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Introduction

References for these notes include Hoffman and Kunze [], Koç
[], Lang [, ], and Roman [], but I may not follow them
closely.

Since in set theory the letter ω denotes the set {0, 1, 2, . . . }
of natural numbers, I let N denote the set {1, 2, 3, . . . } of
counting numbers. For notational convenience, each n in N
is the set {0, . . . , n − 1}, which has n elements. The expres-
sions i < n and i ∈ n are interchangeable.

An expression like
∧

i<n

ϕ(i)

means ϕ(i) holds whenever i < n; that is,

i < n =⇒ ϕ(i).

The notation f : A → B is to be read as a sentence, “f is a
function from A to B.”





 Determinants

. Matrix multiplication

The structures C, R, Q, Z, and Z/(n), where n ∈ N, where

N = {x ∈ Z : x > 0},

are commutative rings.

For us, a ring will be a structure (R, · , 1), where

) R is an abelian group, written additively,
) · is a multiplication on R, that is, a binary operation

on R that distributes from each side over addition,
) · is associative, and
) 1 is a two-sided identity with respect to · .

We usually write (R, · , 1) as R.

A unit of a ring is an invertible element, that is, an element
with a left inverse and a right inverse. When these one-sided
inverses exist, they are equal. The units of a ring R compose
a multiplicative group, denoted by

R×.

A ring is commutative if its multiplication is commutative.
We gave examples above. For an example of a group of units,
we note that, for all n in N,

|Z/(n)×| = |x ∈ Z/(n) : gcd(x, n) = 1}| = φ(n).





A commutative ring R is a field if R× = Rr{0}. If p is prime,
then Z/(p) is the field Fp, and

Fp
× ∼= Zp−1,

where in general Zn is the cyclic group of order n, and Z/(n)
means (Zn, · , 1).

In this chapter, we shall work with an arbitrary commutative
ring K. The definition of a module over K is the same as the
definition of a vector space, when K is a field. An abelian
group is a module over Z.

If (m,n) ∈ N×N, then Km×n and Kn are modules over K,
and

(X,y) 7→ Xy : Km×n ×Kn → Km,

defined as follows.
If Ω is a set, we denote by

KΩ

the K-module of functions from Ω to K. This defines Kn

when we understand n as the n-element set {0, . . . , n−1}. An
arbitrary element of Kn is one of

(a0, . . . , an−1), (aj : j ∈ n), a.

The superscripts are row numbers, when we think of a as the
1× n matrix







a0

...
an−1






.

Many persons understand Kn as K [n], where [n] is the set
{1, . . . , n} with n elements. What is important is that the
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entries of an element of Kn be functions into K from a linearly
ordered set with n elements.

An element A of Km×n is a matrix of m rows and n columns,
having entries aij from K, where i ∈ m and j ∈ n, so

A =







a00 · · · a0n−1
...

. . .
...

am−1
0 · · · am−1

n−1






= (aij)

i∈m
j∈n .

If one prefers, one may work instead with elements of E[m]×[n],
and one may write aij for aij. If also b ∈ Kn, we define

Ab =

(

∑

j∈n

aijb
j : i ∈ m

)

, (.)

an element of Km. As in (.) with j, when an index appears
twice, once raised and once lowered, it is usually being summed
over. When j ∈ n, we define

ej = (δij : i ∈ n) (.)

in the module Kn, where

δij =

{

1, if i = j,

0, if i 6= j.
(.)

Then

Aej =

(

∑

k∈n

aikδ
k
j : i ∈ n

)

= (aij : i ∈ n) = aj , (.)

this being column j of A. If b ∈ Kn, then

b =
∑

j∈n

bjej . (.)
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We denote by
τA

the function x 7→ Ax from Kn to Km.
To say that a function ϕ from Kn to Km is a linear trans-

formation means that ϕ is a homomorphism of modules over
K, that is,

ϕ(b+ c) = ϕ(b) + ϕ(c), ϕ(d · b) = d · ϕ(b).

The linear transformations from Kn to Km compose a module
over K denoted by

L (Kn, Km).

Theorem . X 7→ τX : Km×n ∼= L (Kn, Km).

Proof. We have to check that
() τA ∈ L (Kn, Km) for each A in Km×n;
() X 7→ τX is a homomorphism;
() if τA = 0, then A = 0;
() every member of L (Kn, Km) is τA for some A in Km×n.

Each step in the verification of the first two points uses the
definition of a K-module or a property of K as a commutative
ring. If τA = 0, this means in each case 000 = Aej, which is
column j of A by (.); so A = 0.

Finally, since each τA is linear, from (.) and (.) we have

Ab =
∑

j∈n

bjaj .

If T ∈ L (Kn, Km), by defining

Tej = aj,

we obtain A, and then

T = τA.

. Matrix multiplication 



If still A ∈ Km×n, and now also C ∈ Kn×s, then we define

AC =

(

∑

j∈n

aijc
j
k

)i∈m

k∈s

, (.)

an element of Km×s. We shall let M denote the special case
Kn×n, which is closed under matrix multiplication. We have

IA = A = AI,

where
I = (δij)

i∈n
j∈n. (.)

Theorem . When A ∈ Km×n and C ∈ Kn×s, then

τAC = τA ◦ τC .

Thus for any matrices A, B, and C for which either of the
products (AB)C and A(BC) is defined, then both are defined,
and they are equal. In particular, the structure (M, ·, I) is a
ring, and X 7→ τX from M to L (Kn, Kn) is an isomorphism
of rings.

. Determinants

We use the possibility of Gauss–Jordan elimination to moti-
vate the so-called Leibniz formula (.) for the determinant.

.. Desired Properties

Let M be the ring Kn×n. We want to define a determinant

function,
X 7→ detX,
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from M to K so that

detX ∈ K× ⇐⇒ X ∈ M×. (.)

If K is the two-element field F2, then (.) is equivalent to

detX =

{

1, if X ∈ M×,

0, otherwise.
(.)

Moreover, with this definition,

det(XY ) = detX det Y. (.)

However, over any K, we also want

detX = f
(

xi
j : (i, j) ∈ n× n

)

(.)

for some polynomial f (namely an element of the free abelian
group generated by products of the variables xi

j). In general
then, (.) will fail. We still want (.) to hold, and this and
(.) imply

det I = 1. (.)

.. Additional properties

In seeking a determinant function satisfying (.), (.), and
(.), and therefore (.), we consider what we know about
M×. An element A of M is in M× just in case A is row-
equivalent to I. This means, for some elementary matrices
Ei,

A = E1 · · ·EnI. (.)

Thus, if (.) and (.) hold, then detA will determined by
the detEi.
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We recall that an elementary matrix is the result of ap-
plying to I an elementary row operation. If Φ is such,
then

Φ(I)A = Φ(A).

Here Φ does one of the following:
) add to one row another row, scaled by some a in K;
) interchange two rows;
) scale a row by an element s of K×.

Let us denote the specific instance of Φ respectively by

Φa, Ψ, Θs.

We do not specify the row or rows involved. We draw the
following conclusions about determinants.

. If (.) is to hold, then, for some single-variable polyno-
mial f ,

det Φa(I) = f(a).

If also (.) is to hold, then, since

Φa(I) · Φb(I) = Φa+b(I),

we must have
f(a) · f(b) = f(a+ b).

In particular, f(x)n = f(nx) for all n in N, and so, since f 6= 0,
we must have

det Φa(I) = 1. (.)

. If, again, (.) is to hold, then, since

Ψ(I) ·Ψ(I) = I,

we should have det Ψ(I) = ±1; we choose

detΨ(I) = −1. (.)
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. If, again (.) is to hold, then, for some single-variable
polynomial g,

detΘs(I) = g(s).

If also (.) is to hold, then, since

Θs(I) ·Θt(I) = Θst(I),

we must have
g(s) · g(t) = g(st).

In particular, g(x)n = g(xn), so detΘs(I) must be a power of
s; we choose

detΘs(I) = s. (.)

The definitions, or choices, (.), (.), and (.) will
follow if X 7→ detX is an alternating multilinear form.

We can understand any module Km×n as (Km)n or (Kn)m,
treating an element A as one of

(

(aij : i ∈ m) : j ∈ n
)

,
(

(aij : j ∈ n) : i ∈ m
)

.

Given a module V over K and n in N, we can form the module
V n. For each k in n, we let πk the function from V n to V given
by

πk(xj : j ∈ n) = xk.

Suppose now
ϕ : V n → K.

Given k in n and a function j 7→ aj from n r {k} to V , we
let ι be the function from V to V n given by the rule that, for
each j in n,

πj(ι(x)) =

{

x, if j = k,

aj, if j ∈ nr {k}.

. Determinants 



If the function x 7→ ϕ(ι(x)) is always linear, then ϕ itself is
a multilinear form, specifically an n-linear form, on V . If,
further, whenever i < j < n,

xi = xj =⇒ ϕ(xk : k ∈ n) = 0,

then ϕ is alternating as a multilinear form.
We let the group of permutations of a set Ω be

Sym(Ω).

If Ω is finite, then Sym(Ω) is generated by transpositions. If
σ ∈ Sym(n), we define

sgn(σ) = (−1)|(i,j)∈n×n : i<j & σ(i)>σ(j)}|, (.)

one of the elements of Z×.

Theorem . For every n in N, the function ξ 7→ sgn(ξ) on
Sym(n)

) is given by

sgn(σ) =
∏

i∈j∈n

σ(i)− σ(j)

i− j
, (.)

) is a homomorphism onto Z×, and
) takes every transposition to −1.

Proof. . Since

∏

i∈j∈n

σ(i)− σ(j)

i− j
=

∏

i∈j∈n(σ(i)− σ(j))
∏

i∈j∈n(i− j)
= ±1,

(.) follows from (.).
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. Note

sgn(τσ) =
∏

i∈j∈n

τσ(i)− τσ(j)

i− j

=
∏

i∈j∈n

(

τσ(i)− τσ(j)

σ(i)− σ(j)
·
σ(i)− σ(j)

i− j

)

=
∏

i∈j∈n

τ(i)− τ(j)

i− j
· sgn(σ) = sgn(τ) · sgn(σ).

. Letting

τ = (0 1),

since every transposition is σ−1 · τ · σ for some σ, it is enough
to note that

sgn(τ) = −1,

since

τ(i)− τ(j)

i− j

{

> 0, when (i, j) 6= (0, 1),

< 0, when (i, j) = (0, 1).

An element σ of Sym(n) is even if sgn(σ) = 1; this means
σ is a product of an even number of transpositions. The even
permutations compose the subgroup of Sym(n) denoted by

Alt(n).

Theorem . For any module V over K, for any n in N, for
any n-linear form ϕ on V , for each σ in Sym(n),

ϕ(xσ(j) : j ∈ n) = sgn(σ) · ϕ(xj : j ∈ n).

. Determinants 



Proof. Every permutation of a finite set being a product of
transpositions, we need only prove the claim when n = 2 and
σ is the nontrivial permutation of 2. Assuming

x = y =⇒ ϕ(x,y) = 0,

we have 0 = ϕ(x+ y,x+ y), but the latter is

ϕ(x,x) + ϕ(x,y) + ϕ(y,x) + ϕ(y,y),

which reduces to ϕ(x,y) + ϕ(y,x).

In particular, if σ ∈ Alt(n), then

ϕ(xσ(j) : j ∈ n) = ϕ(xj : j ∈ n).

.. Existence and uniqueness

Theorem . There is at most one alternating multilinear
function X 7→ detX from M to K that satisfies (.), and if
it does exist, it satisfies satisfies (.) and (.).

Proof. The hypotheses ensure (.), (.), and (.), as
well as (.). Then (.) holds when X is elementary, and
therefore it holds for all X, and also (.) holds by the analysis
(.) and since every non-invertible matrix is row-equivalent
to one with a zero row.

We now show that there is at least one function X 7→ detX
as desired. We define

detX =
∑

σ∈Sym(n)

sgn(σ)
∏

i∈n

xi
σ(i). (.)

Thus (.) holds.
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Theorem . For all A in M ,

det(At) = detA.

Proof. Since sgn(σ−1) = sgn(σ), we compute

det(At) =
∑

σ∈Sym(n)

sgn(σ)
∏

i∈n

a
σ(i)
i

=
∑

σ∈Sym(n)

sgn(σ−1)
∏

i∈n

aiσ−1(i),

which is detA.

Theorem . The function given by (.) is n-linear and al-
ternating, and satisfies (.).

Proof. By (.), since
∏

i∈n

δiσ(i) = 0 ⇐⇒ σ 6= idn,

(.) holds. For multilinearity, Suppose matrices A, B, and
C agree everywhere but in some row k, and akj = s · bkj + t · ckj
for each j in n, for some s and t in K. Then

detA =
∑

σ∈Sym(n)

sgn(σ)
∏

i∈nr{k}

aiσ(i) · (s · b
k
σ(k) + t · ckσ(k))

= s · detB + t · detC.

Finally, if i < j < n, and τ in Sym(n) transposes i and j,
then τ−1 = τ , and ξ 7→ ξ ◦ τ is a bijection between Alt(n) and
Sym(n)rAlt(n), so

detA =
∑

σ∈Alt(n)

(

∏

k∈n

akσ(k) −
∏

k∈n

a
τ(k)
σ(k

)

.

If moreover aik = ajk for each k in n, then detA = 0.
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. Inversion

We know from Theorems  and  that (.) holds. In partic-
ular, if detA ∈ K×, then A−1 exists in M . We can compute
A−1 by the reduction in (.); but we now develop another
method.

As in (.), if τ is a bijection from a finite ordered set S to
a finite ordered set T , we can define

sgn(τ) = (−1)|(i,j)∈S×S : i<j & σ(i)>σ(j)}|.

There is a unique isomorphism ϕ from S to T , and then

ϕ−1 ◦ τ ∈ Sym(S),

sgn(τ) = sgn(ϕ−1 ◦ τ).

Suppose now σ ∈ Sym(n) and k ∈ n. Letting S be n r {k}
and T be nr {σ(k)}, we can define τ to be the restriction of
σ to S, so that τ is a bijection from S to T . Then

sgn(σ)

sgn(τ)
= (−1)|{j∈nr{k} : j>k ⇐⇒ σ(j)<σ(k)}|.

Theorem . In the notation above,

sgn(σ)

sgn(τ)
= (−1)k+σ(k).

Proof. We may assume k 6 σ(k). There are at least σ(k)− k
values of j greater than k and the condition

j > k ⇐⇒ σ(j) < σ(k) (.)

is satisfied. For every additional such value, there must be a
value less than k for which (.) is satisfied. This proves the
claim.
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For any (k, ℓ) in n × n, assuming n > 1, we let Âk
ℓ be the

matrix that we obtain from A by deleting row k and column
ℓ. Formally,

Âk
ℓ =

(

a
[i,k]
[j,ℓ]

)i∈n−1

j∈n−1
,

where

[i, k] =

{

i, if i < k,

i+ 1, if k 6 i.

Theorem . For any k in n,

detX =
∑

j∈n

(−1)k+jxk
j det X̂

k
j .

Proof. We group the terms in (.), which are indexed by σ
in Sym(n), according to the value of σ(k):

detX =
∑

j∈n

∑

σ∈Sym(n)
σ(k)=j

sgn(σ)
∏

i∈n

xi
σ(i)

=
∑

j∈n

xk
j

∑

σ∈Sym(n)
σ(k)=j

sgn(σ)
∏

i∈n
i 6=k

xi
σ(i)

=
∑

j∈n

(−1)k+jxk
j det X̂

k
j

by Theorem .

We now define the operation X 7→ adj(X) on M by

adj(A) =
(

(−1)i+j det Âj
i

)i∈n

j∈n
.

This is the adjugate of A.
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Theorem . For all A in M ,

A adj(A) = detA · I.

Proof. By Theorem , if A adj(A) = B, then bij is the deter-
minant of the matrix that we obtain from A by replacing row
j with row i. This determinant is

• detA, if i = j;
• 0, if i 6= j, since X 7→ detX is alternating.

Theorem . If detA ∈ K×, then

A−1 = (detA)−1 · adj(A).

Proof. Assuming detA ∈ K×, if we denote (detA)−1 · adj(A)
by B, then by Theorem ,

AB = I.

Since A−1 does exist, we have

A−1 = A−1(AB) = (A−1A)B = IB = B.
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 Polynomials

. Characteristic values

We henceforth suppose K is a field; still M is Kn×n. For
any A in M , an element λ of K is a characteristic value or
eigenvalue of A if, for some b in Kn,

Ab = λ · b. (.)

In this case, b is a characteristic vector or eigenvector of
A associated with λ. Rewriting (.) as

(A− λ · I)b = 000

shows that the characteristic values of A are precisely the ze-
roes of the polynomial

det(A− x · I),

which is called the characteristic polynomial of A.
If λ is indeed a characteristic value of A, then the null-space

of A− λ · I is the characteristic space or eigenspace of A
associated with λ.

Theorem . Eigenvectors corresponding to distinct eigen-
values of any matrix are linearly independent.

Proof. We prove the claim by induction on the number of
eigenvectors. The empty set of eigenvectors is trivially linearly





independent. Suppose (vi : i < k) is linearly independent, each
vi being an eigenvector of A with associated eigenvalue λi, the
λi being distinct. Let vk be a an eigenvector associated with
a new eigenvalue, λk. If

∑

i6k

xivi = 000, (.)

then

000 = (A− λk · I)
∑

i<m+1

xivi =
∑

i6k

(λi − λk)x
ivi

=
∑

i<k

(λi − λk)x
ivi,

so xi = 0 when i < k, and then also xk = 0 by (.).

If A in M has n linearly independent eigenvectors bi, each
associated with an eigenvalue λi (possibly not distinct), then
the eigenvectors are the columns of an element B of M×, and

AB = BL,

where

ℓij =

{

λi, if i = j,

0, if i 6= j,

or in short
L = diag(λi : i ∈ n),

a diagonal matrix. Thus

B−1AB = diag(λi : i ∈ n),

and in particular A is diagonalizable.
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It will be useful to recall that every matrix B in M× is
the change-of-basis matrix from the basis (j : j ∈ n) of Kn

consisting of the columns of B to the standard basis of Kn.
Every matrix of the form P−1AP for some P in M× is sim-

ilar to A (in group theory one says conjugate). Similarity of
matrices is an equivalence relation, as is row-equivalence (men-
tioned first on page ); but they are different relations. We
want to characterize the diagonalizable matrices.

A matrix A in M is triangular if
∧

j<i<n

aij = 0. (.)

A matrix similar to a triangular matrix is triangularizable.

Theorem . A matrix A in M is triangularizable just in
case, for some B in M×,

∧

j∈n

Abj ∈ span{b0, . . . , bj}; (.)

and in this case B−1AB is triangular.

Proof. The condition (.) on A for being triangular means
precisely

∧

j∈n

Aej =

j
∑

i=0

aijei, (.)

and thus that I is a matrix B as in the statement of the the-
orem. If B−1AB is triangular, then putting this matrix in
place of A in (.) yields (.). Conversely, if B is as in the
statement, then we can write (.) as

∧

j∈n

ABej ∈ span{Be0, . . . , Bej},

. Characteristic values 



and then
∧

j∈n

B−1ABej ∈ span{e0, . . . , ej},

so B−1AB is triangular.

Theorem . Every matrix in M is triangularizable over an
algebraically closed field.

Proof. Given A in M , assuming K is algebraically closed, so
that the characteristic polynomial of A has at least one zero,
and therefore A has at least one eigenvector, we extend this to
a basis of Kn that satisfies (.). Doing this will be enough,
by Theorem .

We use induction on n. The claim is trivial when n = 1.
Suppose it holds when n = m. Now let n = m + 1 and
A ∈ M . There is a basis (p0, . . . ,pm) of Kn such that p0

is an eigenvector. Thus the basis satisfies the first conjunct
of (.). We could satisfy the remaining conjuncts, by the
inductive hypothesis, if we had

m
∧

j=1

Apj ∈ span{p1, . . . ,pm}.

However, we may not actually have this. Nonetheless, there
are matrices B and C such that

τB

(

m
∑

i=0

xipi

)

= x0p0, τC

(

m
∑

i=0

xipi

)

=

m
∑

i=1

xipi. (.)

In words,
• τC is an endomorphism of span{p1, . . . ,pm}, and there-

fore so is τCA;
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• τB is a homomorphism from Kn to span{p0}, and there-
fore so is τBA.

Now span{p1, . . . ,pm} has a basis (v1 . . . , vm) such that

m
∧

j=1

CAvj ∈ span{v1 . . . , vj},

by inductive hypothesis. Therefore now

m
∧

j=1

(BA + CA)vj ∈ span{v0, . . . , vj}.

From all of (.),
τB + τC = idKn,

and so
m
∧

j=1

Avj ∈ span{v0, . . . , vj}.

Finally, since v0 is an eigenvector of A,

m
∧

j=0

Avj ∈ span{v0, . . . , vj}.

Thus we have (.). This completes the induction.

We can write out the foregoing proof entirely in terms of
matrices as follows. We have

P−1AP =

(

λ a

000 D

)

for some m×m matrix D, where λ is the eigenvalue associated
with p0. We choose B and C so that

P−1BP =

(

1 000
000 0

)

, P−1CP =

(

0 000
000 I

)

.
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Then

P−1CAP = P−1CPP−1AP =

(

0 000
000 I

)(

λ a

000 D

)

=

(

0 000
000 D

)

and

P−1BAP =

(

1 000
000 0

)(

λ a

000 D

)

=

(

λ a

000 0

)

.

Therefore

P−1BAP + P−1CAP = P−1AP,

BA+ CA = A.

By inductive hypothesis, for some Q, Q−1DQ is a triangular
matrix T . Then

(

1 000
000 Q

)−1

P−1CAP

(

1 000
000 Q

)

=

(

0 000
000 T

)

,

while

(

1 000
000 Q

)−1

P−1BAP

(

1 000
000 Q

)

=

(

1 000
000 Q−1

)(

λ aQ
000 0

)

=

(

λ aQ
000 0

)

,

and therefore
(

1 000
000 Q

)−1

P−1AP

(

1 000
000 Q

)

=

(

λ aQ
000 T

)

,

a triangular matrix.
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. Polynomial functions of matrices

Although K is a field, the ring M is not commutative when
n > 1. However, it has commutative sub-rings. Indeed, for
every A in M , the smallest sub-ring of M that contains A is
commutative. We may denote this sub-ring by

K[A].

This is also a vector space over K, spanned by the powers I,
A, A2, A3, . . . , of A. Thus

K[A] =
{

f(A) : f ∈ K[x]
}

,

where, if

f(x) =
m
∑

i=0

fix
i (.)

in K[x] (and xi is now the power
∏

k∈i x), we define

f(A) =
n
∑

i=0

fiA
i.

If f(A) is the zero matrix, we may say A is a zero of f .
However, theorems about zeroes in fields may not apply here.
For example, since K[A] may have zero divisors, the number
of zeroes of f in M may exceed deg f . Indeed, A itself may be
a zero divisor, as for example when

A =

(

0 1
0 0

)

,

since then A2 is the zero matrix. In this case every scalar
multiple b · A of A is a zero in K[A] of the polynomial x2.
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. Cayley–Hamilton Theorem

Given A in M , we are going to want to know that A is a zero
of some nonzero polynomial over K. Suppose

f(x) = det(x · I− A), (.)

the characteristic polynomial of A. The equation remains cor-
rect automatically when we replace x with an element of K or
of any field that includes K. Note however that, for a matrix
B in M , while f(B) ∈ M , we have

det(BI−A) ∈ K.

Since AI − A is the zero matrix, we have det(AI − A) = 0.
This observation is not enough to ensure that f(A) is the zero
matrix. Nonetheless, we shall show that it is, in two ways.

Theorem  (Cayley–Hamilton). Over any field, every ma-
trix is a zero of its characteristic polynomial.

First proof. By Theorem , with f as in (.) we have

f(x) · I = (x · I− A) adj(x · I−A). (.)

Moreover,

f(x) · I =
n
∑

j=0

xj · Fj,

where, in the notation of (.),

F = fj · I.

Likewise, for some matrices Bj in M ,

adj(x · I− A) =
n−1
∑

j=0

xj · Bj.
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Thus (.) becomes

n
∑

j=0

xj · fj · I = (x · I−A)

n−1
∑

j=0

xj ·Bj . (.)

This then will be true when x is replaced by an element of
M that commutes with A. Since A is such an element, and
the right member of (.) becomes 0 when x is replaced with
A, the same is true for the left member; but this just means
f(A) = 0.

Second proof. Letting f be the characteristic polynomial of
A in M as in (.), we want to show f(A) = 0. Since the
determinant function is multiplicative, for every P in M×,

det(x · I−A) = det
(

P−1 · (x · I− A) · P
)

= det(x · I− P−1AP ).

By Theorem , for some matrix P , P−1AP is a triangular
matrix. It does not matter that entries of P may come from
the algebraic closure of K, possibly not K itself. We may
assume A is triangular. The characteristic polynomial of A is
now

∏

i<n

(x− aii).

Since the product is independent of the order of the factors,
so is the product

∏

i<n(A− aii · I). We have to show that this
product is 0. Column j of the product is

∏

i<n

(A− aii · I)ej .
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However, by (.),

(A− ajj · I)ej = Aej − ajjej =
∑

i<j

ajiei, (.)

and in particular

(A− ajj · I)ej ∈ span{ei : i < j}.

By induction then,

∏

i6j

(A− aii · I)ej = 000.

Finally

∏

i∈n

(A− aii · I)ej =
∏

j<i<n

(A− aii · I)
∏

i6j

(A− aii · I)ej = 000.

. Minimal polynomial

Theorem . For any A in M , the subset

{f ∈ K[x] : f(A) = 0}

of K[x] is a nonzero ideal.

Proof. The set is easily an ideal. It is nontrivial for con-
taining the characteristic polynomial of A; alternatively, since
dimM = n2, there must be some coefficients fi, not all 0, for
which

f0 + f1 · A+ · · ·+ fn2 · An2

= 0.
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Since K[x] is a principal-ideal domain, the ideal of the theo-
rem has a monic generator, called the minimal polynomial

of A. This polynomial therefore is a factor of the characteristic
polynomial of A. In particular, every zero in K of the minimal
polynomial is a zero of the characteristic polynomial.

Theorem . In a field, every zero of the characteristic poly-
nomial of a square matrix over the field is a zero of the minimal
polynomial. Hence every irreducible factor of the characteris-
tic polynomial is a factor of the minimal polynomial.

Proof. A zero of the characteristic polynomial of A is just an
eigenvalue of A. Let λ be an eigenvalue, with corresponding
eigenvector b. Thus

Ab = λb,

Ajb = λjb,

f(A)b = f(λ)b

for all f(x) in K[x]. In particular,

f(A) = 0 =⇒ f(λ) = 0.

If f is the minimal polynomial of A, then f(A) = 0, so f(λ) =
0.

Theorem . A square matrix is diagonalizable if and only if
its minimal polynomial is the product of distinct linear factors.

Proof. Suppose A in M is diagonalizable, so that, for some B
in M×, for some λj in K,

AB = B diag(λj : j ∈ n).
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Letting column j of B be bj , we have

Abj = λjbj,

(A− λj · I)bj = 000.

Letting m = |{λj : j ∈ n}|, we may assume

{λj : j ∈ n} = {λi : i ∈ m}.

For all j in n, we have

∏

i∈m

(A− λi · I)bj = 000.

The bj being linearly independent, letting

f(x) =
∏

i∈m

(x− λi), (.)

we conclude f(A) = 0, so the minimal polynomial of A is
a factor of f(x). (It is the same as f(x), since the λi are
eigenvectors of A, and each of these must be a zero of the
minimal polynomial, by Theorem .)

Suppose conversely f(x) as given by (.), where again the
λi are all distinct, is the minimal polynomial of A. In partic-
ular, f(A) = 0. If j ∈ m, we can define gj(x) in K[x] by

(x− λj)gj(x) = f(x). (.)

The λj being distinct, the greatest common divisor of the gj(x)
in K[x] is unity. Since K[x] is a Euclidean domain, by Bézout’s
Lemma there are qj(x) in K[x] such that

∑

j∈m

gj(x)qj(x) = 1.
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Then
∑

j∈m

gj(A)qj(A) = I.

Thus for every v in Kn, when we define

gj(A)qj(A)v = wj , (.)

we have
∑

j∈m

wj = v.

But then since f(A) = 0, from (.) and (.) we have

000 = f(A)qj(A)v = (A− λj)wj ,

so that wj belongs to the eigenspace associated with λj. In
particular, by Theorem , there must be n linearly indepen-
dent eigenvectors, so A is diagonalizable.

. Minimal polynomial 



 Jordan Normal Form

The presentation here is based mainly on Lang [].

. Cyclic spaces

Supposing λ is an eigenvalue of the n× n matrix A, we let

Bλ = A− λ · I. (.)

If v0 is a corresponding eigenvector, this means

v0 6= 000, Bλv0 = 000.

If possible now, let Bλv1 = v0. Then

Av1 = λv1 + v0, Bλ
2v1 = 000.

Suppose, in this way, for some s, when 0 < k < s,

Avk = λvk + vk−1, Bλ
k+1vk = 000.

Then defining P as the n× s matrix

(

v0 · · · vs−1

)

,

we have

AP =
(

Av0 · · · Avs−1

)

=
(

λv0 v0 + λv1 · · · vs−2 + λvs−1

)

= PJ, (.)





where J is the s× s matrix
















λ 1 0 . . . 0

0 λ 1
. . .

...

0 0
. . .

. . . 0
...

. . . λ 1
0 . . . . . . 0 λ

















.

Theorem . The columns of the matrix P just defined are
linearly independent.

Proof. Writing v for vs−1 and B for Bλ, we have

P =
(

Bs−1v · · · B0v.
)

.

We show the columns are linearly independent. Suppose for
some scalars ci,

∑

i<s

ci ·Bs−iv = 000.

Then f(B)v = 000, where

f(x) =
∑

i<s

cixs−i.

However, also g(B)v = 000, where

g(x) = xs.

Letting h be the greatest common factor of f and g, we have

h(B)v = 000.

Also, h(x) = xr for some r, where r 6 s. When r < s, we
have

Brv = vs−1−r,

which is not 000. Thus h(x) = xs, and therefore f = 0.
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In the proof, span{vk : k ∈ s} is a B-cyclic subspace of Kn,
because it is, for some one vector v, spanned by the vectors
Bkv. The space is then B-invariant, because closed under
multiplication by B.

. Direct sums

Suppose V is a vector space over K, and for some m in N, and
for each j in n, Vj is a subspace of V . If the homomorphism

(vi : i < n) 7→
∑

i<n

vi

from
∏

i<n Vi to V is surjective, then V is the sum of the
subspaces Vi, and we may write

V = V0 + · · ·+ Vn−1 =
∑

i<n

Vi.

If, further, the homomorphism is injective, then V is the di-

rect sum of the Vi, and we may write

V = V0 ⊕ · · · ⊕ Vn−1 =
⊕

i<n

Vi.

Given B in M , we shall understand

kerB = {x ∈ Kn : Bx = 000}.

Lemma . If f and g in K[x] are co-prime, then for all A in
M ,

ker(f(A)g(A)) = ker f(A)⊕ ker g(A).
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Proof. By Bézout’s Lemma for some q and r in K[x],

qf + rg = 1,

q(A)f(A) + r(A)g(A) = I.

For all v in Kn then,

q(A)f(A)v + r(A)g(A)v = v.

Suppose now
w ∈ ker(f(A)g(A)).

Then

r(A)g(A)w ∈ ker f(A), q(A)f(A)w ∈ ker g(A),

and so
w ∈ ker f(A) + ker g(A).

Conversely, suppose

u ∈ ker f(A), v ∈ ker g(A).

Then

u = q(A)f(A)u+ r(A)g(A)u

= r(A)g(A)u = r(A)g(A)(u+ v)

and likewise
v = q(A)f(A)(u+ v).

This shows (u, v) 7→ u+ v is injective.

Theorem . If each of some f in K[x] is prime to the others,
then for all A in M ,

ker
∏

f

f(A) =
⊕

f

ker f(A).

. Direct sums 



. Kernels

Suppose A in M has characteristic polynomial f , and K is
algebraically closed. Then

f =
∏

j<m

(x− λj)
rj

for some λj in K and rj in N. By the Cayley–Hamilton The-
orem,

ker
(

f(A)
)

= Kn.

Letting

Bj = A− λj · I,

we have now, by Theorem ,

Kn =
⊕

j<m

ker (Bj
rj ) . (.)

Theorem . For all B in M , for all s in N, ker(Bs) is the
direct sum of B-cyclic subspaces.

Proof. We shall prove the claim for every B-invariant subspace
of ker(Bs). We use induction on the dimension of the subspace.
If the dimension is 0, the claim is vacuously true. Suppose V is
a B-invariant subspace of ker(Bs) having positive dimension.
Then

V * ker(B0), ker(B0) ⊆ . . . ⊆ ker(Bs), V ⊆ ker(Bs),

so for some r,

V * ker(Br−1), V ⊆ ker(Br).

  Jordan Normal Form



Then
V B ⊆ V ∩ ker(Br−1) ⊂ V.

This shows
V B ⊂ V.

As an inductive hypothesis, we assume

V B =
⊕

i<m

Wi, (.)

where each Wi is B-cyclic. Then for some wi in V , for some
ri in N,

Wi = span{Bjwi : j < ri}, 000 = Briwi. (.)

For some vi in V ,
wi = Bvi. (.)

Now let
Vi = span{Bjvi : i 6 ri}.

Then Vi is a B-cyclic space, since Bri+1vi = 000. We shall show
that the sum of the Vi is direct. An arbitrary element of Vi is
fi(B)vi for some fi in K[x] such that

deg fi 6 ri. (.)

Suppose

000 =
∑

i<m

fi(B)vi.

Then by (.),

000 =
∑

i<m

fi(B)wi. (.)

But then by (.),
000 = fi(B)wi,
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so by (.), and (.), and Theorem ,

fi = cix
ri

for some ci in K. In this case, we can write (.) as

000 =
∑

i<m

ciB
ri−1wi,

which implies that each ci is 0. Thus fi = 0.
Now we can let

V ′ =
⊕

i<m

Vi.

Then V ′ ⊆ V . By construction, ViB = Wi, so

V ′B = W = V B.

Therefore
V = V ′ + kerB.

Each element of kerB constitutes a basis of a one-dimensional
B-cyclic space. Then V is the direct sum of some of these
spaces, along with the Vi, as desired.

In the notation of (.), there are nj in N, and then there
are vjk in ker(Bj

rj) and sjk in N such that

Bj
sjk−1vjk 6= 000, Bj

sjkvjk = 000,

and
ker(Bj

rj) =
⊕

k<nj

span{Bj
ivjk : i < sjk}.

Now we may let

P =
(

P0 · · · Pm−1

)

,
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where, for each j in m,

Pj =
(

Pj0 · · · Pj,nj−1

)

,

where, for each k in nj ,

Pjk =
(

Bj
sjk−1vjk · · · vj,k

)

.

Then PAP−1 is a Jordan normal form for A. Indeed, by
the considerations yielding (.),

PAP−1 = diag(Λ0, . . . ,Λm−1),

where, for each j in m,

Λj = diag(Λj0, . . . ,Λj,nj−1),

where, for each k in nj , Λj,k is the sjk × sjk matrix

















λj 1 0 . . . 0

0 λj 1
. . .

...

0 0
. . .

. . . 0
...

. . . λj 1
0 . . . . . . . 0 λj

















.
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