cdots, x_{k-1} x_k, x_k^2 \notin T^2$, then $|T^2| \leq |S^2| - k = 3k - 3 - k = 2(k - 1) - 1$. Then

$$T = \{a, ac, \cdots, ac^{k-2}\}$$

is a geometric progression with $[a, c] = 1$. 
Suppose that \( S = \{x_1, x_2, \cdots, x_k\} \) is a subset of an ordered group, \( x_1 < x_2 < \cdots < x_k \).

Assume \( |S^2| \leq 3|S| - 3 \).

We want to show that \( \langle S \rangle \) is abelian.

If \( k = 2 \) or \( k = 3 \), we prove directly the result.

Suppose \( k > 3 \) and argue by induction on \( k \). Write \( T = \{x_1, \cdots, x_{k-1}\} \).

Then either \( \langle T \rangle \) is abelian or \( |T^2| = 3|T| - 3 \), by the previous remarks.

By induction we can assume that \( \langle T \rangle \) is abelian.

If \( x_i x_k \in T^2 \), for some \( i < k \), then \( x_k \in \langle T \rangle \) and \( \langle S \rangle \subseteq \langle T \rangle \) is abelian, as required. Hence we can assume that \( x_1 x_k, \cdots, x_{k-1} x_k, x_k^2 \notin T^2 \), then

\[
|T^2| \leq |S^2| - k = 3k - 3 - k = 2(k - 1) - 1.
\]

Then

\[
T = \{a, ac, \cdots, ac^{k-2}\}
\]

is a geometric progression with \([a, c] = 1\).
Write

\[ V = \{x_2, \cdots, x_k\}. \]

Considering the order opposite to \(<\) and arguing on \(V\) as we did on \(T\) we get that \(V\) is abelian.

Moreover \(|V| \leq 3\), since \(k > 3\). Then there exist \(i \neq j\) such that

\[ [x_k, ac^i] = [x_k, ac^j] = 1. \]

Then \([x_k, c^{i-j}] = 1\) and

\[ [x_k, c] = 1. \]

since we are in an ordered group.

From \([x_k, ac^j] = 1\), we get that also

\[ [x_k, a] = 1. \]

Thus \(x_k \in C_G(T)\) and \(\langle S \rangle\) is abelian, as required.
Problem

Let \((G, \leq)\) be an ordered group, \(S\) a finite subset of \(G\) of order \(k > 3\). What is the structure of \(S\), if

\[|S^2| \leq 3k - 2.\]
Theorem (4)

Let $G$ be an ordered group and let $S$ be a subset of $G$ of finite size $k > 3$. If

$$|S^2| \leq 3k - 2,$$

then one of the following holds:

1. $\langle S \rangle$ is abelian;
2. $\langle S \rangle = \langle a, b \mid [a, b] = c, [c, a] = [c, b] = 1 \rangle$;
3. $\langle S \rangle = \langle a, b \mid [a, b] = c, [c, a] = 1, c^b = c^2 \rangle$;
4. $\langle S \rangle = \langle a, b \mid [a, b] = c, [c, a] = 1, (c^2)^b = c \rangle$;
5. $\langle S \rangle = \langle a, b \mid a^b = a^2 \rangle$;
6. $\langle S \rangle = \langle a, b \mid ba^2 = ab^2, a^2ba^{-2} = bab^{-1} \rangle$. 
Problems

Problem

Let \((G, \leq)\) be an ordered group, \(S\) a finite subset of \(G\) of order \(k > 3\). What is the structure of \(S\), if

\[ |S^2| \leq 3k - 2? \]

Problem

What is it known about the group

\[ G = \langle a, b \mid ba^2 = ab^2, a^2ba^{-2} = bab^{-1} \rangle? \]
Let \((G, \leq)\) be an ordered group, \(S\) a finite subset of \(G\) of order \(k > 3\). What is the structure of \(S\), if 

\[ |S^2| \leq 3k - 2 \]

What is it known about the group

\[ G = \langle a, b \mid ba^2 = ab^2, a^2ba^{-2} = bab^{-1} \rangle \]
Problem

Let $S$ be a finite subset of an ordered group. What is the maximal upper bound on $|S^2|$ which implies that the subgroup $\langle S \rangle$ is soluble of fixed length $s$?

We have solved the problem if $s = 1$. If $|S^2| \leq 3|S| - 3$ the group $\langle S \rangle$ is abelian and there exists an ordered group with a subset $S$ of order $k$ (for any $k$) such that $|S^2| = 3k - 2$ and $\langle S \rangle$ non-abelian.

Problem

Let $S$ be a finite subset of an ordered group. What is the maximal upper bound on $|S^2|$ which implies that the subgroup $\langle S \rangle$ is soluble?
Problems

Problem

Let $S$ be a finite subset of an ordered group. What is the maximal upper bound on $|S^2|$ which implies that the subgroup $\langle S \rangle$ is soluble of fixed length $s$?

We have solved the problem if $s = 1$. If $|S^2| \leq 3|S| - 3$ the group $\langle S \rangle$ is abelian and there exists an ordered group with a subset $S$ of order $k$ (for any $k$) such that $|S^2| = 3k - 2$ and $\langle S \rangle$ non-abelian.

Problem

Let $S$ be a finite subset of an ordered group. What is the maximal upper bound on $|S^2|$ which implies that the subgroup $\langle S \rangle$ is soluble?
Let $S$ be a finite subset of an ordered group. What is the maximal upper bound on $|S^2|$ which implies that the subgroup $\langle S \rangle$ is soluble of fixed length $s$?

We have solved the problem if $s = 1$. If $|S^2| \leq 3|S| - 3$ the group $\langle S \rangle$ is abelian and there exists an ordered group with a subset $S$ of order $k$ (for any $k$) such that $|S^2| = 3k - 2$ and $\langle S \rangle$ non-abelian.
Problems

Problem

Let $S$ be a finite subset of an ordered group. What is the maximal upper bound on $|S^2|$ which implies that the subgroup $\langle S \rangle$ is soluble of fixed length $s$?

We have solved the problem if $s = 1$. If $|S^2| \leq 3|S| - 3$ the group $\langle S \rangle$ is abelian and there exists an ordered group with a subset $S$ of order $k$ (for any $k$) such that $|S^2| = 3k - 2$ and $\langle S \rangle$ non-abelian.

Problem

Let $S$ be a finite subset of an ordered group. What is the maximal upper bound on $|S^2|$ which implies that the subgroup $\langle S \rangle$ is soluble?
Problem

Let $S$ be a finite subset of an ordered group. What is the maximal upper bound on $|S^2|$ which implies that the subgroup $\langle S \rangle$ is soluble of fixed length $s$?

We have solved the problem if $s = 1$. If $|S^2| \leq 3|S| - 3$ the group $\langle S \rangle$ is abelian and there exists an ordered group with a subset $S$ of order $k$ (for any $k$) such that $|S^2| = 3k - 2$ and $\langle S \rangle$ non-abelian.

Problem

Let $S$ be a finite subset of an ordered group. What is the maximal upper bound on $|S^2|$ which implies that the subgroup $\langle S \rangle$ is soluble?
Thank you for the attention!


G.A. Freiman, M. Herzog, P. Longobardi, M. Maj and Y.V. Stanchescu, Small doubling in ordered nilpotent groups of class 2, under preparation.


M. I. Kargapolov, Completely orderable groups, *Algebra i Logica (2)* 1 (1962), 16-21.


Y. V. Stanchescu, On the simplest inverse problem for sums of sets in several dimensions, *Combinatorica* 18 (1998), 139-149.
