
A quantitative Gauss-Lucas theorem

Abstract

We prove in this note, a quantitative version of the classical Gauss-Lucas theorem:
We show that for any degree n polynomial p and any c ≥ 1

2 , the area of the convex hull

of the roots of p(cn) is at most 4(c−c2) that of the area of the convex hull of the roots of
p. The proof uses the celebrated barrier method of Batson-Marcus-Spielman-Srivastava
and a majorization theorem due independently to Pereira and Malamud.

1 Introduction

The fundamental Gauss-Lucas theorem[10][2.1] says that the critical points of a univariate
polynomial lie in the convex hull of the polynomial’s roots. Given a polynomial p and a
positive integer k, we let p(k) denote the k’th derivative of p. We also use the notation σ(p)
to denote the roots of p and K(p) to denote the convex hull of the roots of p. Letting n be
the degree of p, we have a nested collection of convex sets,

K(p) ⊃ K(p′) ⊃ K(p(2)) ⊃ · · · ⊃ K(p(n−1)).

It is easy to see that if let α be the average of the elements in σ(p), the average of the
elements in σ(p(k)) equals α as well, for every 1 ≤ k ≤ n − 1. In particular, the convex
sets K(p(k)) shrink to the one element set K(p(n−1)) = {α}. It is natural to ask how quickly
the sizes of these sets can shrink, something that we could not find a reference to in the
literature. The main result in this paper is the following universal estimate, where given a
set A in the plane, |A| refers to the area of A.

Theorem 1 Let p be a degree n polynomial. Then, for any c ≥ 1

2
, we have that,

|K(p(dcne))| ≤ 4(c− c2) |K(p)|.

Note that this estimate 4(c − c2) is independent of the polynomial or even the degree
n. These estimates are certainly not sharp but we suspect that the O(1− c) dependance is.
Also, by looking at the polynomial p(z) = (z3 − 1)m, one sees that one needs to take the
derivative at least n

3
−2 times where n = 3m is the degree of p, in order to get a shrinking of

the areas of the convex hulls of higher derivatives. The theorem (1) as stated above cannot,
by this simple observation, hold for c ≤ 1

3
. It is conceivable that estimates could be got for

c in the range [1
3
, 1
2
], but we do not do this in this paper.
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We deduce this theorem from an analogous result for real rooted polynomials, that is of
independent interest as it has applications to the restricted invertibility principle of Bourgain
and Tzafriri[3], see [11] for a discussion. For real rooted polynomials, K(p) will refer to the
difference of the largest and smallest roots of p, a quantity that is often called the span of
the polynomial p.

Theorem 2 Let p be a real rooted degree n polynomial. Then, for any c ≥ 1

2
, we have that,

|K(p(dcne))| ≤ 2
√
c− c2 |K(p)|.

The estimates in the real-rooted case are tight, something that follows from a simple cal-
culation. The proof of this theorem uses the barrier method introduced by Batson, Spielman
and Srivastava [1] in their work on spectral sparsification and further developed by Marcus,
Spielman and Srivastava [6] en route to their breakthrough results on Ramanujan graphs [7]
and the solution of the Kadison-Singer problem [8].

We will then translate this result to the complex rooted case using the notion of ma-
jorization between real sequences by applying results of Pereira [9] and Malamud [5]. This
will allow us to prove estimates on root shrinking in each direction. Deducing estimates on
the shrinking of the areas of the convex hulls will then be a simple corollary.

2 Majorization relations for polynomial roots

We start off with a result proved by Pereira in 2005 [9] and conjectured by Katsoprinakis
in the 1980’s [4]. The result also appears in the contemporaneous work of Malamud [5] on
closely related problems. Recall that a real sequence µ is majorized by a real sequence λ(of
the same size), which we will denote µ ≺ λ if there is a doubly stochastic map D such that
Dλ = µ. Here, a doubly stoachastic map is a matrix of non-negative reals with all row and
column sums 1. It is a classical fact that Majorization can also be expressed in terms of
convex maps, in the following way, see [9][Prop. 4.2],

Theorem 3 Let µ = (µ1, · · · , µn) and λ = (λ1, · · · , λn) be two real sequences. Then, the
following are equivalent,

1. µ ≺ λ

2. For every convex function f defined on an interval containing both λ and µ, we have
that, ∑

f(µi) ≤
∑

f(λi).

Given a polynomial p with roots (λ1, · · · , λn), we will use the notation R(p) to denote
the monic polynomial whose roots are (Re λ1, · · · ,Re λn). The following was conjectured
by Katsoprinakis[4] and proved 20 years later by Pereira [9][Theorem 4.6] and independently
by Malamud [5],

Theorem 4 (Pereira) Given a polynomial p, we have,

σ (R(p′)) ≺ σ (R(p)′) .
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Given a real rooted polynomial p, recall that the potential function Φp on [λmax(p),∞]
was defined thus,

Φp(b) :=
∑ 1

b− λk(p)
.

Recall too that we had called the inverse the soft max function of p, smaxϕ(p), that is,

smaxϕ(p) := Φ−1p (ϕ).

The function f(x) =
1

b− x
is convex on (−∞, b) and by combining theorem (4) and

proposition (7), we have that,

Theorem 5 Given a polynomial p, we have, for any b ≥ max roots (p̃′),

ΦR(p′)(b) ≤ ΦR(p)′(b).

And since the potential functions are monotone decreasing, we have that,

smaxϕ(R(p′)) ≤ smaxϕ (R(p)′) .

We would like to point another interesting relation between roots of real parts of poly-
nomials and their derivatives. It will be convenient to use the notation Dp to represent the
derivative of p. The theorems of Pereira and Malamud show that,

σ(RD(p)) ≺ σ(DR(p)). (1)

We now show that there is an interesting extension for higher derivatives.

Theorem 6 Let p be a degree n polynomial and let k ≤ n. We then have a chain of
majorization relations (between real sequences of size n− k),

σ
(
RD(k)(p)

)
≺ σ

(
DRD(k−1)(p)

)
≺ · · · ≺ σ

(
D(k−1)R(p)

)
≺ σ

(
D(k)R(p)

)
.

Proof. Applying (1) to the polynomial D(k−1)(p) yields that,

σ
(
RDD(k−1)(p)

)
= σ

(
RD(k)(p)

)
≺ σ

(
DRD(k−1)(p)

)
.

Borcea and Branden in [2][Theorem 1] showed(this is a very special case of their theorem)
that if q and p are real rooted polynomials, then σ(q) ≺ σ(p) implies that σ(Dq) ≺ σ(Dp).
Applying this to the polynomials RD(k−1)(p) and DRD(k−2)(p), we see, using (1) again that,

σ
(
DRD(k−1)(p)

)
≺ σ

(
DDRD(k−2)(p)

)
= σ

(
D(2)RD(k−2)(p)

)
.

Iterating this argument establishes the theorem.
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3 The barrier method and the shrinking of root sets

Given a real rooted polynomial p, define the quantities,

Φp(b) =
p′

p
(b), b > λmax(p), smaxϕ(p) = Φ−1(ϕ), ϕ > 0.

The function smaxϕ(p) which maps (0,∞)→ (λmax(p),∞) is a useful proxy for the max root
of a polynomial and a discussion of its utility can be found in [6]. Two simple properties,
see [6] or [11], that will be relevant are,

1. smaxϕ(p) is positive, increasing and concave.

2. For every ϕ <∞, we have that smaxϕ(p) > λmax.

Another basic property of the above quantity is the following fact, which was announced
by Adam Marcus in 2014. A proof can be found in the paper [11][Prop 3.1].

Proposition 7 (Marcus, 2014) Let p be a real rooted polynomial and ϕ ∈ (0,∞]. Then,

smaxϕ(p′) ≤ smaxϕ(p)− 1

ϕ
.

Together with theorem (5), we conclude that,

smaxϕ(R(p′)) ≤ smaxϕ(R(p)′) ≤ smaxϕ(R(p))− 1

ϕ
.

Iterating this, we have that,

smaxϕ(R(p(cn))) ≤ smaxϕ(R(p))− cn

ϕ
.

We now perform some routine optimization,

Lemma 8 Let p be a polynomial of degree n with roots lying in B(0, 1) and with the average

of the roots β. Then, letting α = Re β, for any c ≥ 1 + α

2
,

λmaxR(p(cn)) ≤
(√

(1− α)(1− c) +
√

(1 + α) c
)2
− 1.

Proof. We see that,

λmaxR(p(cn)) ≤ infϕ≥0 smaxϕ(R(p(cn))) ≤ smaxϕ(R(p))− cn

ϕ
≤ infb>1 b−

cn

Φp(b)
,

with the last inequality following from the condition that the roots of R(p) are at most 1.
We also have that,

Φp(b) =
∑
λ∈σ(p)

1

b− λ
,
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and it is easy to see, noting that the roots of R(p) lie in (−1, 1) that the last expression is

at most
n(1 + α)

2(b− 1)
+
n(1− α)

2(b+ 1)
=
n(b+ α)

b2 − 1
. A simple calculation shows that,

infb>1 b−
c(b2 − 1)

b+ α
=


(√

(1− α)(1− c) +
√

(1 + α) c
)2
− 1, c ≥ 1 + α

2
,

1, c ≤ 1 + α

2
.

The lemma follows.
We will deduce another simple lemma from this,

Lemma 9 Let p be a polynomial of degree n. Then, for any c ≥ 1
2
, we have, letting

|K(R(p))| = λmax(R(p))− λmin(R(p)), that,

|σ(R(p(cn)))| ≤ 2
√
c− c2 |σ(R(p))|.

Proof. It is easy to see that shifting and scaling the roots of the polynomial p does not

affect the ratio
|σ(R(p(cn)))|
|σ(q)|

and we may therefore assume that the polynomial p has roots

in B(0, 1). Let α be the average of the roots of R(p). Applying lemma(8), we see that,

λmax(R(p(cn)))) ≤
(√

(1− α)(1− c) +
√

(1 + α) c
)2
− 1, if c ≥ 1 + α

2
.

Working with the polynomial q(x) = p(−x), we have that the average of the roots of R(q)
is −α, we see that,

λmin(R(p(cn))) ≥ 1−
(√

(1 + α)(1− c) +
√

(1− α) c
)2
, if c ≥ 1− α

2
.

Without loss of generality, we may assume that α ≤ 0 (else we work with r instead. We
therefore have that,

|K(R(p(cn)))| ≤


4
√
c(1− c)(1− α2), c ≥ 1− α

2(√
(1− α)(1− c) +

√
(1 + α) c

)2
,

1 + α

2
≤ c ≤ 1− α

2

In the case when c ≥ 1− α
2

, we note that the expression 4
√
c(1− c)(1− α2) is maximized

when α = 0 where it equals 4
√
c(1− c).

For the case when
1 + α

2
≤ c ≤ 1− α

2
, but still, c ≥ 1

2
: We see that for fixed c, the

expression, (√
(1− α)(1− c) +

√
(1 + α) c

)2
, (2)

as a function of α increases from −1 to 2c − 1 and then decreases from 2c − 1 to 1.

We have the condition
1 + α

2
≤ c ≤ 1− α

2
which gives us that α ≤ min{2c − 1, 1 − 2c}.
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Together with the condition c ≥ 1
2
, this reduces to the condition α ≤ 1− 2c. The expression

(2) subject to this constraint on α thus has a maximum value at α = 1− 2c, where it equals
8c(1 − c). It is easy to see that this is smaller than 4

√
c(1− c) for every c ∈ [0, 1]. And

finally, using the fact R(p) has roots in (−1, 1),

|K(R(p(cn)))|
|K(R(p))|

≤
4
√
c(1− c)

2
= 2
√
c(1− c).

We now deduce our main result, a quantitative Gauss-Lucas theorem,

Theorem 10 Let p be a polynomial of degree n. Then, for any c ≥ 1
2
, we have that,

|K(p(cn))| ≤ 4(c− c2) |σ(p)|.

Proof. Lemma (9) says that the ratio between the sizes of the projections of σ(p(cn)) and σ(p)
onto the real axis is at most 2

√
c− c2. There is nothing special about the real axis; Working

with q(z) = p(e−iθz), we see that the ratios of the projections onto the line Arg(z) = θ are
again bounded by 2

√
c− c2. We therefore have two polygons with the properties,

1. The ratios of their shadows in every direction are at most 2
√
c− c2.

2. They have the same centroid(since the roots of a polynomial and its critical points
have the same average).

Writing out the areas in polar coordinates shows that the ratio of the areas is at most
4(c− c2).

Let us mention another result along these lines.

Theorem 11 Let p be a degree n polynomial with roots in B(0, 1) and with average of its
roots 0. Then, for any c ≥ 1

2
,

σ(p(cn)) ⊂ B(0, 2
√
c− c2).

Proof. The real rooted polynomial R(p) has roots in (−1, 1) and the average of its roots is
0. Lemma(8) then implies that,

σ
(
R(p(cn))

)
⊂ (−2

√
c− c2, 2

√
c− c2).

And clearly, the same holds for any other lie that we project the roots to. The theorem
follows.

4 Tightness of bounds

Lemma (9) implies that when the polynomial p is real rooted, we have, letting |K(p)| be the
size of the smallest interval containing σ(p), that,

|K
(
p(cn)

)
| ≤ 2

√
c− c2|K(p)|.
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This is sharp: The polynomial (z2 − 1)m shows that one needs to take the derivative
at least n

2
times where n = 2m to have all the roots migrate inward from the end points.

Further, a simple calculation involving comparing coefficients shows that,∑
λ∈σ(p(cn))

λ2 =
(n− cn)(n− cn− 1)

n(n− 1)
= n(1− c)2 − nc

n− 1
.

This implies that there is at least one root of modulus at least
√

1− c−O( 1
n
) and since the

roots of p(cn) are symmetric about 0, the smallest interval containing all the roots of p(cn)

contains [−
√

1− c + O( 1
n
),
√

1− c) − O( 1
n
)]. We conclude that in the class of real rooted

polynomials, which we denote Q and for any c ≥ 1
2
,

infp∈Q
|K
(
p(cn)

)
|

|K(p)|
≥
√

1− c.

This shows that the upper bound from theorem (9) is optimal upto a constant. For the
complex rooted case, we make an analogous calculation with the polynomial (z3 − 1)n. We
have,

p(z) = z3n − nz3n−3 + · · · ,

and

p(3cn)(z) =

(
3n

3n(1− c)

)
z3(1−c)n − n

(
3n− 3

3n(1− c)− 3

)
z3n−3 + · · · .

The polynomial p(3cn) has roots of the form {λi, λiω, λiω2 :: 1 ≤ i ≤ (1− c)n} where the λi
are non-negative reals and we have that,

p(3cn) =

(1−c)n∏
i=1

(z3 − λ3i ).

Comparing coefficients, we see that,

cn∑
i=1

λ3i = n

(
3n− 3

3n(1− c)− 3

)
/

(
3n

3n(1− c)

)
= n(1− c)3 +O

(
1

n

)
.

The largest of the λi, which we may assume is λ1, is therefore at least (1− c) + O( 1
n
). The

convex hull of the roots of p(3cn) is the equilateral triangle with vertices {λ1, λ1ω, λ1ω2} and
we see that,

|K(p(cn))|
|K(p)|

≥ (1− c)4/3 +O

(
1

n

)
.

We conclude that, letting P be the class of all polynomials and working with areas of the
convex hulls,

infp∈P
|K
(
p(cn)

)
|

|K(p)|
≥ (1− c)4/3.

I suspect this can be improved to O(1− c) to match the upper bound.
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