Strongly Rayleigh measures and the Kadison-Singer Problem

Mohan Ravichandran, MSGSU, Istanbul

Koc University, Istanbul

October 18, 2016

Table of contents

- Negative dependance
 - Attempts and examples
 - Geometric approach to Negative dependance
 - Strongly Rayleigh measures
- 2 The Restricted Invertibilty principle and Kadison-Singer
 - Well conditioned co-ordinate restrictions
 - Anderson's paving problem
 - Interlacing
 - Combinatorics
 - The univariate barrier method
 - The multivariate barrier method
- Questions: Analytic Borcea-Branden + Lieb-Sokal + Immanantal polynomials
 - Root shift estimates
 - Analytic Lieb-Sokal
 - Immanantal polynomials

Main actors in story

Richard Kadison

Charles Akemann

Nik Weaver

Julius Borcea

Robin Pemantle

Isadore Singer

Jean Bourgain

Adam Marcus Daniel Spielman Nikhil Srivastava

Petter Branden

Thomas Liggett

Shayan Oveis-Gharan

Nima Anari

Joel Anderson

Lior Tzafriri

Pete Casazza Janet Tremain

In this talk we only work with binary ({0,1} valued) random variables. $\mu \in \mathcal{P}(2^{[n]})$, i.e PM on subsets of $[n] = \{1, \cdots, n\}$.

Positive dependance well understood.

 $\begin{array}{ll} \textit{PLC}(\ + \ \text{lattice condition}) & \mu(S)\mu(T) \leq \mu(S \cup T)\mu(S \cap T), & \forall S, T \subset [n]. \\ \textit{PA}(\text{positive association}) & \mathbb{E}(f)\mathbb{E}(g) \leq \mathbb{E}(fg), & \forall f,g: 2^{[n]} \to \mathbb{R},\uparrow. \end{array}$

FKG(Fortuin-Kasteleyn-Ginibre) theorem, $1971 : PLC \implies PA$, local-global.

2 Negative dependance: Analogous notions for repelling random variables :

$$\begin{split} & \textit{NLC}(\ -\ \text{lattice condition}) \quad \mu(S)\mu(T) \geq \mu(S \cup T)\mu(S \cap T), \quad \forall S, T \subset [n]. \\ & \textit{NA}(\text{negative association}) \qquad \mathbb{E}(f)\mathbb{E}(g) \leq \mathbb{E}(fg), \qquad \forall f, g: 2^{[n]} \to \mathbb{R}, \uparrow \\ & \quad supp(f) \cap supp(g) = \emptyset. \end{split}$$

However, $NLC \implies NA$

Popularized by Robin Pemantle (2000 - ...)

Given $\mu \in \mathcal{P}_n := \mathcal{P}(2^{[n]})$, we consider the multi-affine (generating) polynomial (of μ),

$$P_{\mu} = \sum_{S \subset [n]} \mu(S) z^S.$$

 X_1, \dots, X_n : co-ordinate random variables, $X_i(S) = 1$ if $i \in S$, else 0.

() $\mu \in \mathcal{P}_n$ is pairwise negative correlated (p-NC) if

 $\mathbb{E}(X_i)\mathbb{E}(X_j) \geq \mathbb{E}(X_iX_j), \ i \neq j \in [n] \Longleftrightarrow \partial_i P_{\mu}(1)\partial_j P_{\mu}(1) \geq \partial_{ij}P_{\mu}(1).$

2 $\mu \in \mathcal{P}_n$ satisfies the strong hereditary negative lattice condition (h-NLC+) if,

$$\mu(S)\mu(T) \ge \mu(S \cup T)\mu(S \cap T), \quad \forall S, T \subset [n].$$

and the same holds for

- **9** Projections : Projection onto 2^X where $X \subset [n]$, $\tilde{\mu}(S) \sim \sum_{T=S \cup X^c} \mu(T)$ for every $X \subset S$.
- **2** Application of external fields : Given $(a_1, \dots, a_n) \in \mathbb{R}^n_+$, $\overline{\mu}(S) \sim \mu(S) \prod_{i \in S} a_i$.

● µ ∈ P_n is strongly conditionally negatively associated (CNA+) if it is conditionally negatively associated and the same holds upon applying projections and external fields.

1 Determinantal measures: $\mu \in \mathcal{P}_n \mid \exists PSD \ A \in M_n(\mathbb{R})$ such that,

$$\mu(\{T \subset [n] | S \subset T\}) = \sum_{S \subset T} \mu(T) = \det[A(S)], \qquad \forall S \subset [n].$$

(Lyons, 2003) : μ determinantal measure in \mathcal{P}_n . If the associated PSD matrix is a contraction, then it is CNA+.

Symmetric exclusion processes Take n points on {0,1}^k. These points jump to neighbours with fixed probabilities but jumps to occupied spots are forbidden.

 Goal : Come up with a notion of negative dependance that is preserved under these transitions.

None of p-NC, h-NLC+ or CNA+ are.

Real Stable polynomials

Polynomial $p(z_1, \dots, p_m)$ called *stable* if

 $p(z_1, \cdots, z_n) \neq 0, \quad \forall (z_1, \cdots, z_n) \mid \operatorname{Im}(z_k) > 0 \ \forall k \in [m].$

Real Stable: Stable + real coefficients.

- Univariate real stability = Real rootedness.
- **2** $p = det[A + z_1B_1 + \cdots + z_nB_n]$, where A is symmetric and the B_i are PSD.
- 8 Real stability preservers,

 - **2** (Julius Borcea, Petter Branden, 2006) Lieb-Sokal lemma: $p \rightarrow q(\partial_1, \dots, \partial_n)p$.
 - $(p(z_1, \cdots, z_n) \to p(t, z_1, \cdots, z_n) \text{ for } t \in \mathbb{R}.$
- Convexity: (Adam Marcus, Daniel Spielman, Nikhil Srivastava 2013, Terence Tao 2013, Alexander Scott, Alan Sokal, 2010) $a \in \mathbb{R}$ called above the roots of p or $a \in Ab_p$ if $p(a + z) > 0 \quad \forall z \in \mathbb{R}_+^n$. Then,

Complete monotonicity
$$(-1)^k \partial_j^k \left(\frac{\partial_i p}{p}\right)(a) \ge 0 \quad \forall a \in Ab_p, \ i, j \in [n], \ k \ge 0.$$

 William Helton and Victor Vinnikov 2005 : Bivariate real stable polynomials are determinantal.

Strongly Rayleigh measures

Definition (Julius Borcea, Petter Branden, Thomas Liggett 2009)

 $\mu \in P_n$ is called Strongly Rayleigh if $P_{\mu} := \sum_{S \subset [n]} \mu(S) z^S$ is real stable.

Product measures, Determinantal measures, uniform spanning tree measures are *SR*. Preserved under symmetric exclusion processes.

Implies p-NC, h-NLC+ and CNA+.

X random vector taking values in \mathbb{Z}_{+}^{n} . Define,

$$P_X = \sum \mathbb{P}(X = a)z^a.$$

M(X) : Maximum degree of the variables z_i .

Theorem (Multivariate CLT, Ghosh, Pemantle, Liggett, 2016)

 X_n sequence of random vectors with sequence s_n such that there is a matrix A satisfying,

$$\frac{Cov(X_n)}{s_n^2} \to A, \qquad \frac{M(X_n)^{1/3}}{s_n} \to 0.$$

Then,

$$\frac{X-\mathbb{E}(X)}{s_n}\to N(0,A).$$

Bourgain-Tzafriri's RIP

- $T : \mathbb{R}^m \to \mathbb{R}^n$ linear map.
- $s_1(T) \geq \cdots \geq s_m(T)$ singular values of T, i.e eigenvalues of $(T^*T)^{1/2}$.

Question : Find large subspace on which T is well invertible.

srank(T) =
$$\frac{||T||_2^2}{||T||^2} = \frac{\operatorname{Trace}(T^*T)}{||T||^2} = \frac{\sum s_k(T)^2}{s_1(T)^2}.$$

Remark (Singular vector basis)

 $\{v_1, \cdots, v_m\}$ basis of singular vectors for T, i.e eigenbasis for T^*T . $V = \text{span}\{v_1, \cdots, v_k\}$, where $k = c \operatorname{srank}(T)$ for some c < 1. Then,

$$\operatorname{smin} T_{|V} \geq \sqrt{(1-c)} \sqrt{rac{\operatorname{srank}(T)}{m}}.$$

Similar statement holds for any basis! One version,

Theorem (The restricted invertibility principle, B-T, Spielman-Srivastava) $\{v_1, \dots, v_m\}$ orthonormal basis. Then, for any c < 1, there exists $\sigma \subset [m]$ of size $k = c \operatorname{srank}(T)$, 1 $(\sqrt{\operatorname{srank}(T)})$

$$\operatorname{smin} \mathcal{T}_{|P_{\sigma}\mathbb{R}^m} \geq \frac{1}{5}\sqrt{(1-c)} \sqrt{\frac{\operatorname{srank}(T)}{m}}$$

Theorem (R, 2016)

Let $T : \mathbb{R}^m \to \mathbb{R}^n$ be a linear operator. Then, for any $0 \le \delta \le 1$, there is a subset σ of size $|\sigma| = \delta \frac{||T||_2^4}{||T||_4^4}$ and such that, letting $c = \frac{|\sigma|}{m}$, we have, $s_{min}(T \mid_{P_{\sigma}\mathbb{R}^m}) \ge \sqrt{\frac{\operatorname{srank}(T)}{m}} \left[\sqrt{1-c} - \sqrt{\delta-c}\right].$ Theorem (Joel Anderson's Paving problem, Adam Marcus, Daniel Spielman, Nikhil Srivastava 13)

There are universal constants $\epsilon < 1$ and $r \in \mathbb{N}$ so that for any zero diagonal contraction $A \in M_n(\mathbb{R})^{sa}$, there are diagonal projections Q_1, \dots, Q_r with $Q_1 + \dots + Q_r = I$,

 $\lambda_1(Q_iAQ_i) < \epsilon, \quad 1 \le i \le r.$

MSS(2014) : r = 12. R(2016) : r = 4. Expected: $r = 2 + \epsilon$. Known: r > 2.

Restricted Invertibility in analogous form,

Theorem (Restricted Invertibility, R 2016) For any trace zero contraction $A \in M_n(\mathbb{R})^{sa}$ and any $c \leq \frac{1}{2}$ there is a principal submatrix A(S) of size cn such that $\lambda_1[A(S)] \leq 2\sqrt{c - c^2}.$

An equivalence

Casazza, Speegle, Tremain, Weber 2006: Equivalent to fundamental problems in Geometric Functional Analysis, Convex geometry, Signal processing, Harmonic analysis, Frame theory (Feichtinger conjecture), Coding theory, ...

$$I \subset \mathbb{Z}$$
. $S(I) := \overline{\operatorname{span}(\{e^{int} : n \in S\})}^{||}$.

Theorem (Weyl)

Given any $[a, b] \subset [0, 1], \epsilon > 0$ there is a partition $X_1 \cup \cdots \cup X_n = \mathbb{Z}$ such that $\forall f \in S(X_j), 1 \leq j \leq n$,

$$(1-\epsilon)||f||_2^2 \le \frac{||f\chi[a,b]||_2^2}{b-a} \le (1+\epsilon)||f||_2^2.$$

Does the same hold for any measurable set E? Equivalent to Kadison-Singer.

 $\mu \in \mathcal{P}_n$ Strongly Rayleigh, $A \in M_n(\mathbb{R})^{sa}$ self adjoint.

Sample principal submatrices of A, picking A_S with probability $\mu(S)$. A_S : Principal submatrix of A with rows and columns from S removed. Sublime idea of MSS: Take expectation not of largest eigenvalue, but of the characteristic polynomial!

Theorem (MSS, Nima Anari and Oveis-Gharan 2014, R 2016)

$$\mathbb{E}\chi[A_S] = \sum_{S \subset [n]} \mu(S)\chi[A_S],$$

is real rooted and further,

 $\mathbb{P}\left[\lambda_1\chi[A_S] \leq \lambda_1\mathbb{E}\chi[A_S]\right] > 0.$

Further,

 $\mathbb{E}\chi[A_S] = P_{\mu}(\partial_1, \cdots, \partial_n) \det[Z - A] \mid_{Z=xI} .$

Restricted invertibility : Uniform measure on n - k element subsets of [n],

$$P_{\mu} = {\binom{n}{k}}^{-1} \sum_{|S|=n-k} z^{S} = {\binom{n}{k}}^{-1} (\partial_{1} + \dots + \partial_{n})^{k} z_{1} \cdots z_{n}$$

Kadison-Singer : Pick subsets of $[n] \times [n]$ of the form $T \times T^c$.

SR and RI + KSP

$$P_{\mu_2} = 2^{-n} \left(\prod_{i=1}^n (\partial_{z_i} + \partial_{y_i}) \right) (z_1 \cdots z_n) (y_1 \cdots y_n).$$

Theorem (Cauchy-Poincare)

 $A \in M_n(\mathbb{R})^{sa}$. Then, the eigenvalues of $\chi[A]$ and $\chi[A_i]$ interlace.

Lemma (Markov principle)

 p_1, \cdots, p_n be same degree monic real rooted with common interlacer. Then, $\forall k \exists i$,

 $\lambda_k(p_i) \leq \lambda_k(p_1 + \cdots + p_n).$

Lemma (Obreshkoff)

 $\{p_i\}_{i=1}^n$ degree k monic real rooted. Common interlacer iff every convex combination real rooted.

Theorem (MSS, 2014 + R.C.Thompson, 1963, R, 2016)

Let $A \in M_n(\mathbb{R})$ be hermitian. Then, $\exists i \in [n]$ such that,

$$\lambda_1(\chi[A_i]) \leq \lambda_1\left(\sum \chi[A_i]\right) = \lambda_1(\chi'[A]).$$

For any $k \in [n]$, there is a size k subset $S \subset [n]$ such that,

$$\lambda_1(\chi[A_S]) \leq \lambda_1\left(\sum_{|S|=k} \chi[A_S]\right) = \lambda_1(\chi^{(k)}[A]).$$

Set $Z = \text{diag}(z_1, \cdots, z_n)$ diagonal matrix of variables.

Lemma

 $A \in M_n(\mathbb{R})$ and $S \subset [n]$. Then,

$$\det[A_{S}] = \frac{\partial^{S}}{\partial z^{S}} \det[Z + A] \mid_{Z=0}, \qquad \chi[A_{S}] = \frac{\partial^{S}}{\partial z^{S}} \det[Z - A] \mid_{Z=xI}$$

 $\mu \in \mathcal{P}_n$ Strongly Rayleigh. $A \in M_n(\mathbb{R})^{sa}$ real symmetric.

Create tree. n+1 levels.

Nodes at level k indexed by subsets of [k - 1]. Mark node at level k by $\sum_{S \supset T} \mu(S)\chi[A_S]$. Children of node indexed by $S \subset [k] : n - k$ nodes indexed by $S \cup i$, for $i \notin S$. Leaf nodes : $\chi[A_S]$ for $S \subset [n]$. Top node : $\sum_{S \subset [n]} \mu(S)\chi[A_S]$.

Theorem (R, 2016)

Let $A \in M_n(\mathbb{R})$ be real symmetric. Then, the sum of the characteristic polynomials of all the 2 pavings of A is real rooted and satisfies,

$$\sum_{S \amalg T = [n]} \chi[A_S \oplus A_T] = \left[\prod_{m=1}^n \left(\partial_{z_m} + \partial_{y_m}\right)\right] \det[Z - A] \det[Y - A] \mid_{Z = Y = xI}.$$

Further, there is a paving $(S, T) \in \mathcal{P}_2$ such that

$$\lambda_1 \chi[A_S \oplus A_T] \leq \lambda_1 \left[\sum_{S \amalg T = [n]} \chi[A_S \oplus A_T] \right].$$

Lemma (R, 2016)

$$\prod_{m=1}^{n} \left(\partial_{z_m} + \partial_{y_m}\right) \det[Z - A] \det[Y - A] \mid_{Z = Y = xI} = \frac{\partial^n}{\partial z_1 \cdots \partial z_n} \det[Z - A]^2 \mid_{Z = xI}.$$

Definition (Mixed determinant)

 $A, B \in M_n(\mathbb{R}),$

$$D(A,B) := \sum_{S \amalg T = [n]} \det[A(S)] \det[B(T)].$$

Definition

Given a matrix $A \in M_n(\mathbb{R})$, define

$$\det_r(A) := \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i\sigma(i)} (-1)^{\operatorname{sgn}(\sigma)} r^{c(\sigma)}, \qquad \chi_r[A] := \det_r(xI - A).$$

where $c(\sigma)$ denotes the number of cycles in σ .

Lemma (R, 2016)

$$\mathbb{E}_{\mathcal{P}_2([n]}\chi[A_{\mathcal{X}}] = \frac{\partial^n}{\partial z_1 \cdots \partial z_n} \det[Z - A]^2 |_{Z = xI} = \chi_2[A] = D(xI - A, xI - A).$$

Conjecture

 $A \in M_n(\mathbb{R})^+$, positive contraction, diagonal entries of A all be at most $\alpha \leq \frac{1}{2}$. Then,

$$\mathsf{maxroot}\,\chi_2[\mathsf{A}] \leq \frac{1}{2} + \sqrt{\alpha(1-\alpha)} = \frac{1}{4}\left(\sqrt{2\alpha} + \sqrt{2(1-\alpha)}\right)^2$$

$$extsf{MSS}: rac{1}{2} + \sqrt{2lpha} + lpha, \quad extsf{BCMS}: rac{1}{2} + \sqrt{2lpha(1-2lpha)}.$$

Theorem (R 2016, 2paving)

 $A \in M_n(\mathbb{R})^+$, positive contraction, diagonal entries of A all be at most $\alpha \leq \frac{1}{4}$. Then,

maxroot
$$\chi_2[A] \leq \frac{1}{4} \left(\sqrt{\alpha} + \sqrt{3(1-\alpha)}\right)^2$$
.

Theorem (R 2016, paving diagonal 1/2 projections)

 $A \in M_n(\mathbb{R})^+$, positive contraction, diagonal entries of A all be at most $\alpha \leq \frac{1}{2}$. Then,

maxroot
$$\chi_4[A] \le \frac{(3+\sqrt{7})^2}{32} \approx 0.996$$

p: Real rooted degree n polynomial. For $b \ge \lambda_1(p)$ and $\varphi > 0$, define

$$\Phi_p(b):=rac{p'}{p}=\sumrac{1}{b-\lambda_i},\quad {
m smax}_arphi(
ho):=\Phi^{-1}(arphi)=\lambda_1(
ho'-arphi
ho).$$

Note : For any $\varphi > 0$, we have : $\lambda_1(p) < \operatorname{smax}_{\varphi}(p)$.

Proposition (Marcus, 2014)

Follows fro

Let p be real rooted and $\varphi > 0$. Then,

$$\mathrm{smax}_{\varphi}(p') \leq \mathrm{smax}_{\varphi}(p) - \frac{1}{\varphi}, \quad \rightsquigarrow \quad \mathrm{smax}_{\varphi}(p^{(k)}) \leq \mathrm{smax}_{\varphi}(p) - \frac{k}{\varphi}$$

m concavity of $\frac{1}{\Phi_p}$ above $\lambda_1(p)$.

 $A \in M_n(\mathbb{R})^{sa}$, set

$$p_0 = \det[Z - A]^2, \quad p_1 = \frac{\partial}{\partial z_1} \det[Z - A]^2, \cdots, \quad p_n = \frac{\partial^n}{\partial z_1 \cdots \partial z_n} \det[Z - A]^2.$$

Real stable polynomial $p(z_1, \dots, z_n)$, say $z \in \mathbb{R}^n$ is in Ab_p if $p(z + t) \neq 0$ for any $t \in \mathbb{R}^n_+$. (Upper) potential of p in direction j,

$$\Phi_p^j(z) = \frac{\partial_j p}{p}(z).$$

Basic fact, for any $z \in Ab_p$ and $i, j \in [n]$,

 $\Phi_{p}^{j} > 0, \quad \partial_{i}\Phi_{p}^{j} < 0 \, (\textit{Monotonicity}), \quad \partial_{i}^{2}\Phi_{p}^{j} > 0 \, (\textit{Convexity}).$

Lemma (MSS, R)

$$\Phi^{j}_{(1-\partial_i)p}(z+\delta e_i) \leq \Phi^{j}_{p}(z), \qquad \delta = rac{1}{1-\Phi^{j}_{ip}}, \qquad i,i\in [n].$$

Suppose p is of degree at most 2 in z_i ,

$$\Phi^{j}_{\partial_{i}p}(z-\delta e_{i})\leq \Phi^{j}_{p}(z), \qquad \delta=rac{1}{2\Phi^{j}_{p}}, \qquad j\in [n].$$

Theorem (R, 2016)

$$p(z_1, \dots, z_n) \text{ real stable and of degree at most 2 in each of the variables. (For instance)
$$p = \det[Z - A]^2). \text{ Let } q = \frac{\partial^n}{\partial z_1 \cdots \partial z_n} p. \text{ Then, for any } z \in Ab_p, \\ \Phi_q^j(z - \delta) \le \Phi_p^j(z), \quad j \in [n] \text{ where } \delta = \min_{j \in [n]} \frac{1}{2\Phi_p^j(z)}.$$$$

Lemma (R, 2016)

Suppose $p = \det[Z - A]^2$ where A is a positive contraction and z = zI where $z > \lambda_1(A)$, then,

$$\Phi_p^j(zl) \leq rac{\delta}{z-1} + rac{1-\delta}{z}, \quad \delta = max(A_{ii}).$$

Theorem (R, 2016)

 $A \in M_n(\mathbb{R})^+$, positive contraction, diagonal entries of A all be at most $\alpha \leq \frac{1}{4}$. Then,

$$\operatorname{maxroot} \chi_2[A] \leq \operatorname{inf}_{z \geq 1} z - \frac{1}{2} \left(\frac{\alpha}{z-1} + \frac{1-\alpha}{z} \right)^{-1} = \frac{1}{4} \left(\sqrt{\alpha} + \sqrt{3(1-\alpha)} \right)^2.$$

Remark

Suppose we could shift the barrier to the left by $\frac{1}{\Phi_p^j(z)}$ instead of $\frac{1}{2\Phi_p^j(z)}$, we would have the conjectured optimal estimate of maxroot $\chi_2[A] \leq \frac{1}{2} + \sqrt{\alpha(1-\alpha)}$.

Alas, not true in general. Also fails for polynomials of the form det $[Z - A]^2$. Similar estimates can be gotten for $\chi_3[A]$ and $\chi_4[A]$ through brute force means.

Theorem (R, 2016)

 $A \in M_n(\mathbb{R})^+$, positive contraction, diagonal entries of A all be at most α . Then,

$$\begin{split} & \mathsf{maxroot}\,\chi_3[\mathcal{A}] \leq \frac{1}{9}\left(\sqrt{5(1-\alpha)} + 2\sqrt{\alpha}\right)^2, \qquad \alpha \leq \frac{4}{9}. \\ & \mathsf{maxroot}\,\chi_4[\mathcal{A}] \leq \frac{1}{16}\left(\sqrt{7(1-\alpha)} + 3\sqrt{\alpha}\right)^2, \quad \alpha \leq \frac{9}{16}. \end{split}$$

Question

p and q real stable polynomials in n variables. Estimates for zero free regions of,

$$q(\partial_1,\cdots,\partial_n)p(z_1,\cdots,z_n).$$

Special case of great interest,

$$e_k(\partial_1,\cdots,\partial_n) \det[Z-A]$$

One variable case : $\varphi > 0$. Define smax $_{\varphi}(p) = \phi_p^{-1}(\varphi)$.

Theorem

p real rooted. Then,

$$\mathsf{smax}_arphi(\partial \pmb{p}) \leq \mathsf{smax}_arphi(\pmb{p}) - rac{1}{arphi}, \qquad \mathsf{smax}_arphi[(\partial - lpha)\pmb{p}] \leq \mathsf{smax}_arphi(\pmb{p}) - rac{1}{arphi - lpha}$$

Theorem (One variable Analytic Lieb-Sokal)

p, q real rooted. Then,

$$\mathsf{smax}_arphi(q(\partial) p) \leq \mathsf{smax}_arphi(p) - \Phi_q(arphi).$$

Conjectural Analytic Lieb-Sokal

Multivariable case : $\varphi \in \mathbb{R}^n_+$.

Let smax_{φ}(p) = { $b \in \mathbb{R}^n : \Phi_p(b) = \varphi$ }.

Given two sets $A, B \in \mathbb{R}^n$, say $A \prec B$ if for all $b \in B$ and $h \in \mathbb{R}^n_+$, $b + h \notin A$.

Conjecture

p, q real stable in $\mathbb{R}[z_1, \cdots, z_n]$ and let $a \in Ab_p$. Then,

 $\operatorname{smax}_{\varphi}(q(\partial)p) \prec \operatorname{smax}_{\varphi}(p) - \Phi_q(\varphi).$

Given a class function ϕ on S_n and a matrix A, the expression

$${\sf det}_\phi({\it A}):=\sum_{\sigma\in {\it S}_n}\left(\prod_{i\in [n]}{\it a}_{i\sigma(i)}
ight)\phi(\sigma),$$

is called an immanant. One many define the expression,

$$\chi_{\phi}[A] := \det_{\phi}[xI - A]$$

 $\begin{array}{l} c(\sigma): \text{number of cycles in } \sigma. \\ \text{When } \phi(\sigma) = (-1)^{\text{sgn}(\sigma)}, \text{ we get } \chi[A]. \\ \text{When } \phi(\sigma) = (-1)^{\text{sgn}(\sigma)} r^{c(\sigma)}, \text{ we get } \chi_r[A]. \\ r \in \mathbb{N}: \text{ We have that } \chi_r[A] \text{ is real rooted for hermitian } A. \end{array}$

Question

Which immanantal polynomials are real rooted for all hermitian arguments?

Conjecture

Those immanants such that

 $\det_{\phi}(A) = p(\partial_1, \cdots, \partial_n) \det[Z + A]^k \mid_{Z=0}, \quad \deg(p) = (k-1)n, \quad p \text{ real stable } + \text{ symmetric.}$