A quantitative Gauss-Lucas theorem

Abstract

We prove in this note, a quantitative version of the classical Gauss-Lucas theorem:
We show that for any degree n polynomial p and any ¢ > %, the area of the convex hull
of the roots of p(¢™ is at most 4(c—c?) that of the area of the convex hull of the roots of
p. The proof uses the celebrated barrier method of Batson-Marcus-Spielman-Srivastava

and a majorization theorem due independently to Pereira and Malamud.

1 Introduction

The fundamental Gauss-Lucas theorem|[10][2.1] says that the critical points of a univariate
polynomial lie in the convex hull of the polynomial’s roots. Given a polynomial p and a
positive integer k, we let p®) denote the k’th derivative of p. We also use the notation o(p)
to denote the roots of p and IC(p) to denote the convex hull of the roots of p. Letting n be
the degree of p, we have a nested collection of convex sets,

K(p) > K@) > Kp®) > - > KpY).

It is easy to see that if let a be the average of the elements in o(p), the average of the
elements in o(p®*)) equals o as well, for every 1 < k < n — 1. In particular, the convex
sets KC(p®) shrink to the one element set K(p"~V) = {a}. It is natural to ask how quickly
the sizes of these sets can shrink, something that we could not find a reference to in the
literature. The main result in this paper is the following universal estimate, where given a
set A in the plane, |A| refers to the area of A.

Theorem 1 Let p be a degree n polynomial. Then, for any ¢ > =, we have that,

N | =

K@) < d(c— ) [K(p)].

Note that this estimate 4(c — ¢?) is independent of the polynomial or even the degree
n. These estimates are certainly not sharp but we suspect that the O(1 — ¢) dependance is.
Also, by looking at the polynomial p(z) = (2* — 1)™, one sees that one needs to take the
derivative at least § —2 times where n = 3m is the degree of p, in order to get a shrinking of
the areas of the convex hulls of higher derivatives. The theorem (1) as stated above cannot,
by this simple observation, hold for ¢ < % It is conceivable that estimates could be got for

¢ in the range [%, %], but we do not do this in this paper.



We deduce this theorem from an analogous result for real rooted polynomials, that is of
independent interest as it has applications to the restricted invertibility principle of Bourgain
and Tzafriri[3], see [11] for a discussion. For real rooted polynomials, IC(p) will refer to the
difference of the largest and smallest roots of p, a quantity that is often called the span of
the polynomial p.
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Theorem 2 Let p be a real rooted degree n polynomial. Then, for any ¢ > oL we have that,

KT < 2ve — 2 |K(p)].

The estimates in the real-rooted case are tight, something that follows from a simple cal-
culation. The proof of this theorem uses the barrier method introduced by Batson, Spielman
and Srivastava [1] in their work on spectral sparsification and further developed by Marcus,
Spielman and Srivastava [6] en route to their breakthrough results on Ramanujan graphs [7]
and the solution of the Kadison-Singer problem [8].

We will then translate this result to the complex rooted case using the notion of ma-
jorization between real sequences by applying results of Pereira [9] and Malamud [5]. This
will allow us to prove estimates on root shrinking in each direction. Deducing estimates on
the shrinking of the areas of the convex hulls will then be a simple corollary.

2 Majorization relations for polynomial roots

We start off with a result proved by Pereira in 2005 [9] and conjectured by Katsoprinakis
in the 1980’s [4]. The result also appears in the contemporaneous work of Malamud [5] on
closely related problems. Recall that a real sequence 7z is majorized by a real sequence \(of
the same size), which we will denote i < X if there is a doubly stochastic map D such that
DX = 7i. Here, a doubly stoachastic map is a matrix of non-negative reals with all row and
column sums 1. It is a classical fact that Majorization can also be expressed in terms of
convex maps, in the following way, see [9][Prop. 4.2],

Theorem 3 Let i = (1, -+, itn) and X = (A, -+, \n) be two real sequences. Then, the
following are equivalent,

1<\

2. For every convex function f defined on an interval containing both X and T, we have

that,
> F) < F).

Given a polynomial p with roots (A1,---,A,), we will use the notation R(p) to denote
the monic polynomial whose roots are (Re Aj,---,Re \,;). The following was conjectured
by Katsoprinakis[4] and proved 20 years later by Pereira [9][Theorem 4.6] and independently
by Malamud [5],

Theorem 4 (Pereira) Given a polynomial p, we have,
o (R(p)) =< o (R(p)).
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Given a real rooted polynomial p, recall that the potential function ®, on [Ayq.(p), o0
was defined thus,

1
®,(b) := Zm.

Recall too that we had called the inverse the soft max function of p, smax,(p), that is,

smax, (p) := @, (¢).

1
The function f(x) = ; is convex on (—oo,b) and by combining theorem (4) and

proposition (7), we have tha;,
Theorem 5 Given a polynomial p, we have, for any b > max roots ('),
D) (b) < Prpy ().
And since the potential functions are monotone decreasing, we have that,
smax,(R(p")) < smax, (R(p)') .

We would like to point another interesting relation between roots of real parts of poly-
nomials and their derivatives. It will be convenient to use the notation Dp to represent the
derivative of p. The theorems of Pereira and Malamud show that,

o(RD(p)) < o(DR(p)). (1)
We now show that there is an interesting extension for higher derivatives.

Theorem 6 Let p be a degree n polynomial and let k < n. We then have a chain of
magorization relations (between real sequences of size n — k),

o (RD®(p)) < o (DRD* V(p)) < --- < (D* VR(p)) < o (DWR(p)).
Proof. Applying (1) to the polynomial D*~Y(p) yields that,
o (RDD*D(p)) = o (RD®(p)) < o (DRD*V(p)) .

Borcea and Branden in [2][Theorem 1] showed(this is a very special case of their theorem)
that if ¢ and p are real rooted polynomials, then o(q) < o(p) implies that o(Dgq) < o(Dp).
Applying this to the polynomials RD*~V(p) and DRD%~?)(p), we see, using (1) again that,

o (DRD" Y (p)) < o (DDRD"?(p)) = o (DPRD*)(p)).

[terating this argument establishes the theorem. m



3 The barrier method and the shrinking of root sets

Given a real rooted polynomial p, define the quantities,

/

o, (b) = %(b), b > Amac(p),  smax,(p) = "1 (¢), ¢ > 0.

The function smax,(p) which maps (0, 00) = (Amez(p), 00) is a useful proxy for the max root
of a polynomial and a discussion of its utility can be found in [6]. Two simple properties,
see [6] or [11], that will be relevant are,

1. smax,(p) is positive, increasing and concave.
2. For every ¢ < 0o, we have that smax,(p) > Mnas-

Another basic property of the above quantity is the following fact, which was announced
by Adam Marcus in 2014. A proof can be found in the paper [11][Prop 3.1].

Proposition 7 (Marcus, 2014) Let p be a real rooted polynomial and ¢ € (0,00]. Then,

1
smax,(p') < smax,(p) — —.
¥

Together with theorem (5), we conclude that,

smax,(R(p")) < smax,(R(p)) < smax,(R(p)) — é

Iterating this, we have that,

smax (en) smax — @
H(R(P')) < »(L(p)) 5

We now perform some routine optimization,

Lemma 8 Let p be a polynomial of degree n with roots lying in B(0,1) and with the average

. 1+
of the roots 3. Then, letting o = Re 3, for any ¢ > 5 a,

Amaz R(p"™) < <\/(1 —a)(l—c)++/(1+a) 0)2 -1

Proof. We see that,

cn

Amaz R(p'™) < inf 50 smax, (R(p'“)) < smax,(R(p)) — o <infps1b— ——,
2 ®,(b)

with the last inequality following from the condition that the roots of R(p) are at most 1.

We also have that,
1
qu(b> = Z mv



and it is easy to see, noting that the roots of R(p) lie in (—1,1) that the last expression is

1 11— b
at most 7;((17 1L 11)) + 7;((1) n ?)) = n[§2 i ?) . A simple calculation shows that,

2 1+«
| -1 J(VI-al-g+VItae) -1 c= =
1nfb>1b—b—: 1¥a

+ o 1, c < 5

The lemma follows. m
We will deduce another simple lemma from this,

Lemma 9 Let p be a polynomial of degree n. Then, for any ¢ > %, we have, letting
|IC(R(p))| = /\mam<R(p)) - >\mm<R(p)), that,

o (R(p'™))| < 2Ve = 2 |o(R(p))|-
Proof. It is easy to see that shifting and scaling the roots of the polynomial p does not

o (R(p“™))|

lo(q)]
in B(0,1). Let a be the average of the roots of R(p). Applying lemma(8), we see that,

affect the ratio and we may therefore assume that the polynomial p has roots

Aas(B) < (V= )T 0 + T Fa)e) 1, ife> 1;04'

Working with the polynomial ¢(x) = p(—=z), we have that the average of the roots of R(q)
is —a, we see that,

11—«

Anin RE) 21— (VT 0 + T —a)e) . ife>

Without loss of generality, we may assume that o < 0 (else we work with r instead. We
therefore have that,

4y/c(1—c)(1 — a?), c>
(V=)@ =a+T+aye)

[K(R(p))] <

11—«
In the case when ¢ > g we note that the expression 41/c(1 — ¢)(1 — a?) is maximized

when a = 0 where it equals 44/¢(1 — ¢).
1+ o 1

-«
For the case when <c< — but still, ¢ > —=: We see that for fixed ¢, the

N —

expression,

(VI—a)i—a+Vi+a)e) . )

as a function of « increases from 1—1 to 2¢ — 1 and then decreases from 2¢ — 1 to 1.
We have the condition ta <c< %a which gives us that @ < min{2c¢ — 1,1 — 2¢}.




Together with the condition ¢ > %, this reduces to the condition @ < 1 — 2¢. The expression
(2) subject to this constraint on « thus has a maximum value at @ = 1 — 2¢, where it equals
8c¢(1 — ¢). It is easy to see that this is smaller than 44/c¢(1 — ¢) for every ¢ € [0,1]. And
finally, using the fact R(p) has roots in (—1,1),

KRE))| _ 4/l =0
KB~ 2

=2y/c(1—c).
[ |
We now deduce our main result, a quantitative Gauss-Lucas theorem,

Theorem 10 Let p be a polynomial of degree n. Then, for any ¢ > %, we have that,

K@) < 4(c =) |o(p)].
Proof. Lemma (9) says that the ratio between the sizes of the projections of o(p(°®)) and o (p)
onto the real axis is at most 2v/c — ¢2. There is nothing special about the real axis; Working

with q(2) = p(e™¥2), we see that the ratios of the projections onto the line Arg(z) = 6 are
again bounded by 2v/¢ — ¢2. We therefore have two polygons with the properties,

1. The ratios of their shadows in every direction are at most 2v/¢ — ¢2.

2. They have the same centroid(since the roots of a polynomial and its critical points
have the same average).

Writing out the areas in polar coordinates shows that the ratio of the areas is at most
4(c—c?). =
Let us mention another result along these lines.

Theorem 11 Let p be a degree n polynomial with roots in B(0,1) and with average of its
roots 0. Then, for any ¢ > 3,

o(p') C B(0,2Vc — ¢2).

Proof. The real rooted polynomial R(p) has roots in (—1,1) and the average of its roots is
0. Lemma(8) then implies that,

o (R(p(cn))) C (=2Ve— 2,2V — c?).

And clearly, the same holds for any other lie that we project the roots to. The theorem
follows. m

4 Tightness of bounds

Lemma (9) implies that when the polynomial p is real rooted, we have, letting |IC(p)| be the
size of the smallest interval containing o(p), that,

K (p™™) | < 2ve — 2K (p)).
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This is sharp: The polynomial (2% — 1)™ shows that one needs to take the derivative
at least 7 times where n = 2m to have all the roots migrate inward from the end points.
Further, a simple calculation involving comparing coefficients shows that,

Z \2 (n—cn)(n—cn—1) Cn(l— o) — ne

n(n —1) n—1

A€o (plem)

This implies that there is at least one root of modulus at least v/1 — ¢ — O( %) and since the

roots of p(® are symmetric about 0, the smallest interval containing all the roots of p(c™

contains [—v1—c+ O(2),1/1 —¢) — O(%)]. We conclude that in the class of real rooted
polynomials, which we denote Q and for any ¢ > %,

. K p(cn)
inf,co % >4/1—c.

This shows that the upper bound from theorem (9) is optimal upto a constant. For the
complex rooted case, we make an analogous calculation with the polynomial (22 —1)". We
have,

p(z) — Z3n . nan—S 4o

3n 3n—3
(3cn) — 3(1—c)n __ 3n—3 .
Prr) (Bn(l - c)) : n(?m(l o) - 3) S

The polynomial p™ has roots of the form {);, \iw, Aiw? :: 1 < i < (1 — ¢)n} where the )
are non-negative reals and we have that,

and

(1—=c)n

p(3cn) _ H (23 - )\?)

=1

Comparing coefficients, we see that,

Zl e n<3n<§n—_c)3— 3) / <3n(im— c>> =n(l=c)'+0 (%) |

The largest of the A;, which we may assume is Ay, is therefore at least (1 —¢) + O(%). The
convex hull of the roots of p®*™ is the equilateral triangle with vertices {\, \jw, \;w?} and

we see that,
L) 4/3 (1)
—=>1-c)""+0—-).
ke =1 "

We conclude that, letting P be the class of all polynomials and working with areas of the
convex hulls,

. K (pte)) |
nfyep |i(c<p>|)

[ suspect this can be improved to O(1 — ¢) to match the upper bound.

> (1—c)"3.
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