Topology (*Topoloji*)

David Pierce

22 Kasım 2016 Matematik, MSGSÜ http://mat.msgsu.edu.tr/~dpierce/

Problem 1. Find subsets A and B of \mathbb{R} such that

 $\overline{A} \cap \overline{B} \neq \varnothing, \qquad \qquad \overline{A \cap B} = \varnothing,$

where \overline{X} is the closure of X in the usual topology.

Problem 2. Is the function d given by

$$d(\mathbf{x}, \mathbf{y}) = |x_0 y_0| + |x_1 y_1|$$

a metric on \mathbb{R}^2 ?

Problem 3. Show that the metrics d_0 and d_1 given by

$$d_0(\boldsymbol{x}, \boldsymbol{y}) = |x_0 - y_0| + |x_1 - y_1|,$$

$$d_1(\boldsymbol{x}, \boldsymbol{y}) = \sqrt{(x_0 - y_0)^2 + (x_1 - y_1)^2}$$

define the same topology on \mathbb{R}^2 . (You may assume that d_0 and d_1 are indeed metrics.)

Problem 4. In the Tychonoff topology on $\mathscr{P}(\omega)$ are the following sets open, closed, both, or neither? Explain briefly.

- (a) $\{X \subseteq \boldsymbol{\omega} \colon 16 \in X \land 17 \notin X\}$
- (b) $\{X \subseteq \boldsymbol{\omega} \colon \forall y \ (y \in \boldsymbol{\omega} \Rightarrow 2y \in X)\}$
- (c) $\{X \subseteq \boldsymbol{\omega} : \forall y \ (y \in X \Rightarrow y + 1 \in X)\}$