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These notes are based on lectures in a gradu-
ate course of topology given in the fall semester of
–. The notes are not guaranteed to be free of
error. I may edit them in future, or add to them.
There are explicitly labelled exercises, to be solved
as homework. Grammatically, an exercise can be
a question, a command, or a statement; it is then
to be answered, obeyed, or proved, respectively.
Elsewhere, supplying any missing proofs or other
details (as well as correcting inadvertent mistakes)
is also an exercise for the reader.
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 Continuity

By the traditional epsilon-delta definition, a function f from
R to R is continuous at a point a of R if

∀ε ∃δ ∀x
(

ε > 0 ⇒ δ > 0 ∧
(

|x− a| < δ ⇒ |f(x)− f(a)| < ε
)

)

. ()

We want to simplify this, at least theoretically. Given a pos-
itive real number r, we define

B(a; r) =
{

x ∈ R : |x− a| < r
}

; ()

this is the (open) ball in R with center a and radius r. Now
we can rewrite () as

∀ε ∃δ ∀x
(

ε > 0 ⇒ δ > 0 ∧
(

x ∈ B(a; δ) ⇒ f(x) ∈ B
(

f(a); ε
)

)

)

. ()

Using the notation given by

f [A] = {f(x) : x ∈ A}, f−1[B] = {x : f(x) ∈ B},
There is no way to make calculus much easier to learn than it already

is. However, different students may find different approaches more
congenial. I write the epsilon-delta definition of continuity as in (),
rather than as

(∀ε > 0) (∃δ > 0) ∀x
(

|x− a| < δ ⇒ |f(x)− f(a)| < ε
)

,

because in the latter expresion, the first ε is pulled in two directions.
Normally ε > 0 and 0 < ε are interchangeable, but we cannot well
replace (∀ε > 0) with (∀0 < ε).





we can rewrite () as

∀ε ∃δ
(

ε > 0 ⇒ δ > 0 ∧ f
[

B(a; δ)
]

⊆ B
(

f(a); ε
)

)

, ()

or else as

∀ε ∃δ
(

ε > 0 ⇒ δ > 0 ∧ B(a; δ) ⊆ f−1
[

B
(

f(a); ε
)

]

)

. ()

Either of () and () is simpler than (), because it uses fewer
quantifiers. We can eliminate one more quantifier by first
defining a neighborhood of a point to be a set that includes
a ball whose center is the point. Note well the language:

• B includes A if A ⊆ B;
• B contains a if a ∈ B.

A neighborhood of a is now a set N such that, for some radius
r, B(a; r) ⊆ N . We can now write () as,

For every neighborhood X of f(a),

f−1[X ] is a neighborhood of a. ()

For the final step in our simplification of (), we define a set
to be open if it is a neighborhood of each of its points. We
confirm that this definition does not create an ambiguity:

Theorem . Every open ball is an open set.

Proof. Say b ∈ B(a; r). Then |b− a| < r. Let s = r − |b− a|.
Then B(b; s) ⊆ B(a; r) since, by the Triangle Inequality,

|x− b| < s =⇒ |x− b| < r − |b− a|
=⇒ |x− b| + |b− a| < r

=⇒ |x− a| < r.

Many writers do not make clear in words the distinction between in-
clusion and containment.





We now obtain from () a characterization of continuity,
simply (that is, continuity at all points of a domain):

Theorem . A function from R to R is continuous if and only
if, under it, the inverse image of every open set is open.

 Metric spaces

Theorem  will be true by definition if the two instances of R
are replaced with arbitrary topological spaces, possibly differ-
ent.

We first observe that R is a metric space, and every metric
space will be a topological space. A metric on a set M is a
function d from M ×M to R such that, for all values from M
of the variables,

) d(x, y) > 0,
) d(x, y) = 0 ⇔ x = y,
) d(x, y) = d(y, x),
) d(x, y) + d(y, z) > d(x, z).

The last condition is the triangle inequality for d. The pair
(M, d) is a metric space. We may that M is a metric space,
if d can be understood.

We let N denote the set {1, 2, 3, . . . } of counting numbers.

Example . Let n ∈ N. Several metrics are definable on Rn:





) the Euclidean metric (x,y) 7→ |x− y|, where

|z| =
√

∑

i

zi
2; ()

) the New-York metric (x,y) 7→
∑

i|xi − yi|;
) (x,y) 7→ maxi|xi − yi|.

The triangle inequality for the Euclidean metric follows from
the Minkowski inequality

|x| + |y| > |x+ y|,

which follows from the Cauchy–Schwartz inequality

|x| · |y| > x · y,

where by definition

x · y =
∑

i

xi · yi.

Example . If I is a closed, bounded interval of R, then

(f, g) 7→
∫

I

|f − g| ()

is a metric on the set of continuous functions from I to R.

Most writers habitually combine the radical sign
√

with a vinculum,

an overline. The vinculum is an alternative to parentheses, so that√
a+ b means

√
(a + b). Often parentheses would not be needed;

this means the vinculum is not needed either. Since multiplication
is notationally prior to addition, the expression

∑

i
zi

2 means not

(
∑

i
zi)

2
but

∑

i
(zi

2). Thus
√

∑

i
zi

2 in () can only mean
√
∑

i
(zi2).





Example . The discrete metric on a set M is

(x, y) 7→
{

1, if x 6= y,

0, if x = y.

In this metric, all triangles are equilateral.

Example  (The p-adic metric). For every prime number p,
for every nonzero element a of Q, there is a unique element
n of Z such that, for some k and m in Z, neither of which is
divisible by p,

a = pn · k

m
.

In this case we define

vp(a) = n.

For the moment, we also let a′ be such that a = pvp(a) · a′. If
also b ∈ Qr {0}, and vp(a) 6 vp(b), then

a± b = pvp(a) · (a′ ± pvp(b)−vp(a) · b′),

so that

vp(a± b)

{

= vp(a), if vp(a) < vp(b),

> vp(a), if vp(a) = vp(b).

We define

vp(0) = ∞.

Then for all a and b in Q,

vp(a± b) > min(vp(a), vp(b)).





This implies equality in case vp(a) 6= vp(b), since if we have
vp(a) < vp(b), then

vp(a+ b) > vp(a) = vp(a+ b− b) > min(vp(a+ b), vp(b)),

min(vp(a+ b), vp(b)) = vp(a + b),

vp(a+ b) = vp(a),

and likewise for vp(a− b). Finally, we define

|a|p =
{

p−vp(a), if a 6= 0,

0, if a = 0.

Then the function (x, y) 7→ |x−y|p is a metric on Q, called the
p-adic metric. In particular, the triangle inequality follows
from the stronger inequality

|x− z|p 6 max(|x− y|p, |y − z|p).

Because this stronger rule is satisfied, the p-adic metric is
called an ultrametric. In such a metric, all triangles are
isosceles or equilateral, and in the isosceles case, the third side
is shorter than the two equal sides.

In any metric space (M, d), if a ∈ M and r is a positive real
number, we define the (open) ball with center a and radius
r by analogy with the definition () in R:

B(a; r) = {x ∈ M : d(x, a) < r}.

Then neighborhoods and open sets have the same defini-
tions as before, and Theorem  is still true, by practically the
same proof. Theorem  will be true by definition.

To understand the next theorem, one must be clear about
the terminology. The union of a collection of sets comprises





every object that belongs to some member of the collection;
the intersection of the collection comprises every object that
belongs to every member of the collection. Thus

⋃

A = {x : ∃Y (Y ∈ A ∧ x ∈ Y )},
⋂

A = {x : ∀Y (Y ∈ A ⇒ x ∈ Y )}.

The union of two or more sets is the union of the collection of
those sets; likewise for the intersection:

A ∪ B ∪ C ∪ · · · ∪ Z =
⋃

{A,B,C, . . . , Z},

A ∩ B ∩ C ∩ · · · ∩ Z =
⋂

{A,B,C, . . . , Z}.

If A = {Xi : i ∈ I}, then we may use the notation

⋃

A =
⋃

i∈I

Xi,
⋂

A =
⋂

i∈I

Xi.

Theorem . In every metric space,
) the union of every nonempty collection of open sets is

open,
) the intersection of any two open sets is open,
) the empty set is open,
) the whole space is open.

The theorem will be true by definition in a topological space.
First, we can simplify the statement of the theorem. Obviously

⋃

∅ = ∅.

A set comprises its elements, and the elements compose the set. Some
speakers and writers confuse the two verbs. We may also say that a
set consists of its elements.





If the intersection of any two open sets is open, then, by induc-
tion, the intersection of any finite nonzero number of open sets
is open. Logically,

⋂

∅ consists of everything; but what “ev-
erything” means depends on the context. The complement of
a set comprises everything not in the set; but by “everything”
we mean everything in some previously chosen universal set.
If we understand the empty set to be a collection (namely the
empty collection) of subsets of a universal set Ω, then we may
understand

⋂

∅ = Ω.

We can understand the last theorem as that, in any metric
space,

) the union of every collection (including the empty col-
lection) of open sets is open,

) the intersection of every finite collection (including the
empty collection) of open sets is open.

Exercise . Let f : R → R.

(a) If f is continuous, then the set

{

(

x, f(x)
)

: x ∈ R
}

(namely the graph of f) is closed with respect to the
Euclidean metric on R2.

(b) The converse fails.
(c) The graph of f may fail to be closed.

Two different metrics on the same set may determine the
same or different open sets.

Example . On R2, let d1 be the Euclidean metric, and let





d2 be the metric (x,y) 7→ maxi|xi − yi|. Then

d2(x,y) = max
i

√

|xi − yi|2 6
√

|x0 − y0|2 + |x1 − y1|2

= d1(x,y) 6
√
2 · d2(x,y).

This means

B1(x; r) ⊆ B2(x; r) ⊆ B1

(

x;
r√
2

)

,

so every point has the same neighborhoods with respect to d1
and d2, and therefore the same sets are open with respect to
the two metrics.

Example . The set {x ∈ Q : |x| < 1}, which in Q is a
Euclidean neighborhood of 0, is not a p-adic neighborhood,
since for every positive real number r, there is n in Z such
that pn > max(1, r−1), so |pn|p = p−n < r, although |pn| > 1.

Exercise . Show that the Euclidean and New-York metrics
on R2 determine the same open sets.

 The Cantor set

For every set Ω, the power set of Ω is given by

P(Ω) = {subsets of Ω} = {X : X ⊆ Ω}. ()

The symmetric difference of two subsets of Ω is given by

X △ Y = (X r Y ) ∪ (Y rX) = (X ∪ Y )r (X ∩ Y ).





We let ω be the set {0, 1, 2, . . .} of natural numbers. It
will sometimes be convenient to treat each n in ω as the set
{x ∈ ω : x < n} of its predecessors in ω: more simply,

n = {0, . . . , n− 1}. ()

In particular, 0 = ∅.

Exercise . (a) An ultrametric on P(ω) is given by the
rule

d(X, Y ) =







1

2min(X△Y )
, if X 6= Y,

0, if X = Y.

This can be called the Gromov–Hausdorff metric.
(b) Another metric on P(ω) is given by the rule

d∗(X, Y ) =
∑

i∈X△Y

1

2i
,

but this is not an ultrametric.
(c) The two metrics nonetheless have the same open sets.

By definition, a function from one metric space to another
is continuous if, under it, the inverse image of every open set
is open. By Theorem , this agrees with the usual definition
when each space is R.

Example  (The Cantor set). The function f from P(ω) to
R given by

f(X) =
∑

k∈X

2

3k+1
.

has range called the Cantor set. Some elements of this set
are shown, with their pre-images under f , in Figure . For





X

∑

k∈X

2

3k+1

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

∅ 0

ω 1

ωr {0} 1/3

{0} 2/3

ωr {0, 1} 1/32

{1} 2/32

ωr {1} 2/3 + 1/32

{0, 1} 2/3 + 2/32

ωr {0, 1, 2} 1/33
{2} 2/33

ωr {0, 2} 2/32 + 1/33
{1, 2} 2/32 + 2/33

ωr {1, 2} 2/3 + 1/33
{0, 2} 2/3 + 2/33

ωr {2} 2/3 + 2/32 + 1/33
{0, 1, 2} 2/3 + 2/32 + 2/33

Figure : The Cantor set





every X in P(ω), for every k in ω, by (), X is the disjoint
union of X ∩ k, which is {i ∈ X : i < k}, and X r k, which is
{n ∈ X : k 6 n}. In particular,

f(X) = f(X ∩ k) + f(X r k). ()

Say also Y ∈ P(ω) and k = min(X △ Y ) and k ∈ Y . Then

f(X ∩ k) = f(Y ∩ k),

f(X r k) 6 f
(

ωr (k + 1)
)

,

f
(

{k}
)

6 f(Y r k).

Since

f
(

ωr (k+ 1)
)

=
∑

k+16n

2

3n+1
=

1

3k+1
<

2

3k+1
= f

(

{k}
)

, ()

it follows that, for distinct subsets X and Y of ω,

f(X) < f(Y ) ⇐⇒ min(X △ Y ) ∈ Y. ()

In particular, f is injective. Now give P(ω) the Gromov–
Hausdorff metric from Exercise , and call this metric d. We
shall show that f is continuous with respect to d and the Eu-
clidean metric on R. Given A in P(ω) and positive r in R,
shall find positive s and t in R such that

∀X
(

X ∈ B(A; s) ⇒ f(X) < f(A) + r
)

,

∀X
(

X ∈ B(A; t) ⇒ f(X) > f(A)− r
)

;

and then

∀X
(

X ∈ B
(

A; min(s, t)
)

⇒ f(X) ∈ B
(

f(A); r
)

)

,

so f will be continuous at A. To find s and t, we consider two
cases each.





. Suppose first there is B in P(ω) such that

f(A) < f(B) 6 f(A) + r. ()

Then min(A △ B) ∈ B by (). If d(A,C) < d(A,B), then,
since all non-equilateral triangles are isosceles, with third side
shorter than the two equal sides, we must have d(B,C) =
d(A,B), so that min(B △ C) ∈ B, and therefore f(C) < f(B).
Thus we may let s = d(A,B).

. Now suppose there is no such B as in (). Then A must
be such that, for some n in ω, {n, n + 1, n + 2, . . . } ⊆ A. In
this case, if d(A,C) < 1/2n−1, then either C = A or min(A △

C) > n, and in the latter case min(A △ C) ∈ A, so in either
case f(C) 6 f(A). Thus we may let s = 1/2n−1.

. Turning to t, we suppose first there is B in P(ω) such
that

f(A)− r 6 f(B) < f(A). ()

Then min(A △ B) /∈ B. If d(A,C) < d(A,B), then d(B,C) =
d(A,B), so that min(B △ C) = min(A,B); since this is not in
B, we must have f(B) < f(C). Thus we may let t = d(A,B).

. Now suppose there is no such B as in (). Then A must
be such that, for some n in ω, {n, n + 1, n + 2, . . . } ∩ A =
∅. In this case, if d(A,C) < 1/2n−1, then either C = A or
min(A △ C) > n, and in the latter case min(A △ C) ∈ C, so
in either case f(A) 6 f(C). Thus we may let t = 1/2n−1.

Having found s and t as desired, we can conclude that f
is continuous. Since f is injective, f−1 is well-defined as a
function on the Cantor set. This function too is continuous.
Indeed, let A ∈ P(ω) and n ∈ ω. If

f(A ∩ n) 6 f(X) 6 f(A ∩ n) + f(ωr n),





then

min(A △ X) /∈ A ∩ n,

min(A △ X) ∈ (A ∩ n) ∪ (ωr n),

and so

min(A △ X) > n, d(A,X) 6
1

2n
.

Thus if we define

I =
[

f(A ∩ n), f(A ∩ n) + f(ωr n)
]

= [a, b],

then

f(X) ∈ I =⇒ d(A,X) 6
1

2n
,

f(A) ∈ I.
()

The closed interval I, namely [a, b], contains f(A). We show
how to replace I with an open interval that includes it. If

f(X) < a = f(A ∩ n),

then for some m in ω,

min(A △ X) = m < n, m ∈ ArX,

and so

f(X) 6 f(A ∩m) + f
(

ωr (m+ 1)
)

= f(A ∩m) +
1

3m+1
,

f(X) +
1

3n
6 f(X) +

1

3m+1
6 f

(

A ∩ (m+ 1)
)

6 f(A ∩ n).

Thus

a− 1

3n
< f(X) =⇒ a 6 f(X). ()





Finally, if

f(X) > b = f(A ∩ n) + f(ωr n),

then again for some m in ω,

min(A △ X) = m < n, m ∈ X r A,

and so

f(X) > f(A ∩m) +
2

3m+1

= f(A ∩m) + f
(

ωr (m+ 1)
)

+
1

3m+1

= f(A ∩m) + f
(

nr (m+ 1)
)

+ f
(

ωr n
)

+
1

3m+1

> f(A ∩ n) + f(ωr n) +
1

3n
.

Thus

f(X) < b+
1

3n
=⇒ f(X) 6 b.

Combining with () yields

a− 1

3n
< f(X) < b+

1

3n
=⇒ f(X) ∈ I.

This with () shows that f−1 is continuous at f(A).

 Topological spaces

We now define a topology on a set as a collection of subsets
of the set that contains

) the union of every collection (including the empty col-
lection) of its members and





) the intersection of every finite collection (including the
empty collection) of its members.

We can rewrite the second condition as being that the collec-
tion contains:

a) the intersection of any two of its members, and
b) the whole set.

If τ is a topology on a set Ω, we call the pair (Ω, τ) a topo-
logical space, and the elements of τ are the open subsets
of the space. If τ can be understood, we may refer to Ω itself
as a topological space. Note also that

⋃

τ = Ω, so Ω can be
recovered from τ .

For a more symbolic presentation, having in mind (), we
define

Pω(Ω) = {finite subsets of Ω} = {X : X ⊆ Ω & |X| < ∞}.

Here ω, the set of natural numbers, can be understood as
the smallest infinite cardinal number (see §, page ). Thus
Pω(Ω) comprises the subsets of Ω that are smaller than ω.
By definition then, τ is a topology on Ω if τ ⊆ P(Ω) and

∀X

(

X ∈ P(τ) ⇒
⋃

X ∈ τ
)

,

∀X

(

X ∈ Pω(τ) ⇒
⋂

X ∈ τ
)

.

It is an historical peculiarity that many writers use X as a name for
a specific topological space. This makes X a constant, technically,
when the lower-case x has been used since the time of Descartes as
a variable. I try to use lower-case letters for individuals (numbers,
points, elements); upper-case letters for sets of these; and fancy letters
for collections of sets. The letters x and y are variables in every case:
so X and Y , X and Y are variables. There seem to be no standard
variables for functions, so f and g are used in ().





In any topological space, a neighborhood of a point is a
subset of the space that includes an open set that contains the
point.

Theorem . In any topological space, a set is open if and only
if it is a neighborhood of each of its points.

Proof. Since sets include themselves, every open set is imme-
diately a neighborhood of each of its points. Suppose a set E
is a neighborhood of each of its points. Then for each point a
in E, there is an open set Oa such that a ∈ Oa and Oa ⊆ E.
Then

E =
⋃

x∈E

Ox,

so, being a union of open sets, E is open.

In the proof, there may be infinitely many points a in E,
and for each a, there may be more than one open set O such
that a ∈ O and O ⊆ E. We have to choose one such O for
each a. One formulation of the Axiom of Choice is precisely
that we can do this.

Example . Every set with at least two elements can be given
two different topologies:

) the discrete topology, in which every set is open;
) the trivial topology, in which only the empty set and

the whole space are open.

Example . Every infinite set has a topology that is nei-
ther discrete nor trivial: the cofinite topology, in which the
empty set and the complement of every finite set are open.





 Closures

In every topological space, the complement of an open set is
called closed. Thus

) the intersection of every collection of closed sets is closed,
) the union of every finite collection of closed sets is closed.

The closure of a set is the smallest closed set that includes it.
This definition makes sense, precisely because the intersection
of every collection of closed sets is closed, and every member of
the collection includes the intersection. In a topological space
(Ω, τ), we may write

Xc = ΩrX = {x ∈ Ω: x /∈ X}.
Then, for the closure of a set E, we write

E =
⋂

{X : Xc ∈ τ & E ⊆ X}.

Theorem . In any topological space Ω, closure is an opera-
tion ϕ on P(Ω) satisfying

) X ⊆ ϕ(X),
) ϕ(ϕ(X)) = ϕ(X),
) ϕ(X ∪ Y ) = ϕ(X) ∪ ϕ(Y ),
) ϕ(∅) = ∅.

Conversely, if some operation ϕ on P(Ω) has these properties,
then ϕ is the closure operation for a topology on Ω.

Example . The operation

X 7→
{

X, if |X| < ∞,

Ω, if |X| = ∞,

satisfies the conditions of the theorem and is therefore the
closure operation for a topology on Ω. This topology is the
cofinite topology.





Exercise . In a metric space (M, d),
(a) X =

{

y ∈ M : inf{d(y, z) : z ∈ X} = 0
}

,

(b) B(a; r) ⊆ {x ∈ M : d(a, x) 6 r}, but
(c) the last inclusion can be strict.

Example . Always

A ∩B ⊆ A ∩ B;

but in R with the usual Euclidean topology,

Q = R, Qc = R, Q ∩Qc = R, Q ∩Qc = ∅.

Exercise . Let B ⊆ Ω.
(a) Show that the function

X 7→
{

X ∪ B, if X 6= ∅,

∅, if X = ∅,

is the closure operation for a topology on Ω.
(b) What are the open sets in this topology?

The interior of a set is the largest open set that it includes.
The definition makes sense, like the definition of the closure of
a set. In a topological space (Ω, τ), we may write

E◦ =
⋂

{X : X ∈ τ & X ⊆ E}.

Theorem . The interior of a set consists precisely of the
points of which the set is a neighborhood.

Proof. For all subsets E of a topological space, for all points
a of the space, the following statements are equivalent:

. E is a neighborhood of a.





. a ∈ O and O ⊆ E, for some open set O.
. a ∈ E◦.

Theorem . For all subsets E of a topological space,

(E◦)c = Ec, ()

E◦ = Ecc, ()

(Ec)◦ = E
c
. ()

Proof. If the topology is τ , we compute

(E◦)c =
(

⋃

{X ∈ τ : X ⊆ E}
)c

=
⋂

{Xc : X ∈ τ & X ⊆ E}

=
⋂

{Xc : X ∈ τ & Ec ⊆ Xc}

=
⋂

{X : Xc ∈ τ & Ec ⊆ X} = Ec,

so we have () and then (). Replacing E with Ec yields
().

Exercise . (a) Show that

X◦ = X◦◦. ()

(b) Conclude that

X
c
= X

cc
c

, ()

and therefore the smallest collection of subsets of a topo-
logical space that contains a given set and is closed under
the operations of taking closures, complements, and in-
teriors has no more than  members.





(c) If the space is R, there is an example with exactly 
members.

A limit point of a subset of a topological space is a point
whose every neighborhood contains an element of the subset
other than the point itself. The set of all limit points of a set
A can be denoted by

A′;

this is the Cantor–Bendixson derivative of A.

Theorem . A = A ∪ A′.

Proof. By Theorem  we have

x ∈ A ⇐⇒ x /∈ (Ac)◦

⇐⇒ Ac is not a neighborhood of x

⇐⇒ every neighborhood of x contains a point of A

⇐⇒ x ∈ A or x ∈ A′

⇐⇒ x ∈ A ∪ A′.

Example . In R, we have

Q′ = R,

{

1

n
: n ∈ N

}

= {0}, {0}′ = ∅;

in R2, if A = {(1/m, 1/n) : (m,n) ∈ N2}, then

A′ =
{

(0, 0)
}

∪
{(

1

m
, 0

)

: m ∈ N

}

∪
{(

0,
1

n

)

: n ∈ N

}

,

A′′ =
{

(0, 0)
}

, A′′′ = ∅.





Example  (The Zariski topology). Letting

Ω = {0} ∪ {p ∈ N : p is prime}, ()

we are going to define a topology on Ω so that

{0} = Ω, {p} = {p}, Ω′ = Ω. ()

The topology arises naturally as follows. If a and b are in Z,
we define

(a) = {ax : x ∈ Z},
(a, b) = {ax+ by : (x, y) ∈ Z2},

gcd(a, b) =

{

min
(

N ∩ (a, b)
)

, if one of a and b is not 0,

0, if both a and b are 0.

Consequently

(a, b) =
(

gcd(a, b)
)

.

The subsets (a) and (a, b) are ideals of Z, because they are
additive subgroups of Z that are closed under multiplication
by arbitrary elements of Z. A proper ideal I of Z is called
prime if

xy ∈ I ∧ x /∈ I =⇒ y ∈ I.

If p is a prime number, then (p) is a prime ideal, by Euclid’s
Lemma, whereby

p | ab ∧ p ∤ a =⇒ p | b.

Although 0 is not a prime number, (0) is a prime ideal because

ab = 0 ∧ a 6= 0 =⇒ b = 0.





There are no other prime ideals of Z. In particular, since (1) is
an improper ideal, it is not prime. We denote the set of prime
ideals of Z by

Spec(Z);

this is the spectrum of Z, and we shall topologize it by defin-
ing

V(a) = {I ∈ Spec(Z) : a ∈ I}

=

{

{

(p) : p | a
}

, if a 6= 0,

Spec(Z), if a = 0.

In particular, V(a) is finite when a 6= 0. Moreover, for any
nonempty set P of prime numbers,

{

(p) : p ∈ P
}

= V
(

∏

P
)

,

where
∏

P is the product of the elements of P . By definition,
∏

∅ = 1, and V(1) = ∅. Then the sets V(a) are the closed
sets of a topology on Spec(Z). A way to confirm this is to note
first

∅ = V(1),

V(a) ∪ V(b) = V(ab).

We can define gcd(a, b, c) and so forth in the obvious way, and
then, for every subset A of Z, possibly infinite, we can define

gcd(A) =

{

min
{

gcd(X) : X ∈ Pω(A)r {∅}
}

, if A 6= ∅,

0 if A = ∅.

Then
⋂

x∈A

V(x) = V
(

gcd(A)
)

,





even when A is empty. Consequently the sets V(a) are the
closed sets of a topology on Spec(Z), called the Zariski topol-
ogy. Such a topology is defined on the spectrum of prime ide-
als of any commutative ring. When the ring is Z, the Zariski
topology is like the cofinite topology, except that (0) belongs
to every nonempty open set. Consequently, if we confuse Ω as
in () with Spec(Z) in the obvious way, we have ().

 Bases

A topology τ0 on a set is coarser or weaker than a topology
τ1 on the same set, and τ1 is finer or stronger than τ0, if τ1
includes τ0.

Example  (The Tarski topology). If again Ω is the subset
of Z given in (), we shall define a topology on Ω so that

{0} = {0}, {p} = {p}, Ω′ = {0}. ()

This will be the coarsest topology in which all of the sets {p}
and their complements are open. By the next theorem, such
a topology exists; but without this, we can just describe the
topology. Since

{0} =
⋂

p prime

{p}c,

this set must be closed. Since each set {p} is closed, all finite
subsets of Ω must be closed, and therefore all cofinite subsets
of Ω must be open. Since each set {p} is open, all subsets of
Ωr {0} must be open. The open sets that we have found do
in fact constitute a topology, and in this topology, {0} is not
open. Thus we have ().





The topology on Ω that we have found can be understood to
arise as follows. Let σp be the equation 1+ · · ·+1 = 0, where
1 occurs p-many times; and then let ¬σp be the corresponding
inequation 1 + · · ·+ 1 6= 0. We shall refer to the σp and ¬σp

as sentences. Every field K has a theory, Th(K), consisting
of the sentences that are true in K. Then for every prime
number ℓ,

Th(Fℓ) = {σℓ} ∪ {¬σp : p 6= ℓ},
Th(Q) = {¬σp : p is prime}.

The theory of every field is one of these theories. Let S be
the set of all theories of fields; then we have a bijection from
Ω to S that takes p to Th(Fp) and 0 to Th(Q). The inverse
takes Th(K) to the characteristic of K, or char(K). We can
use the bijection to carry over to S the topology on Ω that
we found above. The topology so obtained on S, the Tarski
topology, is the coarsest in which the sets {T ∈ S : σ ∈ T}
are closed, as σ ranges over the sentences.

Theorem . For any set Ω, for any subset S of P(Ω), if we
let

B =
{

⋂

Y : Y ∈ Pω(S)
}

,

then the set
{

⋃

X : X ∈ P(B)
}

is a topology on Ω and is the coarsest topology on Ω that in-
cludes S .

Proof. Let the set in question be called T . If τ is a topology
on Ω that includes S , then B ⊆ τ , and then τ must also





include T . We show now that T is a topology on Ω. Suppose
A and C are subsets of B. Then

⋃

A ∩
⋃

C =
⋃

{X ∩ Y : X ∈ A & Y ∈ C },

which is in T . Since also Ω is in B and is therefore in T ,
this is closed under finite intersections. Finally, suppose A is
a collection of subsets of B. Then

⋃

A is a subset of B, and

⋃

{

⋃

X : X ∈ A
}

=
{

z : ∃X

(

X ∈ A & z ∈
⋃

X

)}

= {z : ∃X ∃Y (X ∈ A & Y ∈ X & z ∈ Y )}
= {z : ∃Y ∃X (X ∈ A & Y ∈ X & z ∈ Y )}
=

{

z : ∃Y
(

Y ∈
⋃

A & z ∈ Y
)}

=
⋃⋃

A,

which is therefore in T . Thus T is closed under arbitrary
unions.

In the theorem, B is a base or basis for the topology T ,
because every member of T is a union of members of B. Also
S is a sub-base sub-basis for T . By the theorem, every set
is a sub-base for some topology.

Theorem . For any set Ω, a subset B of P(Ω) is a base
for a topology on Ω if and only if

⋃

B = Ω and, for any two
elements A and C of B, for any d in A ∩ C, for some E in
B,

E ⊆ A ∩ C, d ∈ E.





Exercise . Show that the collection of open squares

(a, a+ δ)× (b, b+ δ)

is a base for a topology on R2.

Theorem . For any topological space (Ω, τ), for any subset
A of Ω, the set

{X ∩ A : X ⊆ Ω}
is a topology on A. A subset X of A is closed in this topology
if and only if, for some closed subset F of Ω,

X = A ∩ F.

In any case, if X is the closure of X in Ω, then A ∩X is its
closure in A.

In the theorem, A with its topology is a subspace of (Ω, τ).
As noted earlier, a function f from a topological space A to

a topological space C is continuous if f−1[U ] is open in A for
every open subset U of C, that is, the inverse image of every
open set is open. Since

f−1[X ]c = f−1[Xc],

the function f is continuous if and only if the inverse image
of every closed set is closed. If B is a subspace of C and
f [A] ⊆ B, then f is still continuous as a function from A to
B. If f [A] = B, and f is injective, and f−1 is continuous, then
f is called a homeomorphism from A to B, and the spaces
A and B are homeomorphic to one another. In Example
, we showed that P(ω), with the topology induced by the
Gromov–Hausdorff metric, is homeomorphic to the Cantor set





with the Euclidean topology induced from R. In Examples 
and , a set Ω was given two different topologies, making it
respectively homeomorphic to two different spaces, having the
Zariski and Tarski topologies respectively.

Example . All open intervals of R are homeomorphic to
one another.

 Products

If (A, τ0) and (B, τ1) are two topological spaces, then τ0 × τ1
is a basis for a topology, called the product topology, on
A×B. The basis thus consists of the products of open subsets
of A and B.

Exercise . The product topology on R×R is the Euclidean
topology on R2.

We shall consider the product of an arbitrary, possibly in-
finite number of spaces. If we are given an indexed family
(Ωi : i ∈ I) of sets, we define its product by the identity

∏

i∈I

Ωi =
{

(xi : i ∈ I) : ∀i (i ∈ I ⇒ xi ∈ Ωi)
}

.

Here (xi : i ∈ I) is just the function i 7→ xi having domain I.
The range of the function is a subset of

⋃

i∈I Ωi.
Suppose now each Ωi has the topology τi. As before, the

product of the τi is a basis of a topology on the product of the
Ωi; but this topology is not generally the one that we shall be
interested in.

For each j in I, there is a projection πj from
∏

i∈I Ωi onto
Ωj given by

πj(xi : i ∈ I) = xj .





The product topology or Tychonoff topology on
∏

i∈I Ωi

is the coarsest topology in which the projections are continu-
ous. This means the topology has a sub-base

{

πj
−1[Uj ] : j ∈ I & Uj ∈ τj

}

.

Then the topology has a base
{

⋂

j∈J

πj
−1[Uj ] : J ∈ Pω(I) & Uj ∈ τj

}

.

We also have

⋂

j∈J

πj
−1[Uj ] =

∏

i∈I

Ω∗
i , where Ω∗

i =

{

Ui, if i ∈ J,

Ωi, if i ∈ I r J.

In case all of the spaces Ωi are the same space Ω, we let
∏

i∈I

Ωi = ΩI ;

this is the space of functions from I to Ω.

Example . The simplest nontrivial example of an infinite
product of spaces is 2ω, where 2 = {0, 1}. Here 2 is given
the discrete topology (Example , page ), so that both {0}
and {1} are open. Then the Tychonoff topology on 2ω has a
sub-basis consisting of, for each n in ω, the sets

{f ∈ 2ω : f(n) = 0}, {f ∈ 2ω : f(n) = 1}.

We can write these sets also as

{(x0, . . . , xn−1, 0, xn+1, . . . ) : xi ∈ 2},
{(x0, . . . , xn−1, 1, xn+1, . . . ) : xi ∈ 2}.





Since each of these is the complement of the other, the sets in
the sub-base are closed as well as open; in a word, they are
clopen. In the general notation for projections of products,
the sub-basic sets are of the forms

πn
−1
[

{0}
]

, πn
−1
[

{1}
]

,

which we can write more simply as

πn
−1(0), πn

−1(1).

For further discussion, we shall again understand each n in ω

as in (). The Tychonoff topology on 2ω has a base consisting
of every finite intersection of sets in the sub-base above. Such
an intersection has the form

⋂

k<m

πik
−1(ek), ()

where m ∈ ω, (ek : k < m) ∈ 2m, (ik : k < m) ∈ ω
m, and

i0 < i1 < · · · < im−1.

An element of the intersection () might be written, some-
what vaguely, as

(. . . , e0, . . . , e1, . . . , em−1, . . . ).

A special case of () is
⋂

k<n

πk
−1(ek), ()

where n ∈ ω and (ek : k < n) ∈ 2n; we might write the special
case () also as either of

{(e0, . . . , en−1, x0, x1, . . . ) : (xi : i ∈ ω) ∈ 2ω},
{

f ∈ 2ω :
∧

i<n

f(i) = ei

}

.





The intersection () is a union of intersections as in (). The
latter then compose a basis for the Tychonoff topology on 2ω.

Example . There is a bijection

f 7→ {i ∈ ω : f(i) = 1} ()

from 2ω to P(ω). The inverse is Y 7→ χY , where, if A ⊆ ω,

χA(x) =

{

1, if x ∈ A,

0, if x ∈ ωrA.

We can define the Tychonoff topology on P(ω) to be that
topology with respect to which the bijection Y 7→ χY from
P(ω) to 2ω is a homeomorphism. Then the Tychonoff topol-
ogy on P(ω) has a basis consisting of the sets

{

X ⊆ ω :
∧

i<n

(i ∈ X ⇔ ei = 1)

}

, ()

where n ∈ ω and (ek : k < n) ∈ 2n. If A is an element of the
set in (), then that set is {X ⊆ ω : X ∩ n = A ∩ n}.

Exercise . In the Tychonoff topology on P(ω), are the
following sets open, closed, both, or neither?

(a) {X ⊆ ω : 16 ∈ X ∧ 17 /∈ X}
(b) {X ⊆ ω : ∀y (y ∈ ω ⇒ 2y ∈ X)}
(c) {X ⊆ ω : ∀y (y ∈ X ⇒ y + 1 ∈ X)}

Exercise . Show that the Tychonoff topology on P(ω)
is precisely the topology induced by the Gromov–Hausdorff
metric.





Theorem  (Cantor Intersection Theorem). Every decreas-
ing sequence of nonempty closed bounded subsets of R has
nonempty intersection. That is, if

F0 ⊇ F1 ⊇ F2 ⊇ · · · ,
where each Fn is a nonempty closed subset of R, and F0 is
bounded, then

⋂

n∈ω

Fn 6= ∅.

Proof. Let
an = inf Fn.

Then the sequence (an : n ∈ ω) is increasing and bounded, so
it has a limit b (namely supn∈ω an). Since the Fn are closed,
an ∈ Fn. Then for all k in ω, an+k ∈ Fn. If the set {an : n ∈
ω} is finite, then b belongs to it, and therefore

b ∈
⋂

n∈ω

Fn.

If {an : n ∈ ω} is infinite, then b is a limit point of it, and
so b is a limit point of each Fn. Therefore, by Theorem , b
belongs to each Fn, since this is closed.

The explanation for why the theorem is correct is that closed
bounded subsets of R are compact (see §, page ). We
shall see similarly that, in the Tychonoff topology, P(ω) is
compact.

Example . The Cantor Intersection Theorem may fail if
the Fn are not both closed and bounded, since

⋂

n∈ω

[n,∞) = ∅,
⋂

n∈ω

(

0,
1

n+ 1

)

= ∅.

See Exercise  (page ).





Example  (Spaces of groups). If G is a group, and P(G)
has the Tychonoff topology, then the subset {H ∈ P(G) : H 6

G} consisting of subgroups of G is closed, since the subset is
the intersection

{X ∈ P(G) : e ∈ X} ∩
⋂

(a,b)∈G2

{X ∈ P(G) : a ∈ X ∧ b ∈ X ⇒ ab−1 ∈ X},

and each set {X : a ∈ X ∧ b ∈ X ⇒ ab−1 ∈ X} is the union

{X : a /∈ X} ∪ {X : b /∈ X} ∪ {X : ab−1 ∈ X}.

We shall see that therefore {H ∈ P(G) : H 6 G} is compact.
Similarly the set of normal subgroups of G is closed in P(G)
and is therefore compact. If G is a finitely generated free
group, then a quotient G/N of G is a limit group if, in the
Tychonoff topology, N is the limit of a sequence (Nk : k ∈ ω)
of normal subgroups of G such that each quotient G/Nk is free.
See page .

Example  (Propositional logic). The Tychonoff topology
on P(ω) arises in propositional logic. Here we start with a set
{Pn : n ∈ ω} of propositional variables. We define propo-
sitional formulas recursively: the propositional variables are
propositional formulas, and if F and G are propositional for-
mulas, then so are the negation ¬F and the conjunction
(F ∧ G). Because of the use of parentheses, every proposi-
tional formula is constructed in a unique way: a negation is
never also a conjunction, and if (F ∧G) and (H ∧K) are the
same conjunction, then F and H must be the same formula,
and likewise G and K. Therefore every propositional formula





F determines a function X 7→ FX from P(ω) to 2, according
to the following recursive definition:

Pn
X = χX(n) =

{

1, if n ∈ X,

0, if n /∈ X,

¬FX = FX + 1,

(F ∧G)X = FX ·GX .

}

()

The operations on the right in () are as in the ring Z2, which
is the field F2. If FX = 1, we say that F is true in X, or X
is a model of F . We define

Mod(F ) = {X ∈ P(ω) : FX = 1};

its elements are just the models of F . Then

Mod(Pn) = {X ⊆ ω : n ∈ X},
Mod(¬F ) = P(ω)rMod(F ),

Mod(F ∧G) = Mod(F ) ∩Mod(G).

This shows that the sets of models of formulas compose a basis
for the Tychonoff topology on P(ω). If F is a collection of
propositional formulas, we define

Mod(F ) =
⋂

F∈F

Mod(F );

its elements are the models of F . These sets Mod(F ) are
precisely the closed subsets of P(ω) in the Tychonoff topol-
ogy. Suppose F = {Fn : n ∈ ω}, and let

An = Mod({Fk : k < n}).





Then (An : n ∈ ω) is a decreasing sequence of closed subsets
of P(ω). If each An is nonempty, we shall show that their
intersection is nonempty. This means F has a model, provided
that every finite subset of F has a model.

 Quotients

Example  (The Tarski topology). As defined in Example
 (page ), the Tarski topology on the set of theories of
fields can be understood to arise as follows. We start with
the class C of all fields. This is actually a proper class, not a
set. All this means is that it behaves like a set, except that it
cannot be an element of any set (or class). For example, the
class {x : x /∈ x} is not a set, since if it were, it would have
both to be and not to be a member of itself. This will not be
a problem for us. We now refer to the sentences σp and ¬σp

that we defined before as atomic sentences. We obtain from
these all sentences, in a broader sense than before, just as we
obtained propositional formulas from propositional variables
in Example . Thus every atomic sentence is a sentence, and
if σ and ρ are sentences, then so are ¬σ and (σ ∧ ρ). If a
sentence σ is true in a field K, we write

K |= σ;

and we define

Mod(σ) = {K ∈ C : K |= σ}.
Then

Mod(σp) = {K ∈ C : char(K) = p},
Mod(¬σ) = C rMod(σ),

Mod(σ ∧ ρ) = Mod(σ) ∩Mod(ρ).





If also Σ is a set of sentences, we define

Mod(Σ) =
⋃

σ∈Σ

Mod(σ);

this consists of the models of Σ. The classes Mod(Σ) are
precisely the closed classes (we have to call them classes now)
in a topology on C. In this topology, if two fields have the same
characteristic, then they belong to the same open classes. So
we might as well consider the class of all fields having a given
characteristic as being a single point. This is practically what
we did in Example , in considering the set of theories of
fields. The function

K 7→ Th(K)

from C to this set is continuous, and it induces a well-defined
homeomorphism from C/∼ to the set, where

K ∼ L ⇐⇒ char(K) = char(L),

and C/∼ is given the quotient topology, defined generally as
follows.

For an arbitrary topological space Ω, if ∼ is an equivalence
relation on Ω, then the quotient topology on Ω/∼ is the
finest in which the quotient map x 7→ [x] from Ω to Ω/∼ is
continuous.

Example . The torus is R2/∼, where

(a, b) ∼ (x, y) ⇐⇒ (a− x, b− y) ∈ Z2.

Suppose again we are given an indexed family (Ωi : i ∈ I) of
topological spaces, along with a set Ω. If for each i in I there
is a function fi from Ω to Ωi, we define the weak topology on
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Figure : An evaluation map

Ω to be the weakest in which the functions fi, are continuous.
In any case, given the fi, we can define a function f from Ω
to

∏

i∈I Ωi by
f(x) =

(

fi(x) : i ∈ I
)

. ()

This function is the evaluation map for the fi. It follows
then that

fi = πi ◦ f. ()

Conversely, if we are given f from Ω to
∏

j∈I Ωj , then, for each
i in I, we can use () to define fi from Ω to Ωi; and in this
case () holds. The functions f and fi, related by () and
(), can be depicted as in Figure .

Theorem . Let (Ωi : i ∈ I) be an indexed family of topo-
logical spaces, let Ω be a topological space, and fi : Ω → Ωi for
each i in I.

. The evaluation map is continuous if and only if each fi
is continuous.

. The evaluation map is injective if and only if the fi sep-
arate points in the sense that, if a 6= b in Ω, then, for
some i in I, fi(a) 6= fi(b).





. The topology on Ω is at least as strong as the weak topol-
ogy if and only if f is continuous.

. The topology on Ω is the weak topology, and the fi sepa-
rate points, if and only if the evaluation map is an em-

bedding in the sense of being a homeomorphism onto its
image.

Proof. Let the evaluation map be f . If this is continuous, then
so are the fi, since each πi is continuous, and a composite of
continuous functions is continuous. Suppose conversely each
fi is continuous. Then for each open subset Ui of Ωi, the
pre-image f−1

i [Ui] is open; but this is f−1
[

πi
−1[Ui]

]

, and sets
πi

−1[Ui] compose a sub-basis for the topology on
∏

i∈I Ωi; so
f must be continuous.

The next two claims are obviously true. Then in proving the
last claim, we may assume f is injective, so that f−1 is well
defined on f [Ω]. We may assume also that f is continuous.

Suppose first f is an embedding. Let U be an open subset
of Ω; we have to show that U is open in the weak topology.
Since f−1 on f [Ω] is continuous by assumption, and

(f−1)−1[U ] = f [U ],

this set is open in f [Ω]. Then for some open subset V of
∏

i∈I Ωi,
f [U ] = V ∩ f [Ω].

By this, and because f is injective, we have

U = f−1
[

f [U ]
]

= f−1[V ].

Thus U must already be open in the weak topology.
Now suppose conversely that Ω has the weak topology. As-

suming U is an open subset of Ω, we have to show that f [U ]





is open in f [Ω]. But U is a union of finite intersections of sets
fi

−1[Vi], where the Vi are open subsets of Ωi. Also,

f
[

fi
−1[Vi]

]

= {f(x) : fi(x) ∈ Vi}
=

{

(fj(x) : j ∈ I) : fi(x) ∈ Vi

}

=
{

(yj : j ∈ I) ∈ f [Ω] : yi ∈ Vi

}

= f [Ω] ∩ πi
−1[Vi],

and this is open in f [Ω]. Since f is injective, so that the
image under f of an intersection of sets is the intersection of
the images of the sets, it follows that f [U ] itself is open in
f [Ω].

A quotient topology is an example of a strong topology. If
Ω is a topological space, A is a set, and f : Ω → A, then
the strong topology on A is the strongest in which f is
continuous.

Theorem . The strong topology on A as above consists of
the subsets U of A such that f−1[U ] is open in Ω.

Proof. Let τ be the collection of such sets U . Then A itself is
in τ . If τ contains U and V , then

f−1[U ∩ V ] = f−1[U ] ∩ f−1[V ],

which is open, so U ∩ V ∈ τ . If {Ui : i ∈ I} ⊆ τ , then

f−1

[

⋃

i∈I

Ui

]

=
⋃

i∈I

f−1[Ui],

which is open, so
⋃

i∈I Ui ∈ τ . Thus τ is a topology on A.
Immediately f is continuous with respect to τ , but not with
respect to any stronger topology.
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Figure : A quotient

Given f from Ω to A, we can define on Ω the equivalence
relation ∼ by

x ∼ y ⇐⇒ f(x) = f(y).

Then there is a well-defined function f̃ from Ω/∼ to A, and
f̃ ◦ π = f as in Figure , where π is x 7→ [x] from Ω to Ω/∼.

Theorem . In the notation above, A having the strong
topology, the strong topology on Ω/∼ with respect to π is the
weak topology with respect to f̃ .

Proof. By Theorem , since f̃ is injective, it is an embedding
with respect to the weak topology on Ω/∼. Thus the weakly
open subsets of Ω/∼ are precisely the sets f̃−1[U ], where U is
an open subset of A. In this case f−1[U ] is open by Theorem
. But

f−1[U ] = π
−1
[

f̃−1[U ]
]

,

so by Theorem  again, f̃−1[U ] is strongly open.
Now let V be a strongly open subset of Ω/∼. Then π

−1[V ]
is open. But

π
−1[V ] ⊆ f−1

[

f
[

π
−1[V ]

]

]

. ()





Conversely, if a ∈ f−1
[

f
[

π
−1[V ]

]

]

, then f(a) ∈ f
[

π
−1[V ]

]

,

so for some b in π
−1[V ] we have f(a) = f(b); but this just

means π(a) = π(b), so a ∈ π
−1[V ]. Thus the inclusion ()

is an equation, so f
[

π
−1[V ]

]

is open. Moreover, since π is

surjective and f̃ is injective, we can compute

f̃−1
[

f
[

π
−1[V ]

]

]

= f̃−1

[

f̃
[

π

[

π
−1[V ]

]

]

]

= V.

Thus V is weakly open.

 Projective spaces

Example  (The projective plane). In Euclidean geometry,
Pappus’s Theorem is about a hexagon whose vertices lie al-
ternately on two straight lines. There are three cases. Using
Proposition i. of Euclid’s Elements, that triangles on the
same base and between the same parallels are equal, Pappus
shows that, if each of two pairs of opposite sides of the hexagon
are parallel, then the third pair are parallel. This means, in
Figure , since ACE and BDF are straight, and AB ‖ DE,
and BC ‖ DE, it follows that CD ‖ AF . With more work,
involving Thales’s Theorem (it is actually Proposition vi.
of Euclid’s Elements), Pappus shows that, if each pair of op-
posite sides of the parallelogram intersect, as in Figure , then
the three intersection points are on a straight line. A third case
is missing from Pappus’s work: if one pair of opposite sides of
the parallelogram are parallel, but another pair intersect, as
in Figure , then the third pair intersect, and the straight line
through the intersection points of the two intersecting pairs
of opposite sides is parallel to the parallel pair. We can un-
derstand all three cases of the theorem as one, if we say that
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parallel straight lines meet at a point “at infinity.” When to
the Euclidean plane we introduce all of the needed points at
infinity, we obtain the projective plane. We can do this as
follows.

Parallelism in the plane is an equivalence relation. For each
parallelism-class of straight lines in the plane, we need to in-
troduce a new point. If we fix a point O in the plane, then each
parallelism class has a unique member that passes through O.
This is still true, even if we consider the plane as embedded
in space, and O lies below the plane; and in this case, every
straight line through O that is not parallel to the plane passes
through the plane at a unique point. We now define the pro-
jective plane as the set of straight lines through a fixed point
O in space. For each point A of space that is different from O,
there is a unique straight line through A and O. This gives us a
function onto the projective plane from the collection of points
of space other than O. We can then give the projective plane





the strong topology induced from the Euclidean topology of
space.

Example  (Projective spaces). There are likewise projec-
tive spaces of all finite dimensions. Given n in N, we can define
∼ on Rn+1 r {0} so that a ∼ b if and only if, for some t in
Rr {0},

a = t · b.
Then by definition

Pn(R) = (Rn+1 r {0})/∼.

This is projective n-space. The quotient map x 7→ [x] from
Rn+1r{0} onto Pn(R) is still surjective when restricted to the
n-sphere, which defined by

Sn = {x ∈ Rn+1 : |x| = 1}.
Points a and b of the sphere are mapped to the same point of
projective space if and only if a = ±b. The function

x 7→ 1

|x| · x

from Rn+1r{0} to itself is continuous, and for each i in n+1,
it restricts to a homeomorphism from

{x ∈ Rn+1 : xi = 1},
which can be called a hyperplane, to

{x ∈ Sn : xi > 0},
a hemisphere. The hyperplane here being homeomorphic with
Euclidean n-space Rn, we obtain an embedding of this space
in projective n-space; and the points not in the image of the
embedding make up a space homeomorphic with projective
(n− 1)-space (assuming n > 0).





 Separation

If Ω is a topological space, and (ai : i ∈ I) is a sequence of
points of Ω, then, by generalizing the usual definition from
calculus, we say that the sequence converges to a, and a is
a limit of the sequence, if for all neighborhoods N of a, for
some m in ω, for all n in ω,

n > m =⇒ an ∈ N.

Theorem . In a topological space, if any two distinct points
of the space have disjoint neighborhoods, then limits of se-
quences are unique.

A space satisfying the hypothesis of the theorem is called
Hausdorff or T2. Here the letter T stands for the German
Trennung “separation.” Every metric space is Hausdorff. In a
Hausdorff space, the notation

lim
n→∞

an = a

is justified. But not every topological space is Hausdorff. A
space is Kolmogorov or T0 if, for any two distinct points,
there is a neighborhood of one that does not contain the other.
A space is T1 if, for any two points, each of the points has a
neighborhood that does not contain the other.

Example .
. A trivial space (as in Example ) with more than one

element is not even Kolmogorov.
. The Zariski topology in Example  (page ) is Kol-

mogorov, but not T1.
. An infinite space with the cofinite topology (Example )

is T1, but not Hausdorff.





. The Tarski topology in Example  is Hausdorff.

If a convergent sequence (ai : i ∈ ω) is injective (that is,
ai 6= aj whenever i 6= j), or if it at least has infinitely many
terms (that is, {ai : i ∈ I} is infinite), then every limit of the
sequence is a limit point of the set of its terms.

Exercise . A subset A of a metric space is closed if, for
every convergent sequence whose terms belong to a subset A,
the limit belongs to A.

 Countability

In an arbitrary metric space, a set may have a limit point that
is not the limit of any sequence of points of the set. We shall
establish this with Example  below. To do this, if A and B
are two sets, we write

A 4 B, A ≈ B, A ≺ B,

if there are, respectively, an injection from A to B, a bijection
from A to B, and an injection, but no bijection. In the middle
case, A and B are equipollent.

Theorem  (Cantor). A ≺ P(A).

Proof. There is an injection x 7→ {x} from A to P(A). Sup-
pose f is a injection from A to P(A), and let B = {x ∈
A : x /∈ f(x)}. For every c in A we have

c ∈ B ⇐⇒ c /∈ f(c);

this shows B 6= f(c). Thus f cannot be a bijection.





Theorem  (Schröder–Bernstein). If A 4 B and B 4 A,
then A ≈ B.

Proof. Suppose f is an injection from A to B; and g, from B
to A. We define recursively

A0 = Ar g[B], B0 = B r f [A],

An+1 = g[Bn], Bn+1 = f [An].

Strictly, the definition requires us to observe at the same time
by induction that

An ⊆ A, Bn ⊆ B.

We can conclude then

A0 ∩ An+1 = ∅, B0 ∩Bn+1 = ∅.

By induction

Ak ∩ An+k+1 = ∅, Bk ∩Bn+k+1 = ∅.

Also

Ak ≈ Bk+1, Ak+1 ≈ Bk,

and so

Ak ∪Ak+1 ≈ Bk ∪ Bk+1.

Therefore
⋃

i∈ω

Ai ≈
⋃

i∈ω

Bi. ()

Finally, if we let

Ck = Ar
⋃

i<k

Ai, Dk = B r
⋃

i<k

Bi,





then in each case
f [Ck] = Dk+1,

so, since D0 ⊇ D1,

f

[

⋂

i∈ω

Ci

]

=
⋂

i∈ω

Di.

This with () gives A ≈ B, since A is the disjoint union of
⋃

i∈ωAi and
⋂

i∈ω Ci, and similarly for B.

Thus the relation ≺ determines a partial ordering of the
classes of equipollent sets. By one formulation of the Axiom
of Choice (see page ), this ordering is a linear ordering.
If A 4 ω, then A is called countable. The alternative is
that A is uncountable, and this means ω ≺ A. By Cantor’s
Theorem, uncountable sets exist, P(ω) being an example.

Theorem . R ≈ P(ω).

Proof. We know from Example  (page ) that P(ω) is
equipollent with the Cantor set, which is a subset of the in-
terval [0, 1]; so P(ω) 4 [0, 1]. We also have [0, 1] 4 P(ω).
Indeed, every element of the interval can be written uniquely
as a sum

∑

i∈ω

ei
2i+1

,

where ei ∈ 2 and the sequence (ei : i ∈ ω) is not eventually 0
unless every term is 0. Then the element of [0, 1] determines
the subset {i ∈ ω : ei 6= 0} of ω. By the Schröder–Bernstein
Theorem, P(ω) ≈ [0, 1]; by Example  (page ), R ≈ (0, 1),
so we are done.

Theorem . ω×ω ≈ ω.





Proof. By the Schröder–Bernstein Theorem, it is enough to
show ω×ω 4 ω. This holds by means of the function

(k,m) 7→ 2k · 3m,

which is injective by the Fundamental Theorem of Arithmetic.

Corollary . Q is countable.

Corollary . If (Ai : i ∈ ω) is a countable sequence of count-
able sets, then

⋃

i∈ωAi is countable.

Proof. By the Axiom of Choice, for each i in ω, we can choose
some injection fi of Ai in ω. Then we can embed

⋃

i∈ωAi

in ω × ω by sending an element a to
(

k, fk(a)
)

, where k =
min{n ∈ ω : a ∈ An}.

Every linearly ordered set Ω is a topological space, just as
R is. There is a basis consisting of the open intervals, which
are sets of one of the forms

{x ∈ Ω: a < x < b}, {x ∈ Ω: x < b}, {x ∈ Ω: a < x};

we call these

(a, b), (−∞, b), (a,∞)

respectively. By yet another version of the Axiom of Choice,
every set can be well -ordered.

Example . Let R be well-ordered by a relation ⊳, and let
Ω consist of those a in R such that {x ∈ R : x⊳a} is countable.
If A is a subset of Ω, let

A∗ =
⋃

x∈A

{y ∈ R : y ⊳ x}.





If A is countable, then so is A∗, by the second corollary of
Theorem . In this case, RrA∗ 6= ∅, so we can let b be the
least real number with respect to ⊳ that is not in A∗. Then

A∗ = {x ∈ R : x ⊳ b},

so b ∈ Ω. This shows that every countable subset of Ω has
a strict upper bound in Ω. In particular, Ω has no greatest
element and is itself uncountable. Now define ∞ to be greater
than all elements of Ω. Then ∞ cannot be a limit point of any
countable subset of Ω. In particular, no countable sequence
in Ω converges to ∞. But ∞ is a limit point of Ω. If a ∈ Ω,
we understand (−∞, a) as {x ∈ Ω: x ⊳ a}. Since Ω has no
greatest element, we have

⋃

x∈B

(−∞, a) = Ω

when B is all of Ω, but never when B is a countable subset.

In the example, as a ranges over Ω, the intervals (−∞, a)
constitute an open covering of Ω; however, there is no count-
able sub-covering.

Theorem  (Lindelöf Covering Theorem). For every open
covering of a subset of R, there is a countable sub-covering.

Proof. The topology of R has basis consisting of the open in-
tervals (a, b), where a and b are in Q. In particular, by the first
corollary of Theorem , R has a countable base B. Suppose
O is an open covering of a subset A of R. For each a in A,
there are Ua in B and Oa in O such that

a ∈ Ua, Ua ⊆ Oa.





Let C be the subcollection {Ux : x ∈ R} of B. Then C is
countable, and

⋃

C ⊇ A. Moreover, for each U in C , by the
Axiom of Choice, there is U∗ in O such that U ⊆ U∗. Then
{X∗ : X ∈ C } is a countable subcollection of O whose union
includes A.

We consider some possible properties of spaces that involve
countability. A neighborhood base of a point in a topologi-
cal space is a collection of neighborhoods of the point in which
can be found a subset of every neighborhood of the point. A
subset of a space is dense if its closure is the whole space. We
now say that a space is

) first-countable, if its every point has a countable neigh-
borhood base;

) second-countable, if the space itself has a countable
base;

) separable, if it has a countable dense subset;
) Lindelöf, if for every open covering of the space, there

is a countable sub-covering.

Example . R has all four of the properties just named. In
particular, Q is dense in R. An uncountable discrete space has
only the first property; the same is true for Ω in Example .

Exercise . Every second-countable space is first-countable,
separable, and Lindelöf.

Example . The subsets [a, b) of R, where a < b, compose
a basis for a topology, since, if c < b, then

[a, b) ∩ [c, d) =
[

max{a, c},min{b, d}
)

,

and every point of R belongs to some interval [a, b). We shall
denote the resulting space by E: it is the Sorgenfrey line.





We can show that it is Lindelöf as follows. Suppose a collection
{[ai, bi) : i ∈ A} of intervals covers R. Let

U =
⋃

{(ai, bi) : i ∈ A}.

By the Lindelöf Covering Theorem, A has a countable subset
B0 such that

U =
⋃

{(ai, bi) : i ∈ B0}.
If U = R, we are done; but possibly U ⊂ R. For every point c
of {−∞} ∪ (Rr U), we can define

f(c) = inf
(

(c,∞)r U
)

,

where inf(∅) = ∞. For some i in B0, we have

c ∈ [ai, bi)r (ai, bi).

Then c = ai < bi 6 f(c). Thus
(

c, f(c)
)

is an interval and is in-
cluded in U . For every d in U , since U is open in the Euclidean
topology, the point sup

(

(−∞, d)r U
)

, where sup(∅) = −∞,
must actually be an element c of {−∞} ∪ (R r U), and then
d ∈ (c, f(c)). Thus

U =
⋃

x∈{−∞}∪RrU

(

x, f(x)
)

.

Since these intervals are disjoint, we can conclude, again by
the Lindelöf Covering Theorem, that RrU is countable. Thus
for some countable subset B1 of A,

Rr U ⊆
⋃

{

[ai, bi) : i ∈ B1

}

,

R =
⋃

{

[ai, bi) : i ∈ B0 ∪ B1

}

.

Since B0 ∪ B1 is countable, E must be Lindelöf.





Exercise . Show that E is (a) first-countable, and (b) sep-
arable, but (c) not second-countable.

Exercise . Let Ω be an uncountable set with a particular
element a. Show that

(a) Ω has a topology in which the open sets are precisely the
subsets of Ωr{a} and the complements of finite subsets
of this; also, this topology is

(b) Lindelöf, but
(c) not first-countable and
(d) not separable.

 Compactness

Theorem . For every open covering of a closed bounded
subset of R there is a finite sub-covering.

Proof. Let F be a closed bounded subset of R. By the Lindelöf
Covering Theorem, any open covering of F has a sub-collection
{Oi : i ∈ ω} whose union also includes F . Then we have a
decreasing sequence

F ⊇ F r O0 ⊇ F r (O0 ∪ O1) ⊇ F r (O0 ∪O1 ∪O2) ⊇ · · ·

of closed bounded subsets of R whose intersection is empty.
By the contrapositive form of the Cantor Intersection Theorem
(Theorem ), the sequence has an empty term. This means
that, for some n in ω,

F ⊆
⋃

i<n

Oi.





In a word, every closed bounded subset of R is compact.
In general, a topological space is compact if for every open
covering of the space, there is a finite sub-covering. When we
speak of a subset of a space as being compact, we mean that
it is compact in the subspace topology.

Example . A closed subset F of a compact space is com-
pact, since if O is an open covering of F , then O ∪ {F c} is
an open covering of the whole space, and so there is a finite
subcovering N , and then N r {F c} covers F and is a finite
sub-collection of O .

Exercise . The image of a compact space under a contin-
uous function is compact.

Theorem . The product of two compact spaces is compact.

Proof. Suppose Ω and Υ are compact, and O is an open cover-
ing of Ω×Υ. As in the proof of the Lindelöf Covering Theorem,
for each point (a, b) of Ω × Υ, for each element O of O that
contains (a, b), there are open subsets A of Ω and B of Υ such
that

(a, b) ∈ A×B, A× B ⊆ O.

The collection of the A×B covers Ω×Υ, and if it has a finite
sub-covering, then so does O . Thus we may assume that O

itself consists of such products A× B.
For each a in Ω, the set

{

Y : ∃X (X × Y ∈ O ∧ a ∈ X)
}

is an open covering of Υ. Since this is compact, there is a
finite sub-covering {Bi

a : i < n(a)}, and then there is a sub-
collection {Ai

a ×Bi
a : i < n(a)} of O that covers {a} ×Υ, and





where a ∈ Ai
a in each case. Let

Ca =
⋂

i<n

Ai
a;

this is an open neighborhood of a, and

Ca ×Υ ⊆
⋃

i<n(a)

Ai
a × Bi

a.

The collection {Cx : x ∈ Ω} is now an open covering of Ω.
Since this is compact, there is a finite subset {aj : j < m} of
Ω such that {Caj : j < m} covers Ω. Then the sub-collection

{Ai
aj
×Bi

aj
: j < m & i < n(aj)}

of O covers Ω×Υ.

We now have the following corollary of the last two theo-
rems.

Theorem  (Heine–Borel). For every n in N, every closed
and bounded subset of Rn is compact.

A collection of sets has the finite-intersection property
if every finite sub-collection has nonempty intersection.

Theorem . A space is compact if and only if every collec-
tion of closed subsets with the finite-intersection property has
nonempty intersection.

Proof. Let Ω be a topological space. If F is a collection of
closed subsets of Ω with the finite intersection property, then
{Xc : X ∈ F} is a collection O of open subsets of Ω, and
no finite subset of O covers Ω. If Ω is compact, then O





itself must not cover Ω, and this means
⋂

F 6= ∅. Con-
versely, if O is an open covering of Ω, let F be the collection
{Xc : X ∈ O} of closed subsets of Ω. Then

⋂

F = ∅. If every
collection of closed subsets with the finite intersection prop-
erty has nonempty intersection, then F must not have the
finite-intersection property. In this case, some finite subset of
O covers Ω.

Exercise . Using the idea of Example , we have the con-
verse of the Heine–Borel Theorem.

Theorem  (Bolzano–Weierstrass). For every n in N, every
bounded infinite subset of Rn has a limit point.

Proof. Let A be a bounded subset of Rn. If A is not closed,
then it must have a limit point. Suppose A is closed, but has no
limit points. Then every point of A has an open neighborhood
that contains no other point of A. These open neighborhoods
constitute an open covering of A for which there is no sub-
covering. Since A is compact by the Heine–Borel Theorem, A
must be finite.

Example  (Divide and Conquer). One can also prove the
Bolzano–Weierstrass Theorem independently. We do this in R.
Suppose A is an infinite subset of a closed bounded interval
[a, b], and let c = (a+b)/2. Then A has infinitely many points
in at least one of the intervals [a, c] and [c, b]. Let [a∗, b∗] be
one of these intervals so that A ∩ [a∗, b∗] is infinite. We now
define recursively

[a0, b0] = [a, b], [an+1, bn+1] = [an
∗, bn

∗].

By the Cantor Intersection Theorem, the intervals [an, bn] have
a common point d. For every positive r in R, there is n in ω





such that bn − an < r. In this case, [an, bn] ⊆ B(d; r), so the
ball contains infinitely many elements of A. Thus d is a limit
point of A.

Example  (Logical compactness). We can prove the com-
pactness of the Tychonoff topology on P(ω) by another “Di-
vide and Conquer” method. We use the setting of Example
 (page ), where the closed subsets of P(ω) are just the
sets of models of formulas and collections of formulas. Given
a collection F of formulas whose every finite subset has a
model, we show that F has a model. The assumption is that
{Mod(F ) : F ∈ F} has the finite-intersection property; we
aim to prove that the whole collection has nonempty inter-
section. We first observe that, for all formulas H , one of the
collections

{Mod(F ) : F ∈ F} ∪ {Mod(H)},
{Mod(F ) : F ∈ F} ∪ {Mod(¬H)}

has the finite-intersection property. For suppose the former
does not. Then F has a finite subset {Fi : i < m}, in ev-
ery model of which, ¬H is true. Then for every finite subset
{Gj : j < n} of F , the set {Gj : j < n} ∪ {¬H} has models,
namely the models of {Gj : j < n} ∪ {Fi : i < m}, which exist
by assumption. Thus {Mod(F ) : F ∈ F} ∪ {Mod(¬H)} has
the finite intersection property.

There is now a sequence (Hi : i ∈ ω) where each Hi is either
Pi or ¬Pi, and for each n in ω, the collection

{Mod(F ) : F ∈ F} ∪ {Mod(Hi) : i < n}

has the finite intersection property. Now let A be the subset
of ω consisting of those n such that Hn is Pn. This means A is





the unique model of {Hn : n ∈ ω}. Let F ∈ F . For some n in
ω, for every propositional variable Pk appearing in F , k < n.
Then for all B and C in P(ω),

B ∩ n = C ∩ n =⇒ FB = FC .

We know that Mod({F} ∪ {Hi : i < n}) is nonempty. If it
contains B, then B ∩ n = A ∩ n, so A ∈ Mod(F ). Thus A is
a model of F .




