Linear Algebra Problems

David Pierce

April 2, 2019
Matematik Bölümü, MSGSÜ
mat.msgsu.edu.tr/~dpierce/

Sources include

- Cemal Koç, Topics in Linear Algebra
- Steven Roman, Advanced Linear Algebra (2d ed.)

Problem 1. $X \mapsto \tau_{X}$, where $\tau_{A}(Y)=A Y$, is an isomorphism from M to $\mathcal{L}\left(K^{n}, K^{n}\right)$.

Problem 2. If V is a finite-dimensional vector space, τ is an endomorphism of V (in other words, a linear operator on V), and τ and τ^{2} have the same rank, show that the kernel and image of τ have trivial intersection.

Problem 3. Supposing $\left\{\boldsymbol{a}_{k}: k \in n\right\}$ is a basis of V, define $\tau_{i j}$ in $\mathcal{L}(V)$ by

$$
\tau_{i j}\left(\boldsymbol{a}_{k}\right)= \begin{cases}\boldsymbol{a}_{k} & \text { if } k \neq i \\ \boldsymbol{a}_{i}+\boldsymbol{a}_{j} & \text { if } k=i\end{cases}
$$

(a) Under what conditions on the scalar field is each $\tau_{i j}$ invertible?
(b) Under what conditions on the scalar field do the $\tau_{i j}$ compose a basis of $\mathcal{L}(V)$?
Problem 4. Prove concerning determinants:
(a) $\operatorname{det}(\ldots, \boldsymbol{v}, \ldots, \boldsymbol{v}, \ldots)=0$,
(b) $\operatorname{det} A \cdot \mathrm{I}=A \operatorname{adj}(A)$,
(c) $\operatorname{det} A^{\mathrm{t}}=\operatorname{det} A$.

Problem 5. If an abelian group has a multiplication (meaning a binary operation distributing in both senses over addition), and this has both a left and a right identity, show that they are equal.

Problem 6. For which 2×2 matrices is the minimal polynomial the same as the characteristic polynomial?
Problem 7. If A is a real matrix and $A^{5}+A^{3}+A=0=A^{5}-A^{3}-A$, what is the minimal polynomial of A ?

Problem 8. Prove that the characteristic polynomial of every real 2×2 symmetric matrix is the product of linear factors.

Problem 9. Show that $A B$ and $B A$ have the same eigenvalues.
Problem 10. If A is diagonalizable, show the same for every polynomial function $f(A)$ of A.

Problem 11. If A is nilpotent, that is, some power of A is the zero matrix, show A is not diagonalizable.

Problem 12. Find the Jordan normal form of every 5×5 nilpotent matrix.

Problem 13. Find the Jordan normal form of every $n \times n$ complex matrix of which some positive power is I.

