Dersler // Matematik Bölümü // Mimar Sinan Güzel Sanatlar Üniversitesi

MAT 383

Özel Fonksiyonlar I

3 Saat/Hafta, Teori, 3 Kredi, 5 AKTS
Amaç/İçerik:
Fourier serileri, Çift ve tek fonksiyonlar için Fourier serileri (Kosinüs ve Sinüs Serileri), Kompleks Fourier serileri. Özdeğer ve Özfonksiyonlar, Sturm-Liouville sistemleri, Değişkenlerine ayırma metodu, Titreşen tel problemi, Isı iletimi Problemi.
Ön Koşul:
Yok
Değerlendirme Yöntemleri:
1 Ara sınav, 1 Yarıyıl sonu sınavı
Önerilen Kaynak Listesi:
Tyn Myint-u, Partial Differential Equations of Mathematical Physics W. E.Boyce, R. C.Diprima, Elementary Differential Equations and Boundary Value Problems N. H.Asmar, Partial Differential Equations with Fourier Series and Boundary Value Problems Shepley L.Ross, Differential Equations Richard Haberman, Elementary Applied Partial Differential Equations.

Special Functions I

3 hrs/week, Theory , 3 credits, ECTS 5
Objective:
Fourier Series, Cosine and Sine Series,Complex Fourier Series, Change of Interval, Sturm-Liouville Systems, Eigenvalues and Eigenfunctions, Eigen Function Expansions, Completeness and Parseval's Equality, Method of Separation of variables. The Vibrating String Problem, The Heat Conduction Problem.
Prerequisite:
None
Assessment Methods:
1 Midterm, 1 Final exam
Recommended text:
Tyn Myint-u, Partial Differential Equations of Mathematical Physics W. E.Boyce, R. C.Diprima, Elementary Differential Equations and Boundary Value Problems N. H.Asmar, Partial Differential Equations with Fourier Series and Boundary Value Problems Shepley L.Ross, Differential Equations Richard Haberman, Elementary Applied Partial Differential Equations.

Son değişiklik: Wednesday, 25 January 2012, 13:29:29 EET