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 Preface

These notes are for a course called Ultraproducts and Their Conse-
quences, to be given at the Nesin Mathematics Village in Şirince, Selçuk,
İzmir, Turkey, in August, . The notes are mainly for my use; they
do not constitute a textbook, although parts of them may have been
written in textbook style. The notes have not been thoroughly checked
for correctness; writing the notes has been my own way of learning some
topics.

The notes have grown like a balloon, at all points: I have added things
here and there as I have seen that they are needed or useful. I have
also rearranged sections. There is too much material here for a week-
long course. Some of the material is background necessary for thorough
consideration of some topics; this background may be covered in a simul-
taneous course in Şirince.

The catalogue listing for the course(with abstract as submitted by me
on January , ) is as follows.

Title of course: Ultraproducts and their consequences
Instructor: Assoc. Prof. David Pierce
Institution: Mimar Sinan GSÜ
Dates: – Ağustos 
Prerequisites: Some knowledge of algebra, including the theorem that a

quotient of a ring by an ideal is a field if and only if the ideal is
maximal.

Level: Advanced undergraduate and graduate
Abstract: An ultraproduct is a kind of average of infinitely many struc-

tures. The construction is usually traced to a  paper of Jerzy
Los; however, the idea of an ultraproduct can be found in Kurt

From http://matematikkoyu.org/etkinlikler/2012-tmd-lisans-lisansustu/

ultra_pierce.pdf, to which there is a link on http://matematikkoyu.org/

etkinlikler/2012-tmd-lisans-lisansustu/ as of August , .





 Preface

Goedel’s  proof (from his doctoral dissertation) of the Com-
pleteness Theorem for first-order logic. Non-standard analysis, de-
veloped in the s by Abraham Robinson, can be seen as taking
place in an ultraproduct of the ordered field of real numbers: more
precisely, in an ultrapower. Indeed, for each integer, the ‘average’
real number is greater than that integer; therefore an ultrapower
of the ordered field of real numbers is an ordered field with infinite
elements and therefore infinitesimal elements. Perhaps the first
textbook of model theory is Bell and Slomson’s Models and Ultra-
products of : the title suggests the usefulness of ultraproducts
in the development various model-theoretic ideas. Our course will
investigate ultraproducts, starting from one of the simplest inter-
esting examples: the quotient of the cartesian product of an infinite
collection of fields by a maximal ideal that has nontrivial projection
onto each coordinate. No particular knowledge of logic is assumed.

Such was the abstract that I submitted in January. I have written the
following notes since then, by way of working out for myself some of the
ideas that might be presented in the course. I have tried to emphasize
examples. In some cases, I may have sacrificed generality for concrete-
ness. A theorem that I might have covered, but have not, is the theorem
of Keisler and Shelah that elementary equivalence is the same thing as
isomorphism of ultrapowers.
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 Notation

The set-theorist’s natural numbers compose the set ω:

ω = {0, 1, 2, . . . }.

In these notes, this set is used:

) as an index-set for countably infinite sequences (ak : k ∈ ω);
) as the cardinal number of each countably infinite set.

The set-theoretic feature of ω is that if n ∈ ω, then

n = {0, . . . , n− 1}.

In particular

0 = ∅, 1 = {0}, 2 = {0, 1}.

If A and B are sets, we let

AB = {functions from B to A}.

In particular, if n ∈ ω, then

An = {functions from n to A}.

An element of An may be written as either of

(b0, . . . , bn−1), (b0, . . . , bn−1),

and this can be abbreviated by

b,

The ω here is printed in an upright, ‘roman’ font, since it has a constant meaning.
This means the sloping, ‘italic’ ω is available for use as a variable; but in fact it
will not be used here.





in boldface: it is an n-tuple of elements of A. The superscripts in
(b0, . . . , bn−1) are not exponents, but just (upper) indices; we may use
them, because we shall occasionally use lower indices at the same time,
as for example in consideration of sequences (bk : k ∈ ω), where bk ∈ An,
so that

bk = (b0k, . . . , b
n−1
k ).

Note that
A0 = {0} = 1.

The ring of (rational) integers is Z, which is a sub-ring of Q, the field of
rational numbers; this in turn is a subfield of R, the field of real numbers.
The set of positive integers can be denoted by N. Thus

N = {1, 2, 3, . . . }.

One could write this also as ωr{0}. Some people also put 0 in N, and that
is fine. However, in these notes, I attempt to distinguish notationally the
two roles of natural numbers: () as indices and () as rational numbers.
In the former role, the natural numbers compose ω; in the latter, N.
It is also just useful to have distinct simple symbols for the two sets
{0, 1, 2, . . . } and {1, 2, 3, . . . }.
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. Products of fields

Suppose K is an indexed family (K0,K1,K2, . . . ) or (Ki : i ∈ ω), where
each Ki is a field. For example, each Ki might be R, or each Ki might
be a different finite field. We can form the Cartesian product of the
family K . This product is denoted by one of the expressions

∏

i∈ω

Ki,
∏

K .

If a belongs to this product, this means

a = (ai : i ∈ ω),

where ai ∈ Ki in each case. Here a is simply a function on ω that, at
every element i of this domain, takes a value in Ki; we write this value
as ai, though it could be written also as a(i) or ai.

The product
∏

K is a ring in the obvious way, with respect to the
termwise operations:

a+ b = (ai + bi : i ∈ ω),

−a = (−ai : i ∈ ω),

0 = (0: i ∈ ω) = (0, 0, 0, . . . ),

a · b = (ai · bi : i ∈ ω),

1 = (1: i ∈ ω) = (1, 1, 1, . . . ).

The basic of rings and fields are reviewed, for completeness, in Chapter ; but it is
assumed that the reader is already somewhat familiar with them. In the present
section, we could work with an arbitrary index set Ω in place of ω. Later (§.)
we shall do this; but there is no obvious need to do so now.

Even the notation ia might be used. Indeed, aσ is used below (p. , §.) for the
image under an automorphism σ of an element a of a given field.





. Ultrapowers of the field of real numbers

Suppose M is a maximal ideal of the ring
∏

K . Then the quotient
∏

K /M is a field, called an ultraproduct of the family K . We want
to understand this ultraproduct.

There is a trivial case. There may be some j in ω such that

M = {x ∈
∏

K : xj = 0}.

Then M is a principal ideal : it is generated by an element

(1, . . . , 1, 0, 1, . . . ),

where every entry is 1, except the entry 0 with index j. For, if this
element of M is c, then for every a in M we have a = a · c. In this case

x+M = y +M ⇐⇒ xj = yj .

Thus
∏

K /M ∼= Kj under the map x 7→ xj . This isomorphism consti-
tutes a proof that the ideal (c) generated by c is indeed maximal (since
the quotient of a ring by an ideal is a field if and only if the ideal is
maximal). By contrast, if I is an ideal generated by an element

(1, . . . , 1, 0, 1, . . . , 1, 0, 1, . . . ),

with two zero entries, indexed by j and ℓ respectively, then
∏

K /I ∼=
Kj×Kℓ. Since then Kj×Kℓ is not a field—since for example the nonzero
elements (1, 0) and (0, 1) are not invertible—, I must not be maximal.

If M is a nonprincipal maximal ideal of
∏

K , then the ultraproduct
∏

K /M will be seen to be a kind of ‘average’ of the fields Kj . But this
must be properly understood. More precisely, if a ∈ ∏

K , then a +M
will be a kind of average of the individual elements ai of the factors Ki.
We consider a particular example in the next section.

. Ultrapowers of the field of real numbers

If each Ki is R, then the product
∏

i∈ω
Ki is the power Rω. If M

is a maximal ideal of this ring, then the quotient Rω/M is called an

This is written out and proved below as Theorem  on page ; but the reader
should already be familiar with it.
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ultrapower of R. The field R embeds in Rω/M under the diagonal
map,

x 7→ (x, x, x, . . . ) +M.

The diagonal map is so called, presumably because of the similarity of its
definition to that of the map x 7→ (x, x) from R to R2, whose range
is called a ‘diagonal’ line. Perhaps we are likely to consider points
(x, x, x, . . . ) of Rω themselves as horizontal lines, as in Figure .. It

✲ r r r r rrx

0 1 2 3 4

Figure .: The diagonal map

should be clear that the diagonal map is an embedding of R in Rω/M :
it is a monomorphism, with trivial kernel. For, if x 6= 0, then for every
element a of Rω we have

a =
(a0
x
,
a1
x
,
a2
x
, . . .

)

· (x, x, x, . . . ) =
(ai
x
: i ∈ ω

)

· (x : i ∈ ω).

Thus, if it were possible that x 6= 0, but (x, x, x, . . . ) ∈M , then M would
be the improper ideal Rω.

IfM is a non-principal maximal ideal of Rω, then the diagonal embedding
of R in Rω/M is not surjective: it is not an epimorphism. For, the
element (1, 2, 3, . . . )+M of the quotient is not in its range. See Figure ..
Indeed, suppose if possible

(1, 2, 3, . . . ) +M = (x, x, x, . . . ) +M,

Etymologically speaking, a diagonal line is a line joining two angles of a polygon.





. Ultrapowers of the field of real numbers

r

r

r

r

0 1 2 3

1

2

3

4

Figure .: An infinite element of Rω/M

so that (1 − x, 2 − x, 3 − x, . . . ) ∈ M . If x /∈ N, then for every a in Rω

we have

a =
( a0
1− x

,
a1

2− x
,
a2

3− x
, . . .

)

· (1− x, 2− x, 3− x, . . . ),

which must be in M ; and this contradicts that M is proper. If x ∈ N,
so that 1 − x is a non-positive element n of Z, then M contains (n, n +
1, . . . ,−1, 0, 1, 2, . . . ), and therefore M also contains (1, . . . , 1, 0, 1, . . . ),
because this is

(n, n+ 1, . . . ,−1, 0, 1, 2, . . . ) ·
( 1

n
,

1

n+ 1
, . . . ,

1

−1
, 0,

1

1
,
1

2
, . . .

)

.

Thus M includes a principal maximal ideal as before, so M itself is either
principal or improper.

On the assumption that M is a nonprincipal maximal ideal of Rω, we
have shown that the element (1, 2, 3, . . . ) +M of the quotient Rω/M is
not in the image of R under the diagonal map. But this element will be
seen as a kind of average of the elements of N. Indeed, for every m in N,
all but finitely many elements of N are greater than m. So the ‘average’
element of N is greater than m. And we shall see that

(1, 2, 3, . . . ) +M > (m,m,m, . . . ) +M.

Since this will be true for all m in N, the element (1, 2, 3, . . . ) +M of
Rω/M will be infinite.
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But so far, all we know is that Rω/M is a field. We now want to show
that it has a (linear) ordering that makes it into an ordered field.

. Ordered rings

In these notes, a ring is always a commutative unital ring. Then an or-
dered ring (or more precisely a partially ordered ring) is a pair (R,R+),
where R is a ring in our sense, and R+ is a subset of R that is closed
under addition and multiplication and that, for all x in R, contains both
x and −x if and only if x = 0. That is,

x ∈ R & y ∈ R =⇒ x+ y ∈ R & xy ∈ R,

x ∈ R & −x ∈ R =⇒ x = 0,

0 ∈ R.

In this case, we can define

x 6 y ⇐⇒ y − x ∈ R+.

Then
R+ = {x ∈ R : 0 6 x}.

The set R+ is the positive cone of 6. However, only the elements of
R+ r {0} should be called positive. It follows that

() the relation 6 is reflexive, that is,

x 6 x,

since x− x ∈ R+;
The Wikipedia article ‘Ordered ring’ defines this as what, for present purposes,

should be called a linearly or totally ordered ring: it meets the additional condition
that at least one of x and −x is always in R+. Then what for us is an ordered ring
is what, for the Wikipedia article, should be called a partially ordered ring; but
the article defines no such thing. At least this is the situation as of July , .
The notation R+ and the term positive cone are used only in another Wikipedia
article, ‘Partially ordered group’. The notation and term are unfortunate, since
the positive cone in the present sense contains 0, but the real number 0 is not
normally considered positive. We could define ordered rings in terms of the set
{x : x > 0}; but then the possibility of positive zero-divisors would have to be dealt
with; also, there would be a complication in the definition of the product order.





. Ordered rings

() the relation 6 is anti-symmetric, that is,

x 6 y & y 6 x =⇒ x = y,

since if y − x and x− y are in R+, then they must be 0;
() the relation 6 is transitive, that is,

x 6 y & y 6 z =⇒ x 6 z,

since if y − x and z − y are in R+, so is their sum, z − x.

The relation 6 is thus a (partial) ordering of R, induced by R+. More-
over,

() this ordering is translation-invariant, that is,

x 6 y =⇒ x+ z 6 y + z,

since if y − x is in R+, so is (y + z)− (x+ z). Finally,
() multiplication by positive elements preserves the ordering, that is,

x 6 y & 0 < z =⇒ xz 6 yz,

since if y − x and z are in R+, so is their product, zy − zx.

Conversely, these properties of 6 imply that the set {x ∈ R : 0 6 x} is a
positive cone that induces the ordering 6. So we can write (R,R+) also
as (R,6).

Suppose ((Ri, R
+
i ) : i ∈ I) is an indexed family of ordered rings. Then

easily the product
(

∏

i∈I

Ri,
∏

i∈I

R+
i

)

is an ordered ring. For example, the ‘Cartesian plane’ R2 (that is, R×R) is
an ordered ring whose positive cone is the first quadrant. See Figure ..
However, this quadrant is not the positive cone of an ordering of C,
since it is not closed under complex multiplication. The complex field
does however have an ordering, whose positive cone consists of the non-
negative real numbers (as in Figure .). In this ordering, a+ bi 6 x+ yi
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✲

✻ ✻

✲

Figure .: The positive cones of R2 and C

if and only if a 6 x and b = y. The product-ordering of the power Rω is
given by the rule

0 6 x ⇐⇒ 0 6 x0 & 0 6 x1 & 0 6 x2 & . . . ⇐⇒
∧

i∈ω

0 6 xi.

Suppose again (R,R+) is an arbitrary ordered ring, and I is an ideal of
R. We let

R+/I = {x+ I ∈ R/I : x ∈ I}.

It is possible that x + I ∈ R+/I although x /∈ R+. The set R+/I is
closed under addition and multiplication. So it is the positive cone of an
ordering of R/I if and only if

x+ I ∈ R+/I & −x+ I ∈ R+/I =⇒ x+ I = I,

that is (since −x+ I ∈ R+/I means x+ y ∈ I for some y in R+),

x ∈ R+ & y ∈ R+ & x+ y ∈ I =⇒ x ∈ I.

(By symmetry, y ∈ I can also be concluded.) For example, the only
proper, non-trivial ideals of the product ring R2 are the principal ideals
generated respectively by (1, 0) and (0, 1). These ideals meet the desired
condition with respect to the product ordering, and the quotient (in either
case) is an ordered ring that is order-isomorphic to R.





. Ordered rings

The same is true for ideals I of Rω. Indeed, suppose x and y in Rω are
positive or zero (that is, xi > 0 and yi > 0 in each case), and x+ y ∈ I.
Since

xi + yi = 0 =⇒ xi = 0,

it follows that x ∈ I. Indeed, under the hypothesis, x = (x+y)z, where

zi =

{

xi/(xi + yi), if xi + yi 6= 0,

0, if xi + yi = 0.

Thus Rω/I is ordered.

Now let M be a maximal ideal of Rω. We want to show that the ordering
of Rω/M is linear. For every a in Rω, we have a+M > 0 if and only if
there is b in M such that a + b > 0, that is, ai + bi > 0 in each case. If
there is such an element b of M , it meets the condition

bi = 0 =⇒ ai > 0.

In this case, replacing b with an appropriate product bc, we may assume

bi = 0 ⇐⇒ ai > 0. (∗)

Moreover, this condition on an element b of M is sufficient—not to ensure
that a + b > 0, but to ensure that a + d > 0 for some d in M . This d
could be e · b, where, if bi 6= 0, so that ai < 0, then

ei =
−2ai
bi

.

We can see now that the following are equivalent:

• a+M > 0.
• M has an element b such that (∗) holds.
• M contains every element b of Rω such that (∗) holds.

Suppose one of these conditions fails. Then there is some b in Rω rM
such that (∗) holds. In this case, since M is maximal,

M + (b) = Rω.
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In particular, (1, 1, 1, . . . ) ∈ M + (b). Hence M has an element c such
that

bi = 0 =⇒ ci 6= 0,

that is,
ai > 0 =⇒ ci 6= 0.

As before, by replacing c with a multiple of it, so that ci = 0 when ai < 0,
we may assume

ai > 0 ⇐⇒ ci 6= 0;

indeed, M contains every such element c of Rω. Then not only does M
contain c such that ai + ci 6= 0 for all i in ω, but it contains c such that
ai+ ci < 0 for all i in ω. Consequently a+M < 0, under the assumption
that a+M is not positive. Thus the ordering of Rω/M is linear.

. Non-standard analysis

Suppose now M is a non-principal maximal ideal of Rω. If m ∈ N, we
want to show finally

(1, 2, 3, . . . ) +M > (m,m,m, . . . ) +M,

that is,

(1−m, 2−m, 3−m, . . . ,−1, 0, 1, 2, 3, . . . ) +M > 0.

It is enough to show that M has an element a such that

i < m =⇒ ai 6= 0. (†)

Again, M is maximal, but not principal. In particular, it is not included
in the principal maximal ideal generated by an element (1, . . . , 1, 0, 1, . . . ).
Then for all j in ω, M has an element that is nonzero at j. Therefore
M contains δ

j , where

δ
j
i =

{

1, if i = j,

0, if i 6= j.

ThenM contains δ0+· · ·+δ
m−1, which is an element a as desired in (†).





. Non-standard analysis

We may assume that Q is included in every ordered field. An element
of an ordered field that is greater than every element of Q is infinite;
an element whose absolute value is less than every positive element of
Q is infinitesimal. We have now shown that Rω/M has infinite ele-
ments. Therefore it also has nonzero infinitesimal elements (namely the
reciprocals of the infinite elements). Thus the possibility is opened up of
saying that a function f from R to R is continuous at a if f(a)− f(x) is
infinitesimal whenever a− x is infinitesimal.

However, R itself contains no infinitesimals; so if a ∈ R, but a − x is
infinitesimal, then x /∈ R. However, x might be in Rω/M . So we want
to extend f to a function ∗f on Rω/M . It is obvious how to do this: If
a ∈ Rω, then we should define

∗f(a+M) = (f(ai) : i ∈ ω) +M.

However, we must check that such a function ∗f exists: we must show

a+M = b+M =⇒ (f(ai) : i ∈ ω) +M = (f(bi) : i ∈ ω) +M,

or rather
a− b ∈M =⇒ (f(ai)− f(bi) : i ∈ ω) ∈M.

But this is true since

ai − bi = 0 =⇒ f(ai)− f(bi) = 0,

so that, as before, (f(ai)− f(bi) : i ∈ ω) is a multiple of a− b.

We have been using implicitly (or proving special cases of) the lemma
that if

ai = 0 =⇒ bi = 0

and a ∈M , then b ∈M . For an arbitrary element a of Rω, we define

supp(a) = {i ∈ ω : ai 6= 0}.

Let us now write m for supp[M ]; that is,

m = {supp(x) : x ∈M}.

Then M is determined by m, and moreover

M = {x ∈ Rω : supp(x) ∈ m}.
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The subset m of P(ω) has the following properties:

∅ ∈ m,

X ⊆ Y & Y ∈ m =⇒ X ∈ m,

X ∈ m & Y ∈ m =⇒ X ∪ Y ∈ m.

Indeed, the first of these properties follows because 0 ∈ M . The second
is by the lemma just mentioned. For the third, if supp(a) = X and
supp(b) = Y , then supp(c · b) = Y rX for some c, and then

supp(a+ c · b) = X ∪ Y.

Let us write u for P(ω)rm. Then we have

ω ∈ u,

X ⊆ Y & X ∈ u =⇒ Y ∈ u,

X ∈ u & Y ∈ u =⇒ X ∩ Y ∈ u.

Finally,
X ∈ m ⇐⇒ X /∈ u.

Elements of m will be called small; elements of u, large. If a+M = b+M ,
that is, a−b ∈M , this means supp(a−b) ∈ m, that is, a and b differ on a
small subset of ω, but they agree on a large subset of ω. Then the same
is true of (f(ai) : i ∈ ω) and (g(ai) : i ∈ ω). Thus there is a well-defined
function ∗f as above.

Much more now follows. For example, Rω/M is real-closed, that is, it
satisfies the Intermediate Value Theorem for polynomial functions. In-
deed, suppose p is a polynomial (in one variable) with coefficients from
Rω/M such that, for some a and b in Rω/M , we have p(a) < 0 and
p(b) > 0. We may assume a < b. It follows that

{i : ai < bi} ∈ u.

The value p(a) of p at a can be written as (pi(ai) : i ∈ ω), where pi
is obtained from p by replacing its coefficients with their values at i.
Then the sets {i : pi(ai) < 0} and {i : pi(bi) > 0} are large, and therefore
their intersection is large, and therefore (by the usual Intermediate Value
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Theorem for R) there are ci between ai and bi for a large set of i such
that pi(ci) = 0. Choosing ci for the other i arbitrarily, we have a < c < b,
and p(c) = 0.

In model-theoretic terms, Rω/M is an elementary extension of R. This
is a special case of a general theorem, Łoś’s Theorem, which is fairly easy
to prove, once one understands what it is all about. The theorem itself is
Theorem  on page  below; the pages before then are preparation for
it. First we shall generalize the fields of the present chapter to arbitrary
structures.
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. Theories and models

If n ∈ ω, then on a set A, an n-ary relation on A is just a subset of An;
an n-ary operation on A is a function from An to A. Since A0 = {0}, so
that a function on A0 takes only one value, a 0-ary or nullary operation on
A can be considered as an element of A. Much of mathematics is a study
of operations and relations on sets. Group-theory is a study of binary
operations with certain properties; field-theory, two binary operations;
lattice-theory, a binary relation. A particular nonempty set, considered
together with certain operations and relations on it, is called a structure.
If the set is A, B, or C, then the structure might be denoted respectively
by A, B, or C. The distinguished operations and relations of A are
denoted by certain symbols, which constitute the signature of A. The
universe of A is just the set A.

More than one structure can share the same signature. For example, the
signature of fields is {0, 1,−,+, ·}; of ordered fields, {0, 1,−,+, ·, <} (or
{0, 1,−,+, ·,6}). In general, if S is a signature, then the class of all
structures with this signature can be denoted by

Mod(S ).

If A ∈ Mod(S ), and s ∈ S , then, to avoid ambiguity, the operation or
relation on A that is denoted in A by s can also be denoted by

sA.

This is (nearly?) all that I shall say about examples in this chapter, despite the
intention stated in the Preface to emphasize examples. Perhaps model-theory
as a branch of mathematics can be characterized as not being about particular
examples, but being an abstraction from them. In any case, the subject of these
notes is not model-theory as such, but ultraproducts.

It simplifies things to require the set to be nonempty, although one can certainly
define empty structures if one wishes, and sometimes this is useful.
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A symbol in a signature is more precisely

• an n-ary predicate, if it denotes an n-ary relation, or
• an n-ary operation-symbol.

The symbol for a nullary operation (that is, element) can be called a
constant. The same symbol will never denote, say, an element of one
set, but a binary relation on another set.

If S is a signature, then the terms of S are built up from the operation-
symbols in S , along with (individual) variables. The formulas of S

are then built up from the terms and predicates of S , along with log-
ical symbols such as ¬, ∧, and ∃ (and brackets, if needed). A term is
merely a recipe for obtaining new operations through composition of some
given operations. (The coordinate projections are always understood as
given.) Then a formula is a recipe for obtaining new relations through
set-theoretic manipulations of given operations and relations. We shall
review the formal definition of terms and formulas in the next section.

An occurrence of a variable in a formula of S will be either free or bound.
If precisely the variables x0, . . . , xn−1 occur freely in a formula ϕ of S ,
then ϕ can be written as ϕ(x0, . . . , xn−1) or ϕ(x). If A ∈ Mod(S ), and
a ∈ An, then ϕ(a) is the result of replacing each free occurrence of xi in
ϕ with ai, for each i in n. This new formula ϕ(a) may not be a formula
of S ; but it is a formula of S (A), which is just S along with a constant
for each element of A. Such constants are often called parameters. The
new formula ϕ(a) is a sentence, because it has no free variables. This
sentence will be either true or false in A; if it is true, then we shall write

A � ϕ(a).

The symbol � thus stands for a relation in a more general sense: it
is not a binary relation on a set, but it is a relation between certain
structures and certain sentences. We might call this the satisfaction
relation. (However, if A � ϕ(a), it might be said that a satisfies ϕ in
A.)

The set of all sentences of S can be denoted by

Sn(S ).
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If Γ ⊆ Sn(S ), and every sentence in Γ is true in A, then we write

A � Γ;

in this case, A is a model of Γ. We can define

Mod(Γ) = {A ∈ Mod(S ) : A � Γ} =
⋂

σ∈Γ

{A ∈ Mod(S ) : A � σ}; (∗)

a class of structures of this form is called an elementary class. If
K ⊆ Mod(S ), then we define

Th(K) =
⋂

A∈K

{σ ∈ Sn(S ) : A � σ}; (†)

a set of sentences of this form is called a theory. Both theories and
elementary classes are defined in the same way, as intersections of sets
defined in terms of the satisfaction relation �. Therefore it turns out
that there is a one-to-one correspondence between elementary classes and
theories. This is a kind of Galois correspondence; see §. (and before
that, (†) on page ).

If K = {A}, then Th(K) can be written as

Th(A).

Such a theory is a complete theory, namely a theory that, for every
sentence σ if its signature, contains either σ or its negation ¬σ, but not
both. For an arbitrary subclass K of Mod(S ), if Th(K) contains both σ
and ¬σ, then K must be empty, so

Th(K) = Sn(S ).

Suppose now Th(K) is complete. Then K contains some A, and then,
since

Th(K) ⊆ Th(A) ⊂ Sn(S ),

the first inclusion must be an equation. Thus the complete theories are
precisely the theories of individual structures. However, there are proper
classes of structures whose theories are complete. For example, the the-
ory of algebraically closed fields of characteristic 0 is complete (Theorem
 on page ).

That is, classes that are not sets, because they are ‘too large’.
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If Th(A) = Th(B), then A and B are said to be elementarily equiva-
lent, and we write

A ≡ B.

If A and B are isomorphic in the familiar sense, then (trivially) they are
elementarily equivalent. However, by what we have just observed about
complete theories, the converse fails: non-isomorphic structures can be
elementarily equivalent. This is easily shown with the Compactness The-
orem, which we shall prove as Theorem  by using ultraproducts. Also,
a non-principal ultrapower of an infinite structure is elementarily equiv-
alent, but not isomorphic, to that structure. See also §..

. Definable relations

We are usually interested in Mod(T ) for particular theories T of a sig-
nature S . One way to study this is to study the definable relations in
elements of Mod(T ). Suppose A is one of these elements, and ϕ is an
n-ary formula of S . Then ϕ defines the subset

{a ∈ An : A � ϕ(a)}

of An. This subset, denoted by one of

ϕA, ϕ(A),

is more precisely a 0-definable relation of A. If B ⊆ A, and ϕ is a
formula of S (B), then ϕA is a B-definable relation of A.

.. Terms

The terms of S are defined recursively as follows.

. Every variable is a term: we use variables xi, where i ∈ ω. These
variables are more precisely called individual variables, because
they stand for individual elements of sets.
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. For all n in ω, if F is an n-ary operation-symbol of S , and t0, . . . ,
tn−1 are terms of S , then the string

Ft0 · · · tn−1

is a term of S . In particular, if n = 0, so that F is a constant,
then, standing by itself, it is a term.

This recursive definition allows theorems about all terms to be proved
by induction. A trivial example is that every term that is not a variable
begins with an operation-symbol (possibly a constant); slightly less trivial
is that every term ends with a variable or a constant.

We also want to be able to define functions recursively on the set of
terms (of a given signature). This requires knowing that every term is
uniquely readable: it can be constructed in only one way. For example,
we want to have that, if A ∈ Mod(S ), then the terms t of S that use only
variables from the set {xi : i < n} can be understood as n-ary operations
tA on A as follows:

xi
A(a) = ai,

F t0 · · · tn−1
A(a) = FA(t0

A(a), . . . , tn−1
A(a)).

This is a valid definition, only if we know that Ft0 . . . tn−1 cannot also
be analyzed as Fu0 . . . un−1 for some terms ui, where in at least one case
ui is not ti. But this is true: Ft0 . . . tn−1 cannot be otherwise analyzed.
Perhaps the simplest way to prove it is by means of a lemma, proved
by induction: every term neither is a proper initial segment of another
term, nor has a proper initial segment that is a term.

.. Formulas

The atomic formulas of S are of two kinds: equations, which take
the form

t = u,

where t and u are terms of S ; and expressions of the form

Rt0 · · · tn−1,
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where n ∈ ω, R is an n-ary predicate in S , and the ti are terms of S .
Then the formulas of S in general are defined recursively:

. Atomic formulas are formulas.
. If ϕ and ψ are formulas, then so are ¬ϕ and (ϕ ∧ ψ).
. If ϕ is a formula and x is a variable, then ∃x ϕ is a formula.

Because this definition (like that of terms) is recursive, induction can be
used to prove that certain sets of formulas of S contain all formulas of
S . For example, induction will be used to establish the lemma called the
Tarski–Vaught Test on page  below. However, that lemma also involves
truth, which can be understood formally as a function defined recursively
on the set of all formulas of S . (See the next subsection.) As with terms,
for such a definition to be valid, unique readability of formulas must be
established: every formula is built up from its subformulas, but this
can happen in only one way.

An occurrence of a variable x in a formula is free, unless this occurrence
is in a subformula of the form ∃x ϕ: then the occurrrence is bound. This
definition would be possible without unique readability, but it would not
then be particularly useful.

There are some standard abbreviations:

(ϕ ∨ ψ) means ¬(¬ϕ ∧ ¬ψ);
(ϕ→ ψ) means (¬ϕ ∨ ψ);

(ϕ↔ ψ) means ((ϕ→ ψ) ∧ (ψ → ϕ));

∀x ϕ means ¬∃x ¬ϕ.

It is possible to remove some parentheses from formulas without ambigu-
ity, if it is understood for example that ∧ and ∨ take precedence over →
and ↔, and of two instances of →, the one on the right takes precedence.
Also outer parentheses can be removed.

.. Truth

Now sentences are defined as before (p. ), as formulas with no free vari-
ables; and we can now define truth of sentences in structures. Assuming
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t, u, and the ti are terms with no variables, and σ and τ are sentences,
but ϕ is formula with the unique free variable x, we have

A � t = u ⇐⇒ tA = uA,

A � Rt0 · · · tn−1 ⇐⇒ (t0
A, . . . , tn−1

A) ∈ RA,

A � ¬σ ⇐⇒ A 2 σ,

A � σ ∧ τ ⇐⇒ A � σ & A � τ,

A � ∃x ϕ(x) ⇐⇒ for some b in A, A � ϕ(b).

Note here that the expressions & and ⇐⇒ are not parts of formulas;
they are abbreviations of the English and and if and only if. We can
understand our definition as follows. Given the structure A in Mod(S ),
we have now recursively defined, on the set of formulas of S (A), the
function ϕ 7→ ϕA, where, if ϕ is n-ary, we have

ϕA = {a ∈ An : A � ϕ(a)}.

It is worthwhile to note that as ϕ varies here, ϕA ranges over a subset of
An with some natural closure properties; and as n varies as well, there
are still some good closure properties. Section . is an investigation of
these. Before that (as well as later), it is useful to have the notion of
substructure, developed in the next section.

. Substructures

B ∈ Mod(S ), and A ⊆ B, and A is closed under the operations of B,
then A is the universe of a substructure of B. This substructure is A,
where

RA = An ∩RB,

FA = FB ↾ An

for all n-ary predicates R and operation-symbols F of S , for all n in ω.
In this case, we write

A ⊆ B.
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It follows that, if A and B are two structures with the same signature
S , and A ⊆ B, then A ⊆ B if and only if, for all n in ω, for all n-ary
quantifier-free formulas ϕ of S , for all a in An,

A � ϕ(a) ⇐⇒ B � ϕ(a). (‡)

Suppose now there is just a function h from A to B. Then h is an
embedding of A in B if h is an isomorphism from A to a substructure
of B. In any case, the diagram of A, denoted by

diag(A),

is the set of quantifier-free sentences of S (A) that are true in A. When
we consider A as having signature S (A), we may write the structure as

AA.

This is an expansion of A to S (A); and A is then the reduct of AA
to S . Now Bh[A] can also be understood as having signature S (A). In
this case, the map h above is an embedding if and only if

Bh[A] � diag(A).

Thus the structures in which A embeds are precisely (the reducts to S

of) the models of diag(A).

A theory T of S is axiomatized by a subset Γ of Sn(S ) if

T = Th(Mod(Γ)),

equivalently, every model of Γ is a model of T .

A universal formula is a formula of the form ∀x ϕ, where ϕ is quantifier-
free. If T is a theory, then we denote by

T∀

the theory axiomatized by the universal sentences in T .

Lemma. T∀ is included in the theory of substructures of models of T ,
that is,

A ⊆ B & B � T =⇒ A � T∀.
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Proof. Suppose ϕ is quantifier-free, and ∀x ϕ is in T . If a ∈ An, then
a ∈ Bn, so B � ϕ(a) and therefore, by (‡), A � ϕ(a). Thus A � ∀x ϕ.

The converse is given in Theorem  on page  below.

If (‡) holds for all formulas ϕ of S , then A is called an elementary
substructure of B, and we write

A 4 B.

A map h from A to B is an elementary embedding of A in B if h is
an isomorphism from A to an elementary substructure of B. Thus the
structures in which A embeds elementarily are precisely (the reducts to
S of) the models of Th(AA).

A theory T of a signature S is called model-complete if for all models
A of T , the theory of S (A) axiomatized by T ∪ diag(A) is complete.

Theorem . A theory is model-complete if and only if, for all of its
models A and B,

A ⊆ B =⇒ A 4 B.

Proof. Each condition is equivalent to the condition that, for all models
A of T , T ∪ diag(A) axiomatizes Th(AA).

The theorem below is a generalization of the theorem published by Löwen-
heim in  [] and improved by Skolem in  []: a sentence with
a model has a countable model. Skolem’s argument uses what we shall
call the Skolem normal form of the given sentence; we shall discuss this
in §.. Meanwhile, an example is ∀x ∃y Rxy. If this has a model A,
then there is a singulary operation x 7→ x∗ on A such that

A � ∀x Rxx∗.
If b ∈ A, we can define (bk : k ∈ ω) recursively by

b0 = b, bk+1 = bk
∗.

Then {bk : k ∈ ω} is countable and is the universe of a substructure of
A in which ∀x ∃y Rxy is true. Our own proof of the general theorem
will follow the lines of Skolem’s idea; the following lemma will allow us
to work in the general situation.
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Lemma (Tarski–Vaught Test). Suppose A ⊆ B, both having signature
S . Then A 4 B, provided that, for all singulary formulas ϕ of S (A),

B � ∃x ϕ(x) =⇒ for some c in A, B � ϕ(c),

that is,
ϕB 6= ∅ =⇒ ϕB ∩A 6= ∅.

Proof. Under the given condition, we show by induction that for all for-
mulas ϕ of S , if ϕ is n-ary and a ∈ An, then

A � ϕ(a) ⇐⇒ B � ϕ(a).

This is given to be the case when ϕ is atomic (or more generally quantifier-
free), and it is easily preserved under negation and conjunction. Suppose
it holds when ϕ is an (m+ 1)-ary formula ψ. By hypothesis, for all a in
An, the following are equivalent:

B � ∃y ϕ(a, y),
for some b in B, B � ϕ(a, b),

for some b in A, B � ϕ(a, b),

for some b in A, A � ϕ(a, b),

A � ∃y ϕ(a, y).

This completes the induction.

Theorem  (Downward Löwenheim–Skolem–Tarski). If B ∈ Mod(S ),
max(|S |,ω) 6 |B|, and X ⊆ B, there is a structure A such that

A 4 B, X ⊆ A, |A| 6 κ,

where κ = max(|X|, |S |,ω).

Proof. There is a subset X ′ of B of cardinality no greater than κ such
that, for every singulary formula ϕ of S (X), if ϕB is non-empty, then it
has an element in X ′. By considering formulas a = x, where a ∈ X, we
see X ⊆ X ′. Now we can form X ′′, and so forth; and we can let

A = X ∪X ′ ∪X ′′ ∪ . . .
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By considering formulas Fx = y, we see that A is the universe of a
substructure A of B. It is of the required cardinality, and by the Tarski–
Vaught Test, it is an elementary substructure of B.
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. Ideals and filters

For every set Ω, the power-set P(Ω) is a ring in which

• sums are symmetric differences: + is △;
• products are intersections: · is ∩;
• the additive identity is the empty set: 0 is ∅;
• every element is its own additive inverse: −X is just X;
• the multiplicative identity is the whole set: 1 is Ω.

It is easy to check this. We note first:

X △ Y = Y △ X, X △ (Y △ Z) = (X △ Y ) △ Z,

(see Figure .) and

Figure .: Symmetric differences of two sets and three sets

X △ ∅ = X, X △ X = ∅.

So (P(Ω),△,∅) is an abelian group in which every element is its own
inverse. (That is, it is an abelian group of exponent 2. It is a standard
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exercise to show that every group of exponent 2 is abelian.) As for
multiplication, we have

X ∩ (Y ∩ Z) = (X ∩ Y ) ∩ Z,
X ∩ Y = Y ∩X,
X ∩ Ω = X,

X ∩ (Y △ Z) = X ∩ Y △ X ∩ Z,

where multiplication ∩ takes notational precedence over addition △ in
the line; see Figure .. So (P(Ω),△,∩,∅,Ω) is a ring (commutative

Figure .: Distribution in Boolean rings

and unital, as always in these notes). We have in this ring also

X ∩X = X.

That is, in the more usual notation of ring-theory, P(Ω) is a ring in
which

x2 = x. (∗)
Therefore P(Ω) is called a Boolean ring. We shall see in Chapter 
that all of the algebraic properties of P(Ω) and its sub-rings follow from
their being Boolean rings: the class of Boolean rings is precisely the class
of rings that embed in rings of the form P(Ω).

This ring P(Ω) has ideals in the usual sense: a subset I of P(Ω) in ideal
if and only if

∅ ∈ I,

Y ∈ I =⇒ X ∩ Y ∈ I, (†)
X ∈ I & Y ∈ I =⇒ X △ Y ∈ I. (‡)
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However, since

X ∩ Y ⊆ Y,

X ⊆ Y ⇐⇒ X ∩ Y = X,

the condition (†) is equivalent to

X ⊆ Y & Y ∈ I =⇒ X ∈ I.

Since also

X ∪ Y = X △ Y △ X ∩ Y,
X △ Y ⊆ X ∪ Y,

we can replace the condition (‡) with

X ∈ I & Y ∈ I =⇒ X ∪ Y ∈ I.

That is, a subset I of P(Ω) is an ideal if and only if

∅ ∈ I,

X ⊆ Y & Y ∈ I =⇒ X ∈ I,

X ∈ I & Y ∈ I =⇒ X ∪ Y ∈ I.

Thus ideals of P(Ω) are just those subsets that are

• downwardly closed,
• closed under finite unions.

Indeed, taken strictly, the last condition implies non-emptiness, since ∅ is
the finite union

⋃

∅. See Figure .. Our observations in §. generalize
to show that if (Ki : i ∈ Ω) is an indexed family of fields, and J is an ideal
of

∏

i∈ΩKi, then supp[J ] is an ideal of P(Ω). Moreover, every ideal I of
P(Ω) is supp[J ], where

J = {x ∈
∏

i∈Ω

Ki : supp(x) ∈ I};

and this is an ideal of
∏

i∈ΩKi, in fact the only ideal whose image under
J 7→ supp[J ] is I. So this map establishes a one-to-one correspondence
between the (set of) ideals of

∏

i∈ΩKi and the (set of) ideals of P(Ω).

There are two standard examples of ideals of P(Ω).
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b

b

b

b

b Y

X ∪ Y

X

∅

Ω

Figure .: An ideal of a Boolean ring

. If A ⊆ Ω, then P(A) is the principal ideal of P(Ω) generated by
A. It corresponds to the ideal

∏

i∈AKi of
∏

i∈ΩKi.
. The set Pω(Ω) of finite subsets of Ω is an ideal of P(Ω), called

the Fréchet ideal of P(Ω), corresponding to the ideal
∑

i∈ΩKi

of
∏

i∈ΩKi.

There is a notion that is ‘dual’ to the notion of an ideal: A subset F of
P(Ω) is a filter if {Xc : X ∈ F} is an ideal, that is,

Ω ∈ F,

X ∈ F & X ⊆ Y =⇒ Y ∈ F,

X ∈ F & Y ∈ F =⇒ X ∩ Y ∈ F.

See Figure .. Intuitively, elements of an ideal are ‘small’ subsets of Ω;
elements of a filter are ‘large’ subsets of Ω.

Since filters easily correspond to ideals, we need not introduce the concept
of a filter. Alternatively, once we have filters, we can forget about ideals. I
prefer not to forget about ideals, since they are familiar from ring-theory.
And yet sometimes it will be useful to think in terms of filters as well.





. Ideals and filters
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b
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X ∩ Y

X

∅

Ω

Figure .: A filter of a Boolean ring

A filter of P(Ω) is also called a filter on Ω itself.

Suppose P is a prime ideal of P(Ω), that is, P is an ideal such that

X ∩ Y ∈ P & X /∈ P =⇒ Y ∈ P.

The quotient P(Ω)/P is then an integral domain. But it is an integral
domain in which (∗) holds, that is, for all elements x,

x2 = x, 0 = x2 − x = x · (x− 1).

In every integral domain, these equation is solved by 0 and 1, but by no
other elements. So P(Ω)/P has only two elements, namely P and Ω+P .
A two-element integral domain (even a two-element ring) is a field. So
P(Ω)/P is a field, and therefore P is a maximal ideal. Thus all prime
ideals of P(Ω) are maximal. Since in P(Ω) we have

X △ Ω = Xc,

we have that X and Xc are always in different cosets of P , that is,

X ∈ P ⇐⇒ Xc /∈ P.
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The filter {Xc : X ∈ P} that is dual to P is called an ultrafilter. As a
filter, it is the set of complements (in Ω) of elements of P ; as an ultrafilter,
it is the complement (in P(Ω)) of P .

. Reduced products

Suppose (Ai : i ∈ Ω) is an indexed family of structures with a common
signature S . An element of the Cartesian product

∏

i∈ΩAi is a tuple
(ai : i ∈ Ω), where ai ∈ Ai; we may write this tuple simply as a. Let the
product

∏

i∈ΩAi be called also B. This is the universe of a structure

∏

i∈Ω

Ai

or B of S , where for all n in ω, for all n-ary operation-symbols F and
predicates R of S ,

FB(a) = (FAi(ai) : i ∈ Ω), RB =
∏

i∈Ω

RAi .

Here notation is as in §, so that a ∈ Bn, which means a = (a0, . . . , an−1),
where ak = (aki : i ∈ Ω); and ai = (a0i , . . . , a

n−1
i ). See Figure .. Note

a a0 a1 a2 . . .
q q q q
a0 = a00 a01 a02 . . .
...

...
...

...
an−1 = an−1

0 an−1
1 an−1

2 . . .

Figure .: Notation for sequences of tuples

that, if RAi = ∅ for even one index i, then RB = ∅.

Now let I be an ideal of P(Ω). We shall define a quotient

∏

i∈Ω

Ai/I
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or B/I. First, we define two elements of B to be congruent modulo I
if they disagree only on a small set of indices, that is, a set belonging to
I:

{i ∈ Ω: ai 6= bi} ∈ I ⇐⇒ a ≡ b (mod I).

Equivalently, if F is the dual filter of I (that is, F = {Xc : X ∈ I}, then
two elements of B are congruent if and only if they agree on a large set
of indices, that is, a set belonging to F :

{i ∈ Ω: ai = bi} ∈ F ⇐⇒ a ≡ b (mod I).

We may write:

• a/I for the congruence-class {b : a ≡ b (mod I)},
• B/I for the set of these congruence-classes,
• a/I for (a0/I, . . . , an−1/I).

(Or one could write F for I here.) We want to define a structure B/I of
S with universe B/I. Then for all n-ary operation-symbols F of S , we
should define

FB/I(a/I) = FB(a)/I.

However, we must check that this is a valid definition. We shall do this
presently; meanwhile, for an n-ary predicate R of S , what should RB/I

be? By one generalization of the definition in §. of the ordering of
Rω/I, we should define RB/I as

{a/I : a ∈ RB}.

However, by what we noted above, this relation is empty if RAi = ∅ for
even one index i. The empty relation is still a relation, but it is not what
we want here. The ‘correct’ definition of RB/I is given as follows.

Theorem . For all indexed families (Ai : i ∈ Ω) of structures with
common signature S , there is a structure B/I in Mod(S ), with universe
∏

i∈ΩAi/I, such that all n in ω, for all n-ary operation-symbols F and
predicates R of S ,

FB/I(a/I) = FB(a)/I, RB/I =
{

a/I : {i : ai /∈ RAi} ∈ I
}

.

If RAi 6= ∅ for each i in Ω, then

RB/I = {a/I : a ∈ RB}.
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Proof. We need only check that the definition of FB/I is valid. Suppose

a ≡ b (mod I),

that is, a/I = b/I, that is, ak/I = bk/I for each k in n. This means
{i : aki 6= bki } ∈ I for each k in n. But then

⋃

k∈n

{i : aki 6= bki } ∈ I.

We have also

{i : FAi(ai) 6= FAi(bi} ⊆
⋃

k∈n

{i : aki 6= bki },

so {i : FAi(ai) 6= FAi(bi)} ∈ I and therefore

FB(a) ≡ FB(b) (mod I).

The structure B/I is a reduced product of the family (Ai : i ∈ Ω).

We can understand each element a of
∏

i∈ΩAi as a new constant, to be
interpreted in each Ai as ai, and in B as a/I. Then the definition

RB/I =
{

a/I : {i : ai /∈ RAi} ∈ I
}

in the theorem just means

B/I � Ra ⇐⇒ {i : Ai � ¬Ra} ∈ I,

and the definition
FB/I(a/I) = FB(a)/I

has the meaning of

B/I � Fa = b ⇐⇒ {i : Ai � ¬(Fa = b)} ∈ I.

The formulas Rx and Fx = y here are unnested atomic formulas. (So is
x = y.) Our equivalences have the form

B/I � σ ⇐⇒ {i : Ai � ¬σ} ∈ I, (§)
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which can be written also as

B/I � σ ⇐⇒ {i : Ai � σ} ∈ F.

So this is true by definition when σ is an unnested atomic sentence (in
the expanded signature S (B)). For which other σ is it true?

Lemma. The equivalence (§), that is,

B/I � σ ⇐⇒ {i : Ai � ¬σ} ∈ I,

considered as a function of σ, is preserved under conjunction: if it holds
when σ is τ or ρ, then it holds when σ is τ ∧ ρ.

Proof. From the definition of an ideal, we have

X ⊆ Y & Y ∈ I =⇒ X ∈ I,

X ∈ I & Y ∈ I =⇒ X ∪ Y ∈ I.

Together these imply the converse of the latter; so we have

X ∈ I & Y ∈ I ⇐⇒ X ∪ Y ∈ I.

If now (§) holds when σ is τ or ρ, then the following are equivalent:

B/I � τ ∧ ρ,
B/I � τ & M � ρ,

{i : Ai � ¬τ} ∈ I & {i : Ai � ¬ρ} ∈ I,

{i : Ai � ¬τ} ∪ {i : Ai � ¬ρ} ∈ I,

{i : Ai � ¬τ ∨ ¬ρ} ∈ I,

{i : Ai � ¬(τ ∧ ρ)} ∈ I.

Lemma. The equivalence (§), that is,

B/I � σ ⇐⇒ {i : Ai � ¬σ} ∈ I,

considered as a function of σ, is preserved under quantification:

if it holds when σ is ψ(a), for all parameters a, for some singulary for-
mula ψ (possibly with parameters),
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then it holds when σ is ∃x ψ(x).

Proof. Under the given hypothesis, the following are equivalent:

B/I � ∃x ψ(x),
B/I � ψ(a) for some a in B,

{i : Ai � ¬ψ(ai)} ∈ I for some a in B.

For all a in B, we have

{i : Ai � ¬ψ(ai)} ⊇ {i : Ai � ¬∃x ψ(x)}.

Moreover, for some choice of a, this inclusion is an equality. This yields
the result.

. Ultraproducts

Suppose P is a prime ideal (hence a maximal ideal) of P(Ω). Then
the reduced product B/P is called more precisely an ultraproduct of
(Ai : i ∈ Ω). There is a trivial example: For some j in Ω, let P be the
principal ideal (Ωr{j}) of P(Ω), that is, P = {X ⊆ Ω: j /∈ Ω}. Then

∏

i∈Ω

Ai/P ∼= Aj .

All ultraproducts are thus if Ω is finite; but if Ω is infinite, then the
Fréchet ideal of P(Ω) (that is, the ideal consisting of all finite subsets of
Ω) is a proper ideal, so it may be included in P , which is therefore not
principal. Immediately we have:

Lemma. If P is a prime ideal of P(Ω), then the equivalence

B/P � σ ⇐⇒ {i : Ai � ¬σ} ∈ P,

as a function of σ, is preserved under negation.

So we are assuming the Prime Ideal Theorem, that every proper ideal of a ring
is included in a prime ideal. This is apparently weaker than the Maximal Ideal
Theorem, that every proper ideal of a ring is included in a maximal ideal; this is
equivalent to the Axiom of Choice. Some discussion and references are found in
[, §., pp. –].
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The three lemmas of this chapter together yield:

Theorem  (Łoś). If P is a maximal ideal of P(Ω), then

B/P � σ ⇐⇒ {i : Ai � ¬σ} ∈ P

holds for all σ (with parameters).

As a special case, if each Ai is the same structure A, so that in particular
∏

i∈ΩAi is the Cartesian power AΩ, then the ultraproduct B/I (that is
AΩ/P ) is an ultrapower of A. The diagonal embedding a 7→ (a : i ∈ Ω)
of A in B/I is now an elementary embedding, that is, for all sentences σ
with parameters from A (or more precisely from the image of A in AΩ),

B/I � σ ⇐⇒ A � σ.

Considering the embedding as an inclusion (that is, identifying A with
its image in B/I), we may write then

A 4 B/I.

. Cardinality

By the theorem below, a non-principal ultrapower C of a countably infi-
nite structure A is uncountable. By the Downward Löwenheim–Skolem–
Tarski Theorem, in a countable signature, there will then be a countable
structure B such that

A ≺ B ≺ C.

Indeed, B may be chosen to include A∪{x} for some x in CrA. However,
even though A is then a proper substructure of B, these two may be
isomorphic. However, this is not the case when A is (N,+, ·). Thus
countable non-standard models of arithmetic exist. A more illuminating
construction of such models is given in §. below.

The following is a special case of [, Thm ..(a)] (and is said to be
found in Frayne, Morel, and Scott []).
The usual reference is [] although the theorem is not given clearly there.
I have a printout of this article, but have not sorted through all of its many basic

results to find this one. It should be noted that the article has a ‘correction’ [],
which merely refines the account of Tarski’s contribution to the subject (as well as
taking some of the credit away from Frayne).
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Theorem . For all signatures S , for all A in Mod(S ), for all singulary
formulas ϕ of S (A), for all non-principal prime ideals P of P(ω),

ω 6 |ϕ(A)| =⇒ |ϕ(Aω/P )| = |ϕ(A)|ω.

In particular, if A is countable, then all infinite definable relations of
Aω/P have the cardinality of the continuum.

Proof. For all a in Aω, if a/P ∈ ϕ(Aω/P ), then by Łoś’s Theorem

{i ∈ ω : ai /∈ ϕ(A)} ∈ P.

Then we may assume this set {i ∈ ω : ai /∈ ϕ(A)} is actually empty. More
precisely, there is a′ in ϕ(A)ω such that a/P = a′/P . More precisely still,
there is an injection a/P 7→ a′ from ϕ(Aω/P ) to ϕ(A)ω. This shows

|ϕ(Aω/P )| 6 |ϕ(A)|ω.

For the reverse inequality, it is enough to find a function x 7→ x∗ from
ϕ(Aω) to itself such that

x 6= y =⇒ x∗/P 6= y∗/P,

that is,
x 6= y =⇒ {i : x∗i 6= y∗i } /∈ P.

Now x 6= y means xi 6= yi for some i in ω. If

{j : x∗j 6= y∗j } ⊇ ωr i, (¶)

that is, if {j : x∗j = y∗j } ⊆ i, then since i ∈ P , we have {j : x∗j 6= y∗j } /∈ P .
So it is enough that

xi 6= yi & i 6 j =⇒ x∗j 6= y∗j . (‖)

We can achieve this by letting x∗j be an injective function of (x0, . . . , xj),
for each j in ω. We can do this, if ϕ(A) is infinite. Indeed, for each i in
ω, let µi be an injection from ϕ(A)i+1 to ϕ(A). Now we can define

x∗i = µi(x0, . . . , xi).
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Let us try to generalize this argument, replacing ω with an arbitrary
infinite index-set Ω. In the condition (¶), the element ωr i of the dual
filter F of P will be replaced by some element Xi of the dual filter. Then
(‖) becomes

xi 6= xj & j ∈ Xi =⇒ x∗j 6= y∗j .

So x∗j should be an injective function of (xi : j ∈ Xi), for each j in Ω. For
this, it is enough if the sets

{i ∈ Ω: j ∈ Xi}

are finite. An ultrafilter F on Ω (that is, an ultrafilter of P(Ω) is called
regular if it has such elements Xi for all i in Ω.

It is easy to show that there are regular ultrafilters on Pω(Ω) (that
is, regular ultrafilters of P(Pω(Ω)). For, if i ∈ Pω(Ω), we need only
define

Xi = {j ∈ Pω(Ω): i ⊆ j}.
Since Xi ∩Xj = Xi∪j , the Xi do generate a filter on Pω(Ω). The filter
is proper, since i ∈ Xi, so none of the Xi is empty. Moreover,

{i ∈ Pω(Ω): j ∈ Xi} = {i ∈ Pω(Ω): i ⊆ j} = P(j),

which is finite. So there are regular proper filters, and hence regular
ultrafilters, on Pω(Ω). Since Pω(Ω) has the same cardinality as Ω
(assuming this is infinite), there are regular ultrafilters on Ω.

We shall use an index-set of the form Pω(Ω) in proving the Compactness
Theorem (Theorem ) on page  below.
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. Arrow’s Theorem

This section is inspired by Sasha Borovik’s article []. We consider an
index-set Ω as a set of voters. Each voter i in Ω is called on to assign
a linear ordering <i to a set A of candidates. These orderings are to be
used to assign a linear ordering < to A. This ordering < should be a
kind of average of the orderings <i. This suggests that we should take
an ultraproduct of the structures (A,<i). We shall see that, on some
reasonable assumptions, we must do this.

We want to determine < by first selecting a subset D of P(Ω) such that,
for all x and y in A, we shall be able to require

{i : x <i y} ∈ D =⇒ x < y.

So D will be, so to speak, a collection of ‘winning coalitions’. If X ∈ D,
then the members of X can determine how the candidates in A shall be
ordered (if all members of X agree). Then we must have, first of all,

D 6= ∅,

X ∈ D =⇒ Xc /∈ D.

We also require that additional votes for a particular ordering can only
help that ordering:

X ∈ D & X ⊆ Y ⊆ Ω =⇒ Y ∈ D.

Hence in particular Ω ∈ D. We require voting to be decisive:

X /∈ D =⇒ Xc ∈ D.

If A consists of just two candidates, this is all we need. Then D is not
necessarily an ultrafilter on Ω; for it need not be closed under intersec-
tions. Indeed, in the ‘democratic’ case, if Ω has a finite number 2n − 1
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a < b < cc < a < b b < c < a

c < b < a

Figure .: An election with three candidates

of members, then D will be {X ∈ P(Ω): |X| > n}; this is definitely not
closed under intersections unless n = 1.

But now suppose A contains three distinct candidates, a, b, and c; and
let

{i : a <i b} = A, {i : b <i c} = B.

Suppose both A and B are in D. Then we must conclude a < b and b < c
and therefore a < c. We have now

A ∩B ⊆ {i : a <i c}, {i : a <i c} ∈ D.

However, possibly
A ∩B = {i : a <i c};

this is the case when—as is possible—

{i : c <i a <i b} = ArB,

{i : b <i c <i a} = B rA,

{i : c <i b <i a} = (A ∪B)c.

See Figure .. Thus we must have A ∩ B ∈ D. Therefore D is an
ultrafilter on Ω. If Ω is finite, then D must be a principal ultrafilter: that
is, one voter decides everything, and the system is a dictatorship.

. Compactness

Theorem  (Compactness). Suppose Γ ⊆ Sn(S ), and every finite subset
of Γ has a model. Then Γ itself has a model.
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Proof. Assuming A∆ � ∆ for each ∆ in Pω(Γ), we shall find an ultrafilter
F on Pω(Γ) such that

∏

∆∈Pω(Γ)

A∆/F � Γ. (∗)

This just means, by Łoś’s Theorem, that for each σ in Γ,

{∆ ∈ Pω(Γ) : A∆ � σ} ∈ F.

But we have

{∆ ∈ Pω(Γ) : σ ∈ ∆} ⊆ {∆ ∈ Pω(Γ) : A∆ � σ}.

Let the former set be denoted by [σ]; more generally, if ∆ ∈ Pω(Γ), let

[∆] = {Θ ∈ Pω(Γ) : ∆ ⊆ Θ}.

Then

∆ ∈ [∆], [∆] ∩ [Θ] = [∆ ∪Θ].

Consequently the sets [∆] generate a filter on P(Pω(Γ)). Let it be
included in the ultrafilter F , and let B be the ultraproduct of (A∆ : ∆ ∈
Pω(Γ)) with respect to F . For every σ in Γ, we have [σ] ∈ F , and
for every ∆ in [σ], we have A∆ � σ. Then by Łoś’s Theorem, we have
(∗).

Now we can establish a complement to Theorem  (p. ):

Theorem  (Upward Löwenheim–Skolem–Tarski). If A is an infinite
structure with signature S , and max(|A|, |σ|) 6 κ, then there is a struc-
ture B such that

A 4 B, |B| = κ.

Proof. Let C be a set {cα : α < κ} be a set of new constants, all distinct.
By Compactness, the set

Th(AA) ∪ {cα 6= cβ : α < β < κ}
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of sentences has a model DA∪C . By construction, this model has car-
dinality at least κ. By the downward version of the theorem, D has an
elementary substructure B of size κ such that A ⊆ B. Since also A 4 D,
the structure B is as desired.

This theorem yields an easy test for completeness of theories. For an
infinite cardinal κ, a theory is κ-categorical if all of its models of size κ
are isomorphic to one another.

Theorem  (Łoś–Vaught Test). If a theory T of a signature S has
models, but no finite models; |S | 6 κ; and T is κ-categorical; then T is
complete.

Proof. If T contains neither σ nor ¬σ, then both T ∪ {¬σ} and T ∪ {σ}
have models, which must be infinite. Then by the Löwenheim–Skolem–
Tarski theorems (both upward and downward forms may be needed),
each of the two sets has a model of cardinality κ; but these two models
cannot be isomorphic to one another.

Theorem .

• The theory of algebraically closed fields of characteristic 0 is com-
plete.

• For all primes p, the theory of algebraically closed fields of charac-
teristic p is complete.

Proof. None of these theories has no finite models. Every algebraically
closed field is determined up to isomorphism by its characteristic and its
transcendence-degree. If κ is uncountable, then a field with transcendence-
degree κ has cardinality κ. Now the Łoś–Vaught Test applies.

Similarly we have the following (see page  above):

Theorem . The theory of algebraically closed fields is model-complete.

Proof. If T is this theory, K � T , and |K| < κ, then T ∪ diag(K) is
κ-categorical, but has no finite models.
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We can also now prove the converse of the lemma on page  above.

Theorem . For all theories T , the models of T∀ are precisely the
substructures of models of T .

Proof. Assuming A � T∀, we want to show T ∪ diag(A) has a model. By
Compactness, and since diag(A) is closed under conjunction, it is enough
to show T ∪ {ϑ(a)} has a model whenever ϑ is a quantifier-free formula
of S and A � ϑ(a). If it has no model, then T ⊢ ¬ϑ(a), so (since no
entry of a is in S ) T ⊢ ∀x ¬ϑ(x), and therefore A � ∀x ¬ϑ(x), which is
absurd.

In particular, when T is just field-theory, then T∀ is the theory of integral
domains: see page  below.

. Elementary classes

In [] Łoś defined ultraproducts (but not by that name) in order to state
the following algebraic test for being an elementary class of structures.

Theorem . A subclass of Mod(S ) is elementary if and only if it
contains:

• every structure that is elementarily equivalent to a member, and
• every ultraproduct of members.

Proof. The ‘only if’ direction is the easier. An elementary class is the
class of models of some theory T . If the class is K, and A ∈ K, and
A ≡ B, then B � T , so B ∈ K. If {Ai : i ∈ Ω} ⊆ K, then Ai � T in each
case, so every ultraproduct of the Ai is a model of T , by Łoś’s Theorem.

The more difficult direction is ‘if’. Suppose K is a non-elementary sub-
class of Mod(S ). Then there is a model B of Th(K) that does not belong
to K. However, every element σ of Th(B) has a model in K, since other-
wise ¬σ would be in Th(K). Therefore every finite subset ∆ of Th(B) has
a model A∆ in K (since otherwise the negation of the conjunction of the
members of ∆ would be in Th(K)). By (the proof of) the Compactness
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Theorem, some ultraproduct of (A∆ : ∆ ∈ Pω(Th(B))) is elementarily
equivalent to B.

. A countable non-standard model of arithmetic

By arithmetic we mean the theory of (ω,+, ·) or of (ω,+, ·, 0, 1,6); it
makes little difference, since

) 6 is definable in (ω,+, ·) by the formula ∃z x+ z = y,
) {0} is definable by ∀y y + x = y,
) {1} is definable by 0 < x ∧ ∀y (0 = y ∨ x 6 y).

Similarly {n} is definable in (ω,+, ·) for all n in ω.

Every ultrapower of (ω,+, ·) is a model of arithmetic. Every non-prin-
cipal ultrapower B (determined by a non-principal ultrafilter F on ω) is
a non-standard model of arithmetic, in the sense that it is not isomorphic
to (ω,+, ·), but contains an infinite element c. However, B here must
be uncountable by Theorem . As we noted before this theorem, by
the Downward Löwenheim–Skolem–Tarski Theorem (Theorem ), we can
obtain a countable elementary substructure A of B that includes ω∪{c},
and then A will be an elementary extension of (ω,+, ·).

We can construct such a structure A more directly as follows. Let A
be the set of 0-definable singulary operations of (ω,+, ·). This means
f ∈ A if and only if the relation {(x, f(x)) : x ∈ ω} is 0-definable (that
is, definable without parameters). We can consider A as a subset of
ω

ω. Then a constant sequence (x, x, x, . . . ) should be understood as the
constant function {(n, x) : n ∈ ω} or n 7→ x, which is in A. Thus the
diagonal map embeds ω in A. Also A is closed under + and ·. Therefore
A is the universe of a substructure A of B. Also, if n ∈ ω, and ϕ is an
(n + 1)-ary formula, and f is an element (f0, . . . , fn−1) of An, then A
has an element g such that for all i in ω,

(ω,+, ·) � ∃y ϕ(f(i), y) ⇐⇒ (ω,+, ·) � ϕ(f(i), g(i)).

Indeed, g can be such that g(i) is the least b such that (ω,+, ·) �

ϕ(f(i), b), if such b exist; and otherwise g(i) = 0. Then g is defined
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by the formula

(ϕ(f(x), y) ∧ (∀z (ϕ(f(x), z) → y 6 z))) ∨ (∀z ¬ϕ(f(x), z) ∧ y = 0).

It follows by the Tarski–Vaught Test (page ) that

A 4 B;

therefore, since (ω,+, ·) ⊆ A, we have

(ω,+, ·) ≺ A.

Indeed, we now have that the following are equivalent:

B � ∃y ϕ(f , y),
{i : (ω,+, ·) � ∃y ϕ(f(i), y)} ∈ F,

{i : (ω,+, ·) � ϕ(f(i), g(i))} ∈ F,

B � ϕ(f , g).

Now the Tarski–Vaught Test applies. This construction of A is apparently
due to Skolem.

I take it from Bell and Slomson [, Ch. , §].
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A sentence that is true in all structures of its signature can be called valid
sentence or a validity. It is easy in principle to show that a sentence is
not valid: just exhibit a model of its negation. But if a sentence is valid,
how can this be shown? We cannot simply verify the sentence in all
structures of its signature, since there will be infinitely many of these
structures. The method of formal proof is a finitary alternative. We
shall show by means of ultraproducts that this method always works in
principle. This result is Gödel’s Incompleteness Theorem.

. Formal proofs

A formal proof is just a (finite) list of sentences such that each sentence
on the list is either

) an axiom, or
) derivable from sentences earlier in the list by means of a rule of

inference.

We choose the axioms and rules of inference to serve our needs; taken all
together, they constitute a proof-system. In his doctoral dissertation
of , Gödel [] gave a particular proof-system, obtained from the
Principia Mathematica [] of Russell and Whitehead. The first four
of Gödel’s axioms, or rather schemes of axioms, are found on page ,
Chapter , of the Principia Mathematica. Recall that, by our convention

As Gödel notes, there was a fifth axiom, ϕ∨ (ψ ∨ χ) → ψ ∨ (ϕ∨ χ), but apparently
Bernays showed it to be redundant. For us, each of the four formulas given here
represents infinitely many axioms, since ϕ, ψ, and χ can be any formulas. It
should be noted that Russell and Whitehead were involved in creating formal
logic; our way of understanding formulas was not yet fully developed. For an
amusing fictionalized account of Russell’s interactions with Gödel, see [].
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on symbolic precedence given on page , ∨ takes precedence over →, and
of two instances of →, the one on the right takes precedence.

) ϕ ∨ ϕ→ ϕ,

) ϕ→ ϕ ∨ ψ,

) ϕ ∨ ψ → ψ ∨ ϕ,

) (ϕ→ ψ) → χ ∨ ϕ→ χ ∨ ψ.

The primitive Boolean connectives here are actually ∨ and ¬; so ϕ → ψ
should be understood as an abbreviation of ¬ϕ ∨ ψ. In Chapter  of the
Principia (at ∗. and ∗., pp. –) are found Gödel’s next two
axioms:

) ∀x ϕ→ ϕxy ,

) ∀x (ϑ ∨ ϕ) → ϑ ∨ ∀x ϕ.

In the former scheme, ϕxy is the result of replacing every free occurrence
of x in ϕ with y. In the latter scheme, x must not occur freely in ϑ.
The primitive quantifier can be taken as ∀, so that ∃x ψ will be an
abbreviation of ¬∀x ¬ψ. Finally, equality is treated in two axioms, found
in Chapter  of the Principia (at ∗. and ∗., pp. –):

) x = x,

) x = y → ϕ→ ϕxy .

Here y should not occur in ϕ, or at least there should be no subformula
∀y ψ in which there is an occurrence of x that is free as an occurrence in
ϕ.

The rules of inference are three:

See the previous note. For Gödel, there were just six axioms in all, using propo-

sitional variables where I have put ϕ, ψ, and χ; and using a functional variable

where I have put ϑ. Then in addition to the three rules of inference given below,
there was a fourth, allowing propositional and functional variables to be replaced
by formulas in our sense.

See the previous note on Gödel’s fourth rule of inference (which was actually third on
his list). Gödel notes, ‘Although Whitehead and Russell use these rules throughout
their derivations, they do not formulate all of them explicitly.’





. Formal proofs

Detachment: From ϕ and ϕ→ ψ may be inferred ψ.
Generalization: From ϑ may be inferred ∀x ϑ.
Change of variables: ‘Individual variables (free or bound) may be re-

placed by others, so long as this does not cause overlapping of the
scopes of variables denoted by the same sign’ [, p. ].

Again, a formal proof is a finite list of formulas such that each formula
on the list is an axiom or else is derived from previous formulas on the
list by means of a rule of inference. The last formula on the list is then
said to be provable. If ϕ is provable, we may express this by

⊢ ϕ.

Note that in fact every formula in a formal proof is provable, because
every initial segment of a formal proof is still a formal proof.

A generalization of a formula ϕ is a formula ∀x ϕ, where all free vari-
ables of ϕ occur in x. Then we can generalize the notion of validity
by saying that an arbitrary formula is valid if some (and hence every)
generalization of it is true in every structure of its signature.

It should be clear that every provable formula is valid. Gödel proves the
converse: this is his Completeness Theorem.

Before Gödel, a completeness theorem for propositional logic was known.

Propositional formulas are, strictly, not formulas as defined in §..
above; but they can be understood as formulas in which:

) the place of atomic formulas is taken by propositional variables;
) no quantifier ∃ or ∀ is used.

In particular, there are no individual variables in a propositional formula,
but only propositional variables. A structure for propositional logic as-
signs a truth-value to each of these propositional variables. Then a propo-
sitional formula is true or false in the structure, according to the relevant

Detachment is not Gödel’s name for this rule; he (or more precisely his translator)
calls it the Inferential Schema.

Gödel’s reference for this is Bernays from ; but the theorem can be found in
Post’s  article [].
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parts of the definition of truth of sentences (on page ), namely:

A � ¬σ ⇐⇒ A 2 σ,

A � σ ∧ τ ⇐⇒ A � σ & A � τ.

Strictly, since ∨ is now primitive instead of ∧, we should replace the latter
rule with

A � σ ∨ τ ⇐⇒ A � σ or A � τ.

We may treat the truth-value true as 1, and false as 0. Then a proposi-
tional formula F in an n-tuple (P0, . . . , Pn−1) of propositional variables
determines an n-ary operation F̂ on 2, where if e ∈ 2n, then F̂ (e) is
the truth-value of F in any propositional structure that assigns the value
ei to Pi when i < n. This operation F̂ can be described completely in
a truth-table. If the operation is identically 1, then F is a (proposi-
tional) tautology. The first four axiom-schemes above, along with the
inference-rule of Detachment, constitute a proof-system for propositional
logic in which every tautology is provable. This is possibly not an excit-
ing theorem, since there is already an algorithm for determining whether
a formula is a tautology: just write out its truth-table.

A tautology in general can be understood as resulting from a proposi-
tional tautology by replacing each occurrence of a propositional variable
with the same formula of some signature S , for all propositional vari-
ables occurring in the propositional tautology. Evidently tautologies in
this broader sense are valid. They are therefore provable, by the com-
pleteness theorem of propositional logic. If we do not want to bother to
prove this completeness theorem, we can just introduce, as new axioms,
all tautologies, since again there is an algorithm for determining which
formulas these are.

If ϕ is a formula, we may define a formal proof from ϕ as a formal proof in
the earlier sense, but with ϕ treated as an axiom, and with generalization
of free variables in ϕ not allowed. If ψ is provable from ϕ in this sense,
we may write

ϕ ⊢ ψ;
The restriction is to ensure that, if ψ is provable from ϕ, then the formula ϕ → ψ

is valid, while the converse is still true.
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to give it a name, we may call this a sequent. For example, by Detach-
ment, the axiom ∀x ϕ→ ϕxy gives us the sequent

∀x ϕ ⊢ ϕxy , (∗)

because the sequence

∀x ϕ, ∀x ϕ→ ϕxy , ϕ
x
y .

is a formal proof from ∀x ϕ. Likewise, the axiom ∀x (ϑ ∨ ϕ) → ϑ ∨ ∀x ϕ
gives us

∀x (ϑ ∨ ϕ) ⊢ ϑ ∨ ∀x ϕ. (†)
(Recall that x must not be free in ϑ.)

. Completeness by ultraproducts

Suppose σ is an arbitrary sentence. We want to show that either σ is
provable, or else its negation has a model, in fact a countable model.

We make several simplifying assumptions:

. No operation-symbols occur in σ.
. The sign = of equality does not occur in σ.
. For some positive integers p and q, for some quantifier-free (p+ q)-

ary formula ϕ, σ is the sentence

∃x ∀y ϕ(x,y),

where x and y are respectively a p-tuple and a q-tuple of variables.

The justification of these assumptions does not involve ultraproducts, so
it is relegated to a later section, §..

Let V be a countably infinite set {vk : k ∈ ω} of individual variables.
The power V p is countable, so we may assume

V p = {xk : k ∈ ω}.
The ensuing argument is based mainly on that of Bell and Slomson [, Ch. , §].

These writers cite J.N. Crossley for the suggestion of introducing ultraproducts to
Gödel’s original argument. Church [, §] explicates Gödel’s original argument
more faithfully.
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Now we may suppose
{yk : k ∈ ω} ⊆ V q,

where if k < ℓ, then yk and yℓ have no entries in common, and if j 6 k,
then xj and yk have no entries in common. We now denote

ϕ(xk,yk) by ϕk,

ϕ0 by ϑ0,

ϕk+1 ∨ ϑk by ϑk+1,

∀x0 · · · ∀yk ϑk by σk.

That is, ϑk is defined recursively in k as shown; and σk is a generalization
of ϑk. We shall prove that, for all k in ω,

σk ⊢ σ.

To this end, we note first that since no entry of yk+1 appears in ϑk, we
have, as a special case of the sequent (†),

∀yk+1 (ϑk ∨ ϕk+1) ⊢ ϑk ∨ ∀yk+1 ϕk+1,

that is (by definition of ϑk+1),

∀yk+1 ϑk+1 ⊢ ϑk ∨ ∀yk+1 ϕk+1.

By the sequent (∗) (used repeatedly), we have

σk+1 ⊢ ∀yk+1 ϑk+1.

Therefore, by stringing together the (short) proofs of the last two se-
quents, we have

σk+1 ⊢ ϑk ∨ ∀yk+1 ϕk+1. (‡)
By repeated use of the axiom allowing removal of universal quantifiers,
we have

⊢ ∀x ¬∀y ϕ(x,y) → ¬∀yk+1 ϕk+1;

therefore, by contraposition (justified by completeness for propositional
logic),

⊢ ∀yk+1 ϕk+1 → ∃x ∀y ϕ(x,y),
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that is,
⊢ ∀yk+1 ϕk+1 → σ.

Combining this with (‡) gives

σk+1 ⊢ ϑk ∨ σ

and therefore (by Generalization mainly)

σk+1 ⊢ σk ∨ σ.

Thus if σk ⊢ σ, then σk+1 ⊢ σ. Since by change of variables we have

σk ⊢ σ

when k = 0, by induction we now have this for all k in ω.

Now we can show that either σ is provable, or ¬σ has a model. to do so,
we consider two cases. The first one is easy to dispose of: If some σk is
provable, then so is σ itself, and we are done.

So now let us suppose that no σk is provable. Then no ϑk is provable; so
it must not be a tautology.

Since ϑk is quantifier-free, but not a tautology, there must be a truth-
assignment to its atomic subformulas that makes ϑk false. We can extend
this to a truth-assignment F to all atomic formulas in variables from V
(that is, in the variables vi) with predicates occurring in ϕ. Since none of
those predicates is =, the truth-assignment F determines a structure Ak
whose universe is ω such that, for each n in ω, for each n-ary predicate
R occurring in ϕ,

RAk = {(i(0), . . . , i(n− 1)) ∈ ω
n : F (Rvi(0) · · · vi(n−1)) = 1}.

If we now treat each variable vi as a constant whose interpretation in Ak
is i, then we have

Ak � Rvi(0) · · · vi(n−1) ⇐⇒ F (Rvi(0) · · · vi(n−1)) = 1.

Then by construction
Ak � ¬ϑk.
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Suppose k 6 ℓ. Then
ϑk ⊢ ϑℓ,

so that also ¬ϑℓ ⊢ ¬ϑk, and hence

Aℓ � ¬ϑk.

Thus for all j in ω,
{i ∈ ω : Ai � ϑj} ⊆ j.

Now let C be a non-principal ultraproduct of the Ai. It follows that, for
all j in ω,

C � ¬ϑj .
(Here vi is interpreted as the image of i under the diagonal map.) Hence
the conjuncts of the ¬ϑj are true in C:

C � ¬ϕ(xj ,yj).

Since we have no operation-symbols in our signature, every subset of C
is the universe of a substructure of C. Let B be the image of ω under the
diagonal map in C. Since ϕ is quantifier-free, and the interpretations of
all of the variables are now in B, we have

B � ¬ϕ(xj ,yj),
B � ∃y ¬ϕ(xj ,y).

But we have arranged things so that every element of Bp is the interpre-
tation of some xj . Therefore

B � ∀x ∃y ¬ϕ(x,y),

that is, σ is false in B.

. Completeness by König’s Lemma

Gödel himself does not use an ultraproduct explicitly in his argument,
but he can be understood to create the structure B (with universe ω) as
follows. Let (αk : k ∈ ω) be a list of all of the atomic formulas appearing

I am guided by Church’s version of Gödel’s argument here. See below.
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in the formulas ϕℓ. We define B by determining in each case whether
αk is to be true in B (again with variable vi understood as i). This
determination can be made recursively as follows. First, we let

B � α0 ⇐⇒ |{i : Ai � α0}| = ω

(that is, α0 is true in B if and only if the set of i such that α0 is true in
Ai is infinite), and then

B � α1 ⇐⇒ |{i : α0
Ai = α0

B & Ai � α1}| = ω,

B � α2 ⇐⇒ |{i : α0
Ai = α0

B & α1
Ai = α1

B & Ai � α2}| = ω,

and so on, where αjAi = αj
B means simply that αj is alike true or false

in Ai and B. Strictly the definition is by strong or well-ordered recursion,
requiring only the single condition

B � αk ⇐⇒ |{i :
∧

j<k

αj
Ai = αj

B & Ai � αk}| = ω.

It follows by induction that, at each step,

|{i :
∧

j<k

αj
Ai = αj

B}| = ω. (§)

The construction ensures B � ¬ϑj as before. Indeed, suppose if possible
B � ϑj . Then the atomic subformulas of ϑj belong to a finite set {αi : i <
k}, so

{i :
∧

j<k

αj
Ai = αj

B} ⊆ {i ∈ ω : Ai � ϑj}.

However, as before we have also

{i ∈ ω : Ai � ϑj} ⊆ j.

These two inclusions together contradict (§).
There is some arbitrariness in this definition of B. If the truth of αj in B

has been determined when j < k so that (§) holds, then we shall want

|{i :
∧

j<k

αj
Ai = αj

B & Ai � ¬αk}| < ω =⇒ B � αk,

|{i :
∧

j<k

αj
Ai = αj

B & Ai � αk}| < ω =⇒ B � ¬αk.





 Gödel’s Completeness Theorem

If both of these sets are infinite, then the question of whether B � αk
can be decided arbitrarily. We decided above that αk would be true in
B in this case. However, if at the beginning we had chosen an ultrafilter
D on ω, then we could just define

B � αk ⇐⇒ {i : Ai � αk} ∈ D.

Gödel himself is not explicit about how he obtains B. His editor van
Heijenoort detects an allusion to König’s Lemma. There are more than
one theorem called by this name, but probably what is meant is the
following [, Lemma II.., p. ].

A tree is a (partially) ordered set such that, for every element a, the
subset {x : x < a} is well-ordered. The ordinal that is isomorphic to this
set is then the height of a. If this height is β, then a successor of a is
an element b of the tree with height β + 1 such that a < b. A branch of
a tree is a maximal linearly ordered subset.

An ω-tree is a tree whose every element has finite height and finitely
many successors. One version of König’s Lemma is that every infinite
ω-tree has an infinite branch. To prove this, we select an infinite branch
recursively by first letting a0 be an element at height 0 such that {x : a0 <
x} is infinite; then, assuming {x : ak < x} is infinite, we let ak+1 be a
successor of ak such that {x : ak+1 < x} is infinite.

This lemma applies to the present situation as follows. We start with
the complete binary tree 2<ω, that is,

⋃

n∈ω
2n, ordered by inclusion, so

that a 6 b if and only if a is an initial segment of b. See Figure .. This
has a sub-tree consisting of those (e0, . . . , en−1) such that the set

{i :
∧

j<n

αj
Ai = ej}

is infinite. This sub-tree is infinite, because it has elements at each finite
height. By König’s Lemma, the sub-tree has an infinite branch, whose
union is a sequence (ek : k ∈ ω); we can then define

B � αk ⇐⇒ ek = 1.

As before, B � ¬σ.
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∅

(0)

(0, 0)

(0, 0, 0)

(0, 0, 1)

(0, 1)

(0, 1, 0)

(0, 1, 1)

(1)

(1, 0)

(1, 0, 0)

(1, 0, 1)

(1, 1)

(1, 1, 0)

(1, 1, 1)

Figure .: A complete binary tree

. Arbitrary formulas

We have to justify the assumptions about σ made at the beginning of
§..

.. Operation-symbols

What we call relations, Gödel calls functions; but he has no symbols
for what we call operations. However, even if we do use them, we can
dispose of them as follows. Suppose, for some n-ary operation-symbol
F , there were an atomic subformula α of σ featuring a term Ft0 · · · tn−1.
Introducing a new (n + 1)-ary predicate RF , we could replace the term
Ft0 · · · tn−1 in α with a new variable x, obtaining an atomic formula α′.
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We could then replace α in σ with the formula

∃x (α′ ∧RF t0 · · · tn−1x),

obtaining σ′. Then σ would be logically equivalent to

σ′ ∧ ∀x ∃y ∀z (Rxy ∧ (Rxz → y = z)).

We should show that σ is provable from this equivalent sentence.

.. Equality

Suppose no operation-symbol occurs in σ, but the sign = of equality
does occur. We have to deal with the requirement that this sign is inter-
preted in every structure as equality itself (and not merely an equivalence-
relation). We introduce a new binary predicate ≡, and we replace each
occurrence of = in σ with this new predicate ≡, obtaining a new sentence
σ. Now let (R0, . . . , Rm) be a list of all predicates (including ≡) occurring
in σ′, and let σ′′ be the sentence

σ′ ∧ ∀x ∀y
(

x ≡ y →
∧

j6m

(Rjxj → Rjyj)
)

.

(Here xj and yj are initial segments, of appropriate length, of x and
y respectively; and x and y are long enough to make this possible.)
One shows that σ is provable from σ′′. Also, if A � σ′′, then ≡A is
an equivalence-relation on A, and the set of equivalence-classes is the
universe of a model of σ.

.. Skolem normal form

Every formula ϕ is equivalent to a formula ϕ̂ of the same signature in
prenex normal form, that is, with all quantifiers in front. For example,
if x is not free in ϑ, then

∀x ϕ ∧ ϑ ∼ ∀x (ϕ ∧ ϑ), ∀x ϕ ∨ ϑ ∼ ∀x (ϕ ∨ ϑ).

We shall show that, for every formula ϕ, there is a sentence ϕ̃, possibly
with new predicates, with the following two properties.
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. ϕ̃ has the form ∃x ∀y ϑ, where ϑ is quantifier-free.
. If ϕ̃ is valid, then so is ϕ; but if ¬ϕ̃ has a model, then ¬ϕ will be

satisfied in that model (that is, it will define a nonempty subset of
that model).

The sentence ϕ̃ is a Skolem normal form for ϕ. We can obtain it as
follows. First, write out a generalization of ϕ in prenex normal form,
as

∃x ∀y Q ϑ,

where Q is a string of quantifiers, and ϑ is quantifier-free. Introduce a
new predicate R and form the sentence

∃x (∀y (Q ϑ→ Rxy) → ∀y Rxy).

This has the second of the desired properties. It is also equivalent to

∃x (∃y (Q ϑ ∧ ¬Rxy) ∨ ∀y Rxy),
∃x ∃y ((Q ϑ ∧ ¬Rxy) ∨ ∀z Rxz),
∃x ∃y (Q (ϑ ∧ ¬Rxy) ∨ ∀z Rxz),
∃x ∃y Q ((ϑ ∧ ¬Rxy) ∨ ∀z Rxz),
∃x ∃y Q ∀z((ϑ ∧ ¬Rxy) ∨Rxz),

This last sentence is in prenex normal form, though perhaps not be in
Skolem normal form. Still, the number of universal quantifiers that pre-
cede existential quantifiers has decreased. So the process terminates in a
sentence that must be in Skolem normal form.
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. Boolean rings

In the ring (P(Ω),△,∩), every element is its own square. As we said in
§. on page , an arbitrary ring with this property is called a Boolean
ring. We now establish the promised Stone Representation Theorem
[], that for every Boolean ring R the set Spec(R) of prime ideals of R
is such that R embeds (as a ring) in (P(Spec(R)),△,∩). This result is
comparable to the so-called Cayley Theorem, that every group G embeds
in the group (Sym(G), ◦,−1, idG) under g 7→ (x 7→ gx).

So let R be a Boolean ring, namely a ring that satisfies the identity

x2 = x.

We assume that R has a unit (like all other rings in these notes), but we
need not assume that R is commutative, we shall prove it. First, R has
characteristic 2, since

2x = (2x)2 = 4x2 = 4x, 0 = 2x, −x = x.

It follows that R must be commutative, since now

x+ y = (x+ y)2 = x2 + xy + yx+ y2 = x+ xy + yx+ y,

0 = xy + yx,

yx = −xy = xy.

There are Boolean rings-without-units, for example Pω(ω) (the set of
finite subsets of ω, defined on page ); but again, we shall not consider
these as Boolean rings.

We can rewrite the defining identity x2 = x for Boolean rings as

0 = x2 − x = x · (x− 1) = x · (x+ 1).
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Hence if p is a prime ideal of R, then since 0 ∈ p, for all x in R we have
either x ∈ p or x− 1 ∈ p (that is, x+ 1 ∈ p). Thus p has just two cosets:
itself and 1+ p. Therefore R/p ∼= F2, a field, so p must be maximal. (We
showed this for P(Ω) on page .) Also,

x ∈ p ⇐⇒ x+ 1 /∈ p.

As above, we let Spec(R) be the set of prime ideals of R, and if x ∈ R,
we let [x] be the set of prime ideals of R that do not contain x. If
p ∈ Spec(R), we have

xy ∈ p ⇐⇒ x ∈ p ∨ y ∈ p,

hence

xy /∈ p ⇐⇒ x /∈ p & y /∈ p.

Thus,

[xy] = [x] ∩ [y].

BecauseR has characteristic 2, the sum of any two elements of {x, y, x+y}
is the third. Since

xy(x+ y) = x2 + xy2 = xy + xy = 0,

p must contain at least one of x, y, and x + y. Then p contains exactly
one of these, or all:

x+ y /∈ p ⇐⇒ (x ∈ p & y /∈ p) ∨ (x /∈ p & y ∈ p).

Thus

[x+ y] = [x] △ [y].

Since finally [1] = Spec(R), we have now that x 7→ [x] is a homomorphism
(of rings) from R to P(R). It is injective too, since if x 6= 0, then
x+1 6= 1, so x+1 generates a proper ideal that does not contain x, and
this ideal is included in a prime ideal, which must be in [x], so [x] 6= ∅.
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. Ultrafilters

It follows now that an arbitrary Boolean ring R has all of the operations
and relations that can be defined on a Boolean ring P(Ω) and its sub-
rings. For example, R is (partially) ordered by 6 corresponding to ⊆,
where

x 6 y ⇐⇒ xy = x.

Also R has operations ¬ and ∧, corresponding respectively to c and ∩,
so that

¬x = x+ 1, x ∧ y = xy.

Then

0 = x ∧ ¬x, 1 = ¬0,

and the operation ∨ corresponding to ∪ can be given by

x ∨ y = ¬(¬x ∧ ¬y). (∗)

The structure (R,¬,∧) is called a Boolean algebra. Usually the signa-
ture of Boolean algebras is considered to be {0, 1,¬,∧,∨}; but again the
additional operations can be defined from ¬ and ∧.

There is an equivalent axiomatic definition, which for the record can be
given as follows. A structure (R,¬,∧) is a Boolean algebra if and only if
R has at least two elements, and the following equations are identities in
the structure:

x ∧ y = y ∧ x,
x ∧ (y ∧ z) = (x ∧ y) ∧ z,

x ∧ x = x,

¬¬x = x,

(x ∧ ¬x) ∧ y = x ∧ ¬x,
¬(x ∧ ¬(y ∧ z)) = ¬(x ∧ ¬y) ∧ ¬(x ∧ ¬z).

The last identity is equivalent to

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),
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when ∨ is defined as in (∗). The Boolean ring (R,+, ·, 0, 1) can be recov-
ered from the algebra by the rules

x+ y = (x ∧ ¬y) ∨ (¬x ∧ y), xy = x ∧ y.

Now we have the characterization of ideals on page , as well as the
definition of filters: A subset I of R is an ideal if and only if

0 ∈ I,

x 6 y & y ∈ I =⇒ x ∈ I,

x ∈ I & y ∈ I =⇒ x ∨ y ∈ I,

and a subset F is a filter if and only if {x + 1: x ∈ F} is an ideal, or
equivalently

1 ∈ F,

x ∈ F & x 6 y =⇒ y ∈ F,

x ∈ F & y ∈ F =⇒ x ∧ y ∈ F.

Then F is an ultrafilter if and only if {x + 1: x ∈ F} is a prime ideal,
and in this case F is the complement in R of the prime ideal.

. Stone spaces

Given a Boolean ring R, we denote the set of its ultrafilters by

S(R).

We have a bijection p 7→ pc from Spec(R) to S(R); this induces an iso-
morphism from P(Spec(R)) to P(S(R)). In particular, if x ∈ R, we
may now define

[x] = {f ∈ S(R) : x ∈ f},
so that x 7→ [x] is an embedding of R in P(S(R)).

A reason for working with S(R) rather than Spec(R) is that, as we shall
discuss in §. below, logical theories can be understood as filters, and
then theories that are ultrafilters will be called complete theories. Also,
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in a topological space X, the set of neighborhoods of a point is a filter of
P(X).

The set S(R) is called the Stone space of R. Indeed, since (as we saw)

[x] ∩ [y] = [xy], [1] = S(R),

the subsets [x] of S(R) compose a basis for a topology on S(R) called
the Stone topology. Every union of sets [x] is called is open in this
topology, and it follows that:

) if U is a finite collection of open sets, then
⋂U is also open—here

we may by convention allow
⋂

∅ = S(R);
) if U is a collection of open sets, then

⋃U is open—in particular,
⋃

∅ = ∅, so this is understood to be open.

The complement of an open set is closed. Since

[x]c = [x+ 1],

the basic open sets [x] are also closed.

Suppose f and g are distinct elements of S(R). Then we may assume frg

has an element x. In this case

f ∈ [x], g ∈ [x+ 1], [x] ∩ [x+ 1] = ∅.

Thus the Stone topology is Hausdorff: it separates points.

Suppose
⋃

x∈A[x] = S(R) for some subset A of R. Then every ultrafilter
of R contains some element of A. Then no prime ideal of R includes A
(since otherwise its complement would be an ultrafilter disjoint from A).
Therefore the ideal (A) of R generated by A must the improper ideal R.
In particular, this ideal contains 1. But then (A0) must contain 1 for
some finite subset A0 of A. In this case no prime ideal of R includes A0,
so every ultrafilter contains an element of A0, which means

⋃

x∈A0

[x] = S(R).

This shows the Stone topology is compact.
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Another way to prove this topology compact is the following. We have
S(R) ⊆ P(R), and we may identify the power 2R with P(R) under the
map

(xi : i ∈ R) 7→ {i ∈ R : xi = 1}

from 2R to P(R). (This map can be understood as x 7→ x−1(1).) If
we give the set 2 the discrete topology, then 2R can be given the cor-
responding product topology, which is the weakest topology in which all
of the maps x 7→ xi (where i ∈ R) are continuous. Since the factors 2
are finite, this means the topology has a basis comprising, for each finite
subset R0 of R, for each (ai : i ∈ R0) in 2R0 , the set {x ∈ 2R : (xi : i ∈
R0) = (ai : i ∈ R0)}. This set is both open and closed. Then S(R) has
the subspace topology and is moreover a closed subset of 2R, being the
intersection of all closed sets of the forms

{x ∈ 2R : x1 = 1},
{x ∈ 2R : xab = 0 ∨ xb = 1},

{x ∈ 2R : xa = 0 ∨ xb = 0 ∨ xab = 1},
{x ∈ 2R : xa = 0 ⇐⇒ xa+1 = 1}.

As 2R is compact by the Tychonoff Theorem, so must S(R) be compact.

Note that this case of the Tychonoff Theorem is easy to prove (and the
general theorem is not much harder). Suppose F is a collection of closed
subsets of 2R with the finite-intersection property, that is, for every finite
subset F0 of F , the intersection

⋂F0 is nonempty. We want to show that
⋂F itself is nonempty. We may assume that the elements of F are basic
closed sets; and then we may assume that each element of F has the form
{x ∈ 2R : xi = e} for some i in R and e in 2. By the finite intersection
property, there is no i in R such that F contains both {x : xi = 0} and
{x : xi = 1}. Then

⋂F contains a, where

ai =

{

e, if {x : xi = e} ∈ F ,
0, otherwise.
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We can compute

[x] ∪ [y] = ([x]c ∩ [y]c)c

= ([x+ 1] ∩ [y + 1])c

= [(x+ 1)(y + 1)]c

= [xy + x+ y + 1]c

= [xy + x+ y]

= [x ∨ y].

Consequently, the only open sets that are also closed are the basic open
sets, that is, the sets [x]. For if the open set

⋃

x∈A[x] is also closed, then
(since closed subsets of compact spaces are compact), we have

⋃

x∈A

[x] = [x0] ∪ · · · ∪ [xn−1] = [x0 ∨ · · · ∨ xn−1]

for some xi in A. Thus the subsets of S(R) that are both closed and
open—clopen—compose a Boolean algebra or ring, which is the isomor-
phic image of R under x 7→ [x].

An arbitrary compact Hausdorff space with a basis of clopen sets can be
called a Stone space simply. Suppose S is one of these, and let B(S) be
the set of clopen subsets of S. Then B(S) is a Boolean sub-ring of P(S).
In the special case where S = S(R), we have just noted

R ∼= B(S(R)).

In the general case, for every point P in S, the set {U ∈ B(S) : P ∈ U}
of basic neighborhoods of P is a filter and in fact an ultrafilter of B(S).
Thus we have a map

P 7→ {U ∈ B(S) : P ∈ U} (†)

from S to S(B(S)). Since S is Hausdorff, the map is injective. Suppose
f ∈ S(B(S)). The intersection of every finite subset of f is an element
of f; in particular, it is a nonempty subset of S. Thus f has the finite
intersection property. Since S is compact,

⋂

f itself must be a nonempty
subset of S. Since also again S is Hausdorff,

⋂

f must consist of a single
point, P ; and then we must have

f = {U ∈ B(S) : P ∈ U}.
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So the map in (†) is a bijection from S to S(B(S)). In fact it is a homeo-
morphism. For, it takes every clopen subset V of S (that is, every element
V of B(S)) to the subset

{

{U ∈ B(S) : P ∈ U} : P ∈ V
}

of S(B(S)); and this subset is [V ], namely {f ∈ S(B(S)) : V ∈ f}, since

V ∈ {U ∈ B(S) : P ∈ U} ⇐⇒ P ∈ V.

. Boolean operations

We observed in §. that Boolean rings and Boolean algebras are ‘in-
terdefinable’: every Boolean ring is also a Boolean algebra whose basic
operations are the interpretations in the ring of certain terms; and then
the Boolean ring can be obtained from the algebra in the same way.

A Boolean operation on a power-set P(Ω) is just an operation on
P(Ω) that is the interpretation of a term in the signature of rings or
Boolean algebras. We should like to verify that every operation on P(Ω)
that can be defined without reference to Ω itself is a Boolean operation.
One way of doing this is as follows.

Suppose we have n subsets X0, . . . , Xn−1 of Ω. For each element σ of
2n, there is a subset Xσ of Ω given by

Xσ = X0
σ ∩ · · · ∩Xn−1

σ ,

where

Xi
σ =

{

Xi, if σ(i) = 1,

(Xi)c, if σ(i) = 0.

See Figure . for the cases n = 2 and n = 3 (here each set Xσ is labelled
with σ). In case n = 0, the set 2n has the unique element 0 (the empty
function), and then Xσ should be understood as Ω. In any case, the
sets Xσ partition Ω into at most 2n subsets—or |2n| subsets, if we still
consider 2n as the set of functions from n to 2. For every subset S of
2n in this sense, the subset

⋃

σ∈S Xσ of Ω is a Boolean combination of
the sets Xi; and every Boolean combination of these sets is of this form.
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(1, 1)(1, 0) (0, 1)

(0, 0)

(1, 1, 1)

(1, 0, 0)

(0, 1, 0) (0, 0, 1)(0, 1, 1)

(1, 0, 1)(1, 1, 0)

(0, 0, 0)

Figure .: Boolean combinations

Thus the number of Boolean combinations of the Xi is at most 22
n

. (It
is less, if one of them is included in the union of the others.)
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. The structure of definable relations

The structures that we have worked with so far are more precisely called
one-sorted structures. By contrast, a vector-space is a two-sorted
structure, with a sort for the vectors and a sort for the scalars. It is
difficult to use a general notation for structures of arbitrarily many sorts;
so we just describe the general situation for one-sorted structures, and
then we point out that things can be adapted to many-sorted structures
as needed.

The definable relations of a (one-sorted structure) A are themselves ele-
ments of a many-sorted structure, with a sort for each finite subset I of
ω: this sort corresponds to the set {xi : i ∈ I} of variables.

The n-ary relations on A compose the set P(An). Suppose B ⊆ A. The
set of n-ary B-definable relations of A can be denoted by

DefnB(A).

This is a subset of P(An), and moreover it closed under the Boolean
operations; that is, DefnB(A) is (the universe of) a Boolean sub-algebra
of P(An). To check this, we need only note:

(ϕA)c = (¬ϕ)A, ϕA ∩ ψA = (ϕ ∧ ψ)A, (∗)

and also

∅ =
(

∨

i<n

xi 6= xi
)A

,

so that DefnB(A) has the two distinct elements ∅ and its complement
An.
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On the set P(An), if n > 1, additional operations besides the Boolean
operations are possible. Indeed, if σ is a permutation of n, then there is
a function σ∗ from An to An, given by

σ∗(x0, . . . , xn−1) = (xσ(0), . . . , xσ(n−1)).

Now the singulary operation X 7→ σ∗[X] on P(An) is induced.

The same idea gives us functions from P(An) to P(Am). Indeed, sup-
pose now σ is a function fromm to n, where n > 0 orm = 0. For example,
if m < n, then σ could be the inclusion of m in n. Or if m = n+ 1, then
σ could be given by

σ(i) =

{

i, if i < n,

n− 1, if i = n.
(†)

In any case, a function σ∗ from An to Am is induced, given by

σ∗(x0, . . . , xn−1) = (xσ(0), . . . , xσ(m−1)).

Then we have the function X 7→ σ∗[X] from P(An) to P(Am); here

σ∗[X] = {(xσ(0), . . . , xσ(m−1)) : (x0, . . . , xn−1) ∈ X}.

For example, if n = m+ 1, and σ is the inclusion of m in n, then

σ∗[X] = {(x0, . . . , xm−1) : (x0, . . . , xm) ∈ X};

but since the appearance of xm here may seem peculiar, we can also
write

σ∗[X] = {(x0, . . . , xm−1) : (x0, . . . , xm) ∈ X for some xm}.

For another example, if m = 2 and n = 1, so that σ must be the constant
function x 7→ 0 on 2, then

σ∗[X] = {(x, x) : x ∈ X}.

In the general situation, we also haveX 7→ σ∗[X] from P(Am) to P(An),
where

σ∗[X] = (σ∗)−1[X] = {(x0, . . . , xn−1) ∈ An : (xσ(0), . . . , xσ(m−1)) ∈ X}.
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For example, if σ is the inclusion of m in n, then σ∗[X] can be understood
as X ×An−m; while if σ : 2 → 1, then

σ∗[X] = {x ∈ A : (x, x) ∈ X}.

Note that, in general, every function σ from m to n is a composition of:

. permutations of some k,
. inclusions of some k in k + 1;
. maps from some k + 1 to k as in (†).

It should be clear that X 7→ σ∗[X] takes DefmB (A) to DefnB(A), and
X 7→ σ∗[X] takes DefnB(A) to DefmB (A).

The elements of ω are also finite subsets of ω. We could work with
arbitrary finite subsets of ω. A formula whose free variables compose
the set {xi : i ∈ I} then defines in A a subset of AI ; and then we have
the subsets DefIB(A) of P(AI).

Consider the collection of all indexed families (PI : I ∈ Pω(ω)), where
PI ⊆ P(AI), and

• each PI is closed under the Boolean operations,
• if σ : I → J , the function X 7→ σ∗[X] takes PJ to PI , and X 7→
σ∗[X] takes PI to PJ ,

• for each n in ω, for each n-ary predicate R in S , Pn contains RA,
• for each n in ω, for each n-ary operation-symbol F in S , Pn+1

contains {(a, b) ∈ An+1 : FA(a) = b} (that is, (Fx = xn)A).
• for each c in B, P1 contains {c}.

The indexed family (DefIB(A) : I ∈ Pω(ω)) is a minimum among these
families.

. Lindenbaum–Tarski algebras

For any signature S and n in ω, let us denote by

Snn(S )
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the set of n-ary formulas of S . Two elements ϕ and ψ of Snn(S ) are
said to be logically equivalent if the formula ϕ↔ ψ is a validity in the
sense of Chapter , that is, for every structure A of S ,

ϕA = ψA,

or equivalently the sentence

∀x (ϕ(x) ↔ ψ(x))

is true in all structures in Mod(S ). The set of logical equivalence-classes
of elements of Snn(S ) is denoted by

Bn(S ).

This is the nth Lindenbaum–Tarski algebra of S , and it is a Boolean
algebra in a fairly obvious way. The rest of this section is devoted to
spelling this out.

The set Snn(S ) can be understood as a structure equipped with the
operations ¬ and ∧. A structure without relations, but only operations,
is called an algebra. So we have an algebra (Snn(S ),¬,∧). This algebra
is not a Boolean algebra, simply because, for example, ¬¬ϕ is never the
same formula as ϕ.

Still, if A ∈ Mod(S ) and B ⊆ A, the function ϕ 7→ ϕA is an epimorphism
from (Snn(S (B)),¬,∧) to (DefnB(A),

c,∩): it is a surjection that respects
the operations, as in (∗) on page .

For an arbitrary homomorphism h from an algebra M to N, the (gener-
alized) kernel of h is the binary relation {(x, y) : h(x) = h(y)} on M .
If the structures are rings, then the connection between the usual kernel
and the generalized kernel is shown by the equivalence

h(x) = h(y) ⇐⇒ h(x− y) = 0.

Such an equivalence is not always available for arbitrary algebras. Still,
the generalized kernel is an equivalence-relation; and then a quotient
M/ ker(h) can be defined, which is isomorphic to the image of M under
h.
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In particular then, there is a quotient of (Snn(S (B)),¬,∧) that is a
Boolean algebra, namely the quotient by the kernel of ϕ 7→ ϕA: this
quotient is isomorphic to DefnB(A).

The kernel of a homomorphism on the arbitrary algebra M is an example
of a congruence-relation: an equivalence-relation ∼ onM that respects
the algebraic structure of M in the sense that, for every n in ω, for every
basic n-ary operation of M,

x0 ∼ y0 & · · · & xn−1 ∼ yn−1 =⇒ F (x) ∼ F (y).

In this case there is a well-defined quotient M/∼, and there is a quotient-
map from M to M/∼ whose kernel is of course ∼.

We have seen the one-to-one correspondence between ideals and filters of
a Boolean algebra. There is also a one-to-one correspondence between
ideals and congruence-relations of a Boolean algebra, namely

I 7→ {(x, y) : x+ I = y + I},

with inverse ∼ 7→ {x : x ∼ 0}.
The set of congruence-relations on (Sn(S )S ,¬,∧) (or on any algebra)
is closed under arbitrary intersections. The intersection of the set of
kernels of all homomorphisms ϕ 7→ ϕA, where A ∈ Mod(S ), is just the
relation of logical equivalence defined above, and Bn(S ) is the quotient
of Snn(S ) by this relation. We shall henceforth each formula with its
logical equivalence-class, that is, confuse each element of Snn(S ) with
its image in Bn(S ).

. Theories and type-spaces

By Gödel’s Completeness Theorem, the relation ⊢ can be considered as
a binary relation on Bn(S ); indeed, it is the ordering induced by the
algebraic structure. That is, ϕ ⊢ ψ means that the formula ϕ → ψ is a
validity. With respect to the ordering, the greatest and least elements of
the algebra (that is, the 1 and the 0) can be denoted respectively by

⊤, ⊥.
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Every theory of S can be understood as a filter of B0(S ). That is,
if K ⊆ Mod(S ), then Th(K) has the closure properties required of a
filter:

) it contains ⊤;
) if it contains σ and τ , then it contains σ ∧ τ ;
) if it contains σ, and if σ ⊢ τ , then it contains τ .

Suppose Γ ⊆ B0(S ). Then the set

Th(Mod(Γ))

is a filter of B0(S ). This filter is the set of all elements of B0(S ) that
are true in all models of Γ. But there is also a filter generated by Γ,
namely the set of all σ such that

∧

Γ0 ⊢ σ for some finite subset Γ0 of
Γ. By the Compactness Theorem (Theorem , page ), these two filters
are the same. If σ is a member, we may write

Γ ⊢ σ.

By the Compactness Theorem then, every proper filter of B0(S ) has a
model.

The sameness of the two foregoing filters is not trivial, because the Com-
pactness Theorem is not trivial. The Compactness Theorem does not
follow merely from the compactness of Stone spaces. For example, the
second-order theory of (ω, 0, x 7→ x+ 1) is axiomatized by

∀x x+ 1 6= 0,

∀x ∀y (x+ 1 = y + 1 → x = y),

∀X (0 ∈ X ∧ ∀y (y ∈ X → y + 1 ∈ X) → ∀y y ∈ X).

All models of these axioms are isomorphic to one another. In particular,
there is no model that is also a model of each of the sentences c 6= 0,
c 6= 1, c 6= 2, and so on, where c is a new constant. However, every
finite set of these sentences has a model, if the interpretation of c is large
enough.

If T is a theory of S , then two formulas ϕ and ψ are equivalent modulo

T if
T ⊢ ∀x (ϕ(x) ↔ ψ(x)).
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The equivalence-classes with respect to this relation compose the Boolean
algebra

Bn(T ).

Then Bn(S ) is Bn(∅) or Bn(⊤). The Stone space of Bn(T ) can be
denoted by

Sn(T ).

The elements of this space are called n-types of T—or one may call
them complete n-types of T , if one wants to use the word type more
generally for arbitrary filters of Bn(T ) or just arbitrary collections of n-
ary formulas. In any case, an element of S0(S ) is called a complete
theory.

Suppose Φ ∈ Sn(T ). If Φ0 is a finite subset of Φ, then
∧

Φ0 is not

equivalent to ⊥ modulo T . In this case T ∪
{

∃x
∧

Φ0(x)
}

has a model.

Suppose also A � T . An element a of An realizes Φ if, for all ϕ in Φ,

A � ϕ(a).

In this case, we may say also that A itself realizes Φ. By Compactness,
some model of T realizes Φ. Indeed, A has an elementary extension that
realizes Φ.

. Saturation

We are often concerned with the parameters used in formulas and types.
If M ∈ Mod(S ), and A is a subset of M , then by MA we mean M,
considered as having signature S (A). We may then denote Sn(Th(MA))
simply by

Sn(A);

an element of this can be called a type over A. For every infinite cardinal
κ, a structure is called κ-saturated if it realizes every type that has fewer
than κ-many parameters. In particular, a structure is ω1-saturated or
ℵ1-saturated if it realizes all types in countably many parameters.

Theorem . For every structure A with a countable signature, every
non-principal ultrapower Aω/P of A is ω1-saturated.
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Proof. If Φ is a type in countably many parameters, then Φ itself is
countable, so we can write it as {ϕn : n ∈ ω}. Let an satisfy ϕ0∧· · ·∧ϕn
in A. Then

k 6 n =⇒ A � ϕk(an).

Therefore, if P is a non-principal prime ideal of P(ω), then (an : n ∈
ω)/P realizes Φ in Aω/P .

There is a version [, Thm .., p. ] of the foregoing for uncountable
index-sets (or exponents) Ω; but then P must have a countable subset
whose union is Ω (so one should show that such prime ideals can be
found).





 Rings

. Ideals

In this chapter, as throughout these notes, the word ring will always
mean a commutative unital ring. The letter R will always denote a ring
in this sense. We have spent time with Boolean rings; now we work
more generally (and also review some of the basic facts about integral
domains and fields that we have already used). The main point is to
develop some of the algebraic geometry that will be used in the examples
of ultraproducts in the remaining two chapters.

The following are equivalent conditions on the ring R:

• 1 = 0 in R.
• R has only one element.

A ring meeting either of these conditions will be called trivial.

Let the variables x and y range over R. If x 6= 0 and y 6= 0 (that is, if
x ∈ Rr {0} and y ∈ Rr {0}), but

xy = 0,

then x and y are called zero-divisors. An integral domain is a non-
trivial ring with no zero-divisors. Equivalently, R is an integral domain
if and only if

xy = 0 ∧ x 6= 0 =⇒ y = 0.

For example, the ring Z of rational integers is an integral domain. So are
the polynomial rings K[X], K[X,Y ], and so forth, where K is a field.

Lang [, pp. –] recommends entire as the adjective form of integral domain,

observing that integral would have been better, had it not already been taken for
other purposes.
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However, suppose n is a positive integer. Then Z/nZ (namely the ring
of integers modulo n) is an integral domain if and only if n is prime.

Here nZ is the ideal {nx : x ∈ Z} of Z. In general, an ideal of R is an
additive subgroup I such that the quotient group R/I is also a ring with
respect to the multiplication given by

(x+ I) · (y + I) = xy + I.

That is, for I to be an ideal, we need

(x+ I) · I = I

(since I is the zero of R/I); this means

y ∈ I =⇒ xy ∈ I;

and this is enough.

Every ideal contains 0 at least; if it contains nothing else, it is the trivial
ideal or zero-ideal.

A proper ideal of R is an ideal different from R itself: equivalently, it is
an ideal that does not contain 1.

A proper ideal I of R is called prime if

xy ∈ I & x /∈ I =⇒ y ∈ I.

Compare this with the definition of integral domains:

Theorem . A ring is an integral domain if and only if the trivial ideal
is prime.

For another example, {0} ∪ {zero-divisors} is a prime ideal, which we
shall denote by

I0.

So R is an integral domain if and only if I0 = {0}. A positive integer n
is prime if and only if nZ is a prime ideal of Z.

Theorem . Let I be an ideal of R. Then R/I is an integral domain
if and only if I is prime.
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Proof. We have that R/I is nontrivial if and only if I is proper. Assuming
I is proper we have that the following are equivalent.

• R/I is an integral domain.
• (x+ I) · (y + I) = I & x+ I 6= I =⇒ y + I = I.
• xy ∈ I & x /∈ I =⇒ y ∈ I.
• I is prime.

A unit of a ring is a divisor of 1. That is, if

xy = 1,

then both x and y are units. The units of R compose a multiplicative
subgroup of R, denoted by

R×.

In a trivial ring, 0 is a unit. but zero-divisors are never units or 0; that
is, if R has any zero-divisors, they belong to Rr (R×∪{0}). We can also
write

1 6= 0 =⇒ I0 ∩R× = ∅.

A ring is a field if all nonzero elements are units. That is, R is a field if
and only if R = R× ∪ {0}. In particular, fields have no zero-divisors, so
they are integral domains.

The standard examples of fields are Q, R, and C. Moreover, if p is prime,
then Z/pZ is (not only an integral domain, but) a field.

A maximal ideal is a proper ideal that is maximal as such. An ideal I
of R is maximal if I is a proper ideal and, for all ideals J of R,

I ⊆ J & I 6= J =⇒ J = R.

If A ⊆ R, then by
(A)

is meant the smallest ideal of R that includes A. Then (A) is the set of
sums

a0x0 + · · ·+ an−1xn−1,

where ai ∈ A and xi ∈ R and n ∈ ω. In particular, n can be 0, and in
this case the sum above is 0. Thus (∅) = {0}, the trivial ideal.
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When A = {a0, a1, . . . }, we may write (A) as (a0, a1, . . . ). In particular,
R = (1). Also the trivial ideal is (0), where 0 is the ring element, not
the empty set; but then this notation is redundant: strictly we should be
able to write the zero-ideal as ( ).

A proper ideal I of R is maximal if and only if, for all x in R r I, we
have

(I ∪ {x}) = R,

that is,
1 ∈ (I ∪ {x}),

that is, for some y in R,
1 ∈ xy + I.

Theorem . Let I be an ideal of R. Then R/I is a field if and only if
I is maximal.

Proof. Again, R/I is nontrivial if and only if I is proper. Assuming I is
proper we have that the following are equivalent.

• R/I is a field.
• If x+ I 6= I, then for some y, (x+ I)(y + I) = 1 + I.
• If x /∈ I, then for some y, 1 ∈ xy + I.
• I is maximal.

Corollary. Maximal ideals are prime.

The converse is true in Z.

. Localizations

Throughout this section, the ring R will be nontrivial. It will then have a
quotient field (or field of fractions) constructed as Q is constructed from
Z.

A multiplicative subset of a ring is just a subset that is closed under
multiplication. More precisely, if S is a multiplicative subset of R, this
means that for all finite subsets {ak : k < n} of S, the product

∏

k<n a
k
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is also in S. In particular, 1 ∈ S, since
∏

k<n a
k is 1 when n = 0 (that

is, the empty product is multiplicatively neutral element 1, just as the
empty sum is 0).

For example, the set Rr I0 of non-zero non-zero-divisors of R is a multi-
plicative subset of R; more generally, so is the complement of any prime
ideal; and so are {1} and R×.

Lemma. If S is a multiplicative subset of R, there is an equivalence-
relation ∼ on R× S given by

(a, b) ∼ (x, y) ⇐⇒ (ay − bx) · s = 0 for some s in S. (∗)

If R is an integral domain and 0 /∈ S, or more generally if S ∩ I0 = ∅,
then the equivalence-relation of the lemma is given by

(a, b) ∼ (x, y) ⇐⇒ ay − bx = 0;

but we shall be interested in the more general situation, especially in
Chapter ., and then a broader condition as in (∗) is needed.

The ∼-class of (a, b) is denoted by

a

b

or a/b. The set of these classes is denoted by

S−1R;

it can be called the localization of R at S.

Theorem . Let S be a multiplicative subset of R. The localization
S−1R is a ring with respect to the usual operations:

a

b
+
c

d
=
ad+ bc

bd
,

a

b
· c
d
=
ac

bd
.

There is a homomorphism x 7→ x/1 from R to S−1R. This homomor-
phism is injective if and only if S ∩ I0 = ∅.
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For the homomomorphism of the theorem, the condition of injectivity is
not always met. It is met when 0 /∈ S and also R is an integral domain
(that is, I0 is trivial). In particular, we have

Theorem . A ring is an integral domain if and only if it a sub-ring
of a field.

Proof. For sufficiency, note that a zero-divisor of a sub-ring is a zero-
divisor of the original ring.

To show necessity, we note that an integral domain R embeds in the ring
(Rr {0})−1R, which is a field.

The field (R r {0})−1R in the proof is the quotient field (or field of
fractions) of R (assuming R is a integral domain; otherwise this field is
(Rr I0)

−1R).

Every substructure of a field is a ring. Therefore, by Theorem  on page
, if T is field-theory, then T∀ is the theory of integral domains. The
following is obvious, but should be noted:

Theorem . If an integral domain embeds in a field, then the embedding
factors through the fraction field of the integral domain. That is, if R
is an integral domain embedding under ι in its fraction-field K, and R
embeds in a field L under ϕ, then K embeds in L under a map ψ such
that ψ ◦ ι = ϕ.

See Figure .. Suppose now K is a field, and L is a field of which K is

R
ϕ //

ι

��

L

K

ψ

??

Figure .: The universal property of the quotient field

a subfield, that is, K ⊆ L. In short, L/K is a field-extension. If n ∈ ω,
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we may let X be an n-tuple (X0, . . . , Xn−1) of indeterminates, so that
we can form the ring of polynomials in X over K, denoted by

K[X].

The fraction-field of this ring is denoted by

K(X);

it is the field of rational functions in X over K. Suppose now a ∈ Ln.
Then there is a function f 7→ f(a) (or Xi 7→ ai) from K[X] to L. The
range of this function is denoted by

K[a],

and the fraction-field of this ring is denoted by

K(a);

by the last theorem, we may consider this field as a subfield of L. In
other words,

• K[a] is the smallest sub-ring of L that includes K ∪{a0, . . . , an−1};
• K(a) is the smallest subfield of L that includes K ∪{a0, . . . , an−1}.

Note well that the function f 7→ f(a) is not generally defined on all of
K(X), though it may be defined on a sub-ring of this field that strictly
includes K[X]. We shall consider this situation presently. Meanwhile,
the kernel of the homomorphism f 7→ f(a) on K[X] is a prime ideal p,
and then

K[a] ∼= K[X]/p.

If that ideal is nontrivial, then a is said to be algebraically dependent
over K, or simply algebraic over K in case n = 1.

Theorem . If a is algebraic over K, then

K[a] = K(a).

Thus prime ideals of K[X] are maximal.
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Proof. If b0 + b1 · a+ · · ·+ bn · an = 0, then

1

a
= −

(b1
b0

+
b2
b0

· a+ · · ·+ bn
b0

· an−1
)

.

Recall that Boolean rings also have the property that prime ideals are
maximal (pages  and ). This is not generally true for K[X]. For
example K[X,Y ]/(X − Y ) ∼= K[X], an integral domain that is not a
field; so (X − Y ) is a non-maximal prime ideal of K[X,Y ].

In general, if S is a multiplicative subset of R, then, using the notation
above, we can denote the localization S−1R also by

R[S−1].

In case S is the complement of a prime ideal p of R, then this localization
is denoted also by

Rp.

Confusingly, this may called the localization of R at p, although in the
earlier terminology it is the localization of R at the complement of p. If
R is an integral domain, then its fraction-field is the localization R{0}.

Suppose again L/K is a field-extension and a ∈ Ln. If p is the prime
ideal of K[X] that is the kernel of f 7→ f(a), then K[X]p is the largest
sub-ring of K(X) on which the homomorphism f 7→ f(a) is defined.

In general, as we noted, if p is a prime ideal of R, then R r p is multi-
plicative. The converse is true, and more, in the following sense:

Theorem . Let I be a proper ideal of R.

. Rr I is multiplicative if and only if I is prime.
. Rr I = R× if and only if I is the unique maximal ideal of R.

A ring with a unique maximal ideal is called a local ring.

Theorem . The localization of a ring at (the complement of) a prime
ideal is a local ring, whose maximal ideal is generated by the image of
that prime ideal.

We can now refer to Rp (where p is prime) as the local ring of R at p. A
reason for the terminology can be seen in algebraic geometry, to which
we now turn.
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Figure .: The zero-locus of y − x2 in R

. Algebraic geometry

Again suppose K and L are fields such that K ⊆ L. For example, K
might be Q, and then L might be C. Let X be (X0, . . . , Xn−1) for some
n in ω. Given a point x of Ln, we have looked at the homomorphism
f 7→ f(x) from K[X] to L. ‘Dually’, an element f of K[X] determines
a function x 7→ f(x) from Ln to L. Often we are interested in the
solution-set of the equation

f(x) = 0.

Such equations are studied in school, at least when L = R and n = 1.
We define

ZL(f) = {x ∈ Ln : f(x) = 0};
this is the zero-locus of f in L. See Figure .. We may also want to
look at more than one equation simultaneously, as for example in defining
a straight line in R3. Accordingly, if A ⊆ K[X], we define

ZL(A) =
⋂

f∈A

ZL(f),

that is,

ZL(A) =
⋂

f∈A

{x ∈ Ln : f(x) = 0}; (†)

this is the zero-locus of A in L. See Figure .. (The definition should
be compared with (∗) and (†) on page .) The function A 7→ ZL(A)
is the zero-locus map. A course in ‘analytic geometry’ is a study of
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Figure .: The zero-locus of {y − x2, y − x} in R

zero-loci in R, in case n is 2 or 3, where K[X] can be written as K[X,Y ]
or K[X,Y, Z].

If I is an ideal of an arbitrary ring R, we define

√
I =

⋃

n∈ω

{x ∈ R : xn ∈ I};

this is the radical of I. (Note that the radical is indeed an ideal: if
fn ∈ I and gm ∈ I, then (f + g)n+m−1 ∈ I.) An ideal is a radical ideal
if it is equal to its own radical.

Theorem . For all subsets A of K[X],

ZL(A) = ZL((A)) = ZL(
√
(A)).

Thus all zero-loci are zero-loci of radical ideals.

The zero-loci of the various subsets (or just ideals, or just radical ideals)
of K[X] are also called algebraic sets. As the notation is supposed to
recall, the definition of ZL(A) depends on L. We intend to overcome this
dependence. Meanwhile, we have the following.

Theorem . The algebraic sets in L are the closed sets of a topology
on Ln.

Proof. What this means, and what we shall show, is that () the inter-
section of an arbitrary collection of algebraic sets is an algebraic set, and
() the union of a finite collection of algebraic sets is an algebraic set.
(In particular, since ∅ =

⋃

∅, this will be shown to be an algebraic set;
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also,
⋂

∅ is to be understood as Ln, so this too will be an algebraic set.
See also page .)

The first point is obvious from the definition. Indeed, if A is a collection
of ideals of K[X], then

⋂

a∈A

ZL(a) = ZL(
∑

A),

where
∑

A is the ideal generated by
⋃

A. (So the ideal is (
⋃

A); but it
consists of finite sums of elements of

⋃A, and the notation
∑A is more

suggestive of this.) In particular, as a special case we have

Ln = ZL({0}).

For the second point, let a and b be ideals of K[X]. Then

a ⊆ b =⇒ ZL(a) ⊇ ZL(b).

Consequently
ZL(a ∩ b) ⊇ ZL(a) ∪ ZL(b).

Conversely, suppose x ∈ ZL(a∩b)rZL(a). Then for some f in a we have
f(x) 6= 0. But then for all g in b we have f · g ∈ a∩ b, so f(x) · g(x) = 0,
and hence g(x) = 0 (since L is an integral domain). Thus x ∈ ZL(b).
Therefore

ZL(a ∩ b) = ZL(a) ∪ ZL(b). (‡)

Finally
ZL((1)) = ∅.

Thus finite unions of algebraic sets are algebraic.

The zero-locus of an arbitrary intersection of radical ideals need not be
the union of the zero-loci of the ideals. For example, if K = Q and

ak =
(

k
∏

i=1

(X − i)
)

=
(

(X − 1) · · · (X − k)
)

,
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then ZL(ak) = {1, . . . , k}, but
⋂

k∈N ak = {0}, so

⋃

k∈N

ZL(ak) = N ⊂ L = ZL({0}) = ZL(
⋂

k∈N

ak).

The topology on Ln given by the theorem is called the Zariski topology
over K. Then algebraic sets may be called Zariski-closed over K, or
perhaps K-closed. All intersections of such sets are finite intersections,
because of the following:

Theorem  (Hilbert Basis Theorem). For every n in ω, every ideal of
the polynomial ring K[X0, . . . , Xn−1] is finitely generated.

Proof. The claim implies, and is therefore equivalent to, an apparently
stronger claim, namely that every ideal (A) of K[X0, . . . , Xn−1] is (A0)
for some finite subset A0 of A. For, if (A) = (f0, . . . , fm−1), then each
fk is in (Ak) for some finite subset Ak of A; and then we can let A0 =
⋃

k<mA
k.

The claim as also equivalent to the claim that every sequence (ak : k ∈ ω)
of ideals such that

a0 ⊆ a1 ⊆ a2 ⊆ · · ·
—that is, every increasing chain of ideals (indexed by ω)—is eventually
constant. For, the union of such a chain is an ideal b, and if this ideal
is finitely generated, then it has a generating set whose elements all lie
in some aℓ, and then this ideal is b. Conversely (or inversely), if a were
not finitely generated, then for all subsets {fk : k < ℓ} of a we could
find fℓ in ar (fk : k < ℓ); thus we could form a strictly increasing chain
((fk : k < ℓ) : ℓ ∈ ω).

There is now also a fourth form of our claim: every countably generated
ideal is finitely generated. We turn to proving the claim, in any convenient
form.

The claim is trivially true when n = 0, since a field has only two ideals:
the trivial ideal and the improper ideal (1).

The claim is still easy when n = 1, because K[X] is a Euclidean domain.
In particular, if f and g are in K[X], we have an algorithm (the Euclidean
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algorithm) for finding their greatest common divisor—say h; and then
(f, g) = (h). Hence if a = (fk : k ∈ ω), for each k in ω we can find gk so
that

(f0, . . . , fk) = (gk).

In particular, gk+1 divides gk. Then min{deg(gk) : k ∈ ω} = deg(gℓ) for
some ℓ, and consequently a = (gℓ).

When n > 2, we have not got the Euclidean algorithm; but we can come
close enough if we use induction. Suppose then that the claim is true
when n = m. Let a be an ideal of K[X0, . . . , Xm]. We form a sequence
(f0, f1, . . . ) of elements of a by recursion: Given (fk : k < ℓ), we let fℓ,
if it exists, be an element of a r (fk : k < ℓ) of minimal degree as a
polynomial in Xm over K[X0, . . . , Xm−1]. Then these degrees form an
increasing sequence:

degXm(f0) 6 degXm(f1) 6 degXm(f2) 6 . . .

Let gk be the leading coefficient of fk (as a polynomial in Xm over
K[X0, . . . , Xm−1]; so gk ∈ K[X0, . . . , Xm−1]). By inductive hypothe-
sis, for some ℓ,

(gk : k ∈ ω) = (gk : k < ℓ).

Then in particular
gℓ ∈ (gk : k < ℓ).

Therefore (fk : k < ℓ) has an element h whose leading coefficient (as
a polynomial in Xm over K[X0, . . . , Xm−1]) is gℓ; and the degree of
this element can have any value that is at least the degree of fℓ−1. In
particular we may assume h has the degree of fℓ. But then fℓ − h has
lower degree and belongs to a r (fk : k < ℓ); that is, fℓ did not have
minimal degree. Thus there is no fℓ; that is, a = (fk : k < ℓ).

A singly generated ideal is called principal. Then part of our proof of
the theorem gives the following:

Porism. Every ideal of K[X] is principal.

Hence, although in the example above N is the union of zero-loci, it
cannot itself be a zero-locus; for, every zero-locus of polynomials in one
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variable is the zero-locus of a single polynomial, so it is either the whole
field L or a finite subset of this.

The theorem itself has the following:

Corollary. Every decreasing chain of closed subsets of Ln is eventually
constant.

It is not obvious that the corollary implies the theorem, since it is not
obvious that a ⊂ b implies ZL(a) ⊃ ZL(b), even if a and b are radical
ideals. In fact, this can be false. For example, when L = R, then (X2+1)
is a radical ideal whose zero-locus is the same as the zero-locus of (1),
namely empty.

. A Galois correspondence

For a ‘dual’ to the definition of zero-loci, if A ⊆ Ln, we define

IK(A) =
⋂

x∈A

{f ∈ K[X] : f(x) = 0};

this is a radical ideal of K[X], and we may call it the ideal of A over
K. The function A 7→ IK(A) is the ideal map. The definition does
not involve the field L as such, but it does involve K, as the notation
indicates.

Every subset A of Ln has a Zariski closure over K, namely the smallest
K-closed subset of Ln that includes A. We can denote this closure by

A
K
.

Then we have easily:

Theorem . For all subsets A of Ln,

A
K

= ZL(IK(A)), IK(A) = IK(A
K
).
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In the proof of Theorem  we used that the zero-locus map is inclusion-
reversing. This is by the form of the definition. Since the definition of the
ideal map has the same form, this function too is inclusion-reversing.

The last theorem theorem is entirely formal in this way. Indeed, the form
of the definitions of the zero-locus and ideal maps is just the form used
in establishing the original Galois correspondence in field theory. In
that context, L is a normal and separable finite extension of K. We let
G be the group of automorphisms of L over K, that is, G = Aut(L/K).
For subgroups H of G, we define

Fix(H) =
⋂

σ∈H

{x ∈ L : xσ = x};

for intermediate extensions F of L/K, we have

Aut(L/F ) =
⋂

x∈F

{σ ∈ G : xσ = x}.

If we abbreviate Fix(H) as H ′, and Aut(L/F ) as F ′, then we always
have

X ⊆ Y =⇒ X ′ ⊇ Y ′, X ⊆ X ′′,

so that (as a special case of the latter) X ′ ⊆ X ′′′, but also X ′ ⊇ X ′′′.
Thus

X ′′′ = X ′.

Therefore we have a one-to-one correspondence X 7→ X ′ between the
fields Fix(H) and the groups Aut(L/F ); and this is entirely by the general
form of the definitions. What makes the correspondence useful is the
special features of the situation: that |G| = [L : K], simply because L/K
is normal, separable, and finite; and then |Aut(L/F )| = [L : F ] for all
intermediate extensions F of L/K; and therefore every intermediate field
of L/K is Fix(H) for some H, and every subgroup of G is Aut(L/F ) for
some intermediate field F of L/K.

We return to the algebraic-geometric situation. For the formal reasons
just discussed, we have a one-to-one Galois correspondence between
the K-closed subsets of Ln and certain radical ideals of K[X], namely
those of the form IK(F ) for some K-closed set F . See Figure .. We
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Figure .: Algebraic-geometric Galois correspondence

may refer to those ideals as being themselves L-closed. Is this Galois
correspondence of any use?

The L-closed ideals of K[X] are just those of the form IK(ZL(a)) for
some radical ideal a of K[X]; and then

a ⊆ IK(ZL(a)). (§)

This is an equation if and only if a is L-closed. We noted in effect that if
L = R then the radical ideal (X2 + 1) is not L-closed:

(X2 + 1) ⊂ (1) = IK(ZR((X
2 + 1))).

However, as L grows larger, so does ZL(a); but then IK(ZL(a)) becomes
smaller. In fact

(X2 + 1) = IK(ZC((X
2 + 1))).

We now are faced with the following:

Question . For every radical ideal a of K[X], is there an extension L
of K large enough that

a = IK(ZL(a))?

Question . Is there an extension L of K large enough that for all ideals
a of K[X] and all extensions M of K,

IK(ZL(a)) ⊆ IK(ZM (a))?
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Note well that a and L are quantified in different orders in the two ques-
tions, as ∀a ∃L and ∃L ∀a respectively. This means a positive answer
to Question  does not immediately give a positive answer to Question
. We would first have to show that the different fields L corresponding
to the different ideals a are all included in one large field. This is true
however, since the class of fields has the joint embedding property:
If f0 embeds K in L0, and f1 embeds K in L1, then there is a field M ,
and there are embeddings gi of the Li (respectively) in M , such that
g0 ◦ f0 = g1 ◦ f1. See Figure ..

M

L0

g0
⑤⑤⑤⑤⑤⑤⑤⑤

L1

g1

❇❇❇❇❇❇❇❇

K

f0

❇❇❇❇❇❇❇ f1

⑤⑤⑤⑤⑤⑤⑤

Figure .: Joint embedding property of fields

By contrast, even if Question  has a positive answer, it is not at all clear
that the answer to Question  must be positive. We settle Question 
first in a special case.

Lemma. For all maximal ideals m of K[X], for all extensions L of K
in which K[X]/m embeds over K,

m = IK(ZL(m)).

Proof. As formulated here, the lemma almost proves itself. We just have
to show IK(ZL(m)) is a proper ideal. But the image of X in K[X]/m is
in the zero-locus of m. In particular, if L includes this field, then ZL(m)
is not empty, so IK(ZL(m)) cannot be all of K[X].

This gives us another special case:
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Theorem . If K[X]
alg ⊆ L, for all ideals a of K[X] such that

IK(ZL(a)) is the improper ideal,

a = IK(ZL(a)).

Proof. The claim is

IK(ZL(a)) = (1) =⇒ a = (1).

We prove the contrapositive. If a is a proper ideal of K[X], then it is
included in some maximal ideal m. The field K[X]/m can be understood
as an algebraic extension of K(Xi : i ∈ I) for some subset I of n, so it
embeds in K(X)

alg. By the lemma then, since IK(ZL(m)) is a proper
ideal, so is IK(ZL(a)).

Note that if IK(ZL(a)) 6= (1), then ZL(a) 6= ∅. Thus every proper ideal
has non-empty zero-locus in a large-enough field. Nullstellensatz means
zero-locus theorem:

Theorem  (Nullstellensatz). If K[X, Y ]
alg ⊆ L, for all radical ideals

a of K[X],

a = IK(ZL(a)).

Proof. Say f ∈ IK(ZL(a)). If x ∈ ZL(a), then f(x) = 0. This shows
ZL(a ∪ {f − 1}) = ∅, so

IK(ZL(a ∪ {f − 1})) = (1).

By the last theorem, a∪{f − 1} too must generate the improper ideal of
K[X]. We want to be able to conclude f ∈ a. To do so, we modify the
argument so far. We have f · Y ∈ IK(ZL(a)), if we consider a now as a
subset of K[X, Y ]. As before, a∪{f ·Y −1} must generate the improper
ideal of K[X, Y ]. Now, by itself, a generates the ideal of K[X, Y ] whose
elements are polynomials in Y with coefficients from a. Hence there is
some such polynomial g, and there is some h in K[X, Y ], such that

g + h · (f · Y − 1) = 1.





. A Galois correspondence

Substituting 1/f for Y , we get g(1/f) = 1; that is,

g0 + g1 ·
1

f
+ . . . gm · 1

fm
= 1

for some gi in a, and hence

g0 · fm + g1 · fm−1 + · · ·+ gm = fm.

This means fm ∈ a. Assuming a is radical, we have f ∈ a. Thus
IK(ZL(a)) ⊆ a and therefore IK(ZL(a)) = a.

We have now settled both Questions  and . This suggests that under-
standing algebraic sets can somehow be reduced to understanding radical
ideals of K[X]. Indeed, there is some extension L of K large enough that
we have a Galois correspondence between the K-closed subsets of Ln and
the radical ideals of K[X]. It is not particularly important for what fol-
lows that this field L can be chosen as Kalg. Nonetheless, it is true:

Theorem  (Hilbert’s Nullstellensatz, weak form). Every proper ideal
of K[X] has a non-empty zero-locus in every extension of Kalg.

Proof. In the lemma, by the Hilbert Basis Theorem, m has the form
(f0, . . . , fℓ) for some fi in K[X]. Thus the formula

f0 = 0 ∧ · · · ∧ fℓ = 0

has a solution in K[X]/m and a fortiori in (K[X]/m)
alg. The latter field

is an elementary extension of Kalg, by the model-completeness of the
theory of algebraically closed fields (Theorem  on page ). Therefore
the formula has a solution here too. Thus as long as Kalg ⊆ L, we have
ZL(m) 6= 0.

Now the proof of Theorem  gives:

Corollary (Hilbert’s Nullstellensatz, strong form). For all radical ideals
a of K[X],

IK(ZKalg(a)) = a.
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. Ultraproducts of finite structures

Suppose a theory T has arbitrarily large finite models. Then there is a
sequence (Am : m ∈ ω) of finite models of T such that |Am| > m in each
case. Consequently, the sentence

∃(x0, . . . , xm)
∧

i<j<m

xi 6= xj

is true in each An such that m 6 n. By Łoś’s Theorem then, the sen-
tence is true in every non-principal ultraproduct of the structures Ai. In
particular, this ultraproduct is infinite. Moreover, every sentence that is
true in each Ai is true in the ultraproduct; that is, the ultraproduct is
a model of the theory of the structures Ai. Thus the ultraproduct is an
infinite model of the theory of finite models of T . Such a structure might
be called a pseudo-finite model of T . We shall consider the case where
T is the theory of fields.

. Finite fields

Let us review the basic theorems about finite fields. Suppose K is a field.
There is a homomorphism 1 7→ 1 (or k 7→ k ·1) from Z to K. The kernel of
this homomorphism is nZ for some positive n, called the characteristic
of K, char(K). Since Z/nZ must be an integral domain (by Theorem ,
p. ), n is either 0 or prime. If char(K) = 0, we may consider Q as a
subfield of K; if char(K) is a prime p, we consider Z/pZ, denoted by Fp,
as a subfield of K. Respectively, Q or Fp is the prime field of K.

Let K be a finite field of characteristic p. Then K is a vector-space over
Fp of some finite dimension m, so K has order pm. The group K× of
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units of K has order pm − 1, so its every element is a root of xp
m−1 − 1.

Then every element of K is a root of the polynomial

xp
m − x.

Since the formal derivative of this is −1, it has no repeated roots. Thus
its roots (in an algebraic closure Fp

alg of Fp that includes K) are precisely
the elements of K: we have

K = {x ∈ Fp
alg : xp

m

= x}.

Conversely, for all m in N, since the map x 7→ xp
m

is an automorphism
of Fp

alg, the set {x ∈ Fp
alg : xp

m

= x} (namely the fixed field of the
automorphism) is a subfield having order pm. This then is the unique
subfield of Fp

alg of this order, and we can denote it by

Fpm .

The group Fpm
× of units of this field is cyclic. For again, it is a finite

abelian group of order pm − 1 and is therefore a direct product

∏

ℓ|pm−1

Gℓ,

where each Gℓ is an ℓ-group (a group whose elements have orders that
are powers of ℓ; here and elsewhere in this chapter, ℓ is, like p, a prime
number). Since Gℓ is finite, for some positive integer n, every element of
Gℓ is a solution of

xℓ
n

= 1.

But in a field, this equation has no more than ℓn solutions. Therefore, if
n is minimal, Gℓ must be cyclic of order ℓn. Then the product Fpm

× is
itself cyclic, of order pm − 1.

The collection of finite subfields of Fp
alg, ordered by inclusion, is iso-

morphic, under the map Fpm 7→ m, to N as ordered by dividing. That
is,

Fpm ⊆ Fpn ⇐⇒ m | n.

See Figure .. Indeed, if Fpm ⊆ Fpn , then Fpn is a vector-space over Fpm ,
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Fp8 Fp12 Fp18 Fp27

Fp4

❇❇❇❇❇❇❇❇
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Figure .: The lattice of finite fields of characteristic p

so its order is (pm)k for some k, and then n = mk, so m | n. Conversely,
if m | n, then

pm − 1 | pn − 1,

and therefore
xp

m−1 − 1 | xpn−1 − 1,

so Fpm ⊆ Fpn .

Finally,
Fp

alg =
⋃

n∈N

Fpn (∗)

(since every extension Fpn/Fp is certainly algebraic, while every finite
algebraic extension of Fp is a finite field).

. Galois groups

We have shown that for each prime p, for each m in N, there is a subfield
Fpm of Fp

alg, and this subfield is generated by (in fact it consists of)
the roots of the polynomial xp

m − x, which is separable. Therefore the
finite field-extension Fpm/Fp is normal and separable, that is, Galois.
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The order of its group of automorphisms is [Fpm : Fp], that is, m. But
the Frobenius automorphism of Fp

alg, namely x 7→ xp or

Frob,

restricts to an automorphism of Fpm of order m, since we have shown in
effect

Fix(Frobk) = Fpk .

Thus
Aut(Fpm/Fp) = 〈Frob ↾ Fpm〉 ∼= Z/mZ.

For any field K, let us write

Gal(K) = Aut(Ksep/K),

the absolute Galois group of K. We want to determine Gal(Fp). Suppose
σ ∈ Gal(Fp). For every n in N, we have

σ ↾ Fpn ∈ Aut(Fpn/Fp),

and hence for some σ(n) in Z

σ ↾ Fpn = (Frob ↾ Fpn)
σ(n).

All that matters here is the congruence-class of σ(n) modulo n. Thus we
have an injective map

σ 7→ (σ(n) : n ∈ N)

from Gal(Fp) to
∏

n∈N Z/nZ. The map is not surjective, but if m | n,
then since Fpm ⊆ Fpn we must have

σ(n) ≡ σ(m) (mod m).

However, suppose an element (σ(n) : n ∈ N) of
∏

n∈N Z/nZ meets this
condition. For any x in Fp

alg we can define an element σ of Gal(Fp) by

xσ = xp
σ(m)

,

where x ∈ Fpm . (Here xσ is of course the image of x under σ.) This
definition of xσ is independent of the choice of m, since if also x ∈ Fpn ,
then

x ∈ Fpgcd(m,n) ,
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so
σ(m) ≡ σ(gcd(m,n)) ≡ σ(n) (mod gcd(m,n))

and therefore
xp

σ(m)

= xp
σ(gcd(m,n))

= xp
σ(n)

.

Thus

Gal(Fp) ∼= {(σ(n) : n ∈ N) ∈
∏

i∈N

Z/nZ :
∧

m|n

πnm(σ(n)) = σ(m)}

where πnm is the quotient-map x+nZ 7→ x+mZ from Z/nZ to Z/mZ.

In particular, Gal(Fp) has a certain ‘universal property’ with respect to
the system of groups Z/nZ and homomorphisms πnm:

. Gal(Fp) is a group G from which there is a homomorphism hGn to
Z/nZ for every n in N such that, if m | n, then

πnm ◦ hGn = hGm.

. For every such group G, there is a unique homomorphism h from
G to Gal(Fp) such that, for each n in N,

hGn = hGal(Fp)
n ◦ h.

See Figure .. Therefore Gal(Fp) is called a limit of the given system of
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Figure .: The universal property of Gal(Fp)

groups and homomorphisms. This is the category-theoretic sense of limit
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as given in, say, [, p. ] or []. Every set of groups, equipped with
some homomorphisms, has a limit in this sense, though the limit might
be empty.

The group Gal(Fp) is called more precisely a projective limit or an
inverse limit of the system of groups Z/nZ with the quotient-maps,
because any two of these groups are quotients of a third. This condition
is not required for the existence of the limit.

We give the finite groups Z/nZ the discrete topology, and their product
the product topology. This product is compact by the Tychonoff Theorem
(mentioned above on page ). The image of Gal(Fp) in this group is
closed, so it too is compact: it is called a pro-finite completion of the
system of finite cyclic groups.

. Pseudo-finite fields

Two examples of infinite models of the theory of finite fields are:
∏

p prime

Fp/M,
∏

n∈N

Fpn/M, (†)

where in each case M is some non-principal maximal ideal. The first
example has characteristic 0; the second, characteristic p.

By the ‘Riemann Hypothesis for curves’ as proved by Weil, for every
prime power q, for every curve C of genus g over Fq, the number of
Fq-rational points of C is at least

1 + q − 2g
√
q.

In particular, if q is large enough, then C does have an Fq-rational
point.

A field K is called pseudo-algebraically-closed or PAC if every plane
curve defined over K has a K-rational point. This condition entails that
every absolutely irreducible variety over K has a K-rational point.

Perhaps one should talk about convergent sequences here. . .
See for example [, Ex. V.., p. ] or [, Thm ., p. ].
See [, ch. , pp. –].
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The following are now true of every infinite model of the theory of finite
fields:

. It is perfect.
. It has exactly one extension of each degree (in some algebraic clo-

sure).
. It is pseudo-algebraically-closed.

This is not obvious, even given the results stated above; one must show
that these conditions are first-order, that is, the structures that satisfy
them make up an elementary class. By the definition of Ax [], a field
with the first two of these properties is quasi-finite; with all three of
these properties, pseudo-finite. So every infinite model of the theory
of finite fields is (quasi-finite and) pseudo-finite. Ax proves the converse.
In particular, Ax proves that every pseudo-finite field is elementarily
equivalent to a non-principal ultraproduct of finite fields, and indeed to
one of the ultraproducts given above in (†). The method is as follows;
here I use Ax [] and also Chatzidakis [].

For every field K, the field Abs(K) of absolute numbers of K consists
of the algebraic elements of K (here algebraic means algebraic over the
prime field). The following is [, Prop. ′, §, p. ].

Lemma. For every field K of prime characteristic p, there is a maximal
ideal M of

∏

n∈N Fpn such that

Abs(K) ∼= Abs(
∏

n∈N

Fpn/M).

Proof. Because Fp
alg =

⋃

n∈N Fpn as in (∗) on page , we need only
choose M so that, for all m in N,

Fpm ⊆ K ⇐⇒ Fpm ⊆
∏

n∈N

Fpn/M.

For each m in N, let fm be an irreducible element of Fp[X] of degree m.
Then each zero of fm generates Fpm over Fp. So we want M to be such
that

Fpm ⊆ K ⇐⇒ fm has a zero in
∏

n∈N

Fpn/M.
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Let F be the ultrafilter on N corresponding to M , that is,

F = {Nr supp(f) : f ∈M} =
{

{n : fn = 0} : f ∈M}.

Then

fm has a zero in
∏

n∈N

Fpn/M ⇐⇒ {n : fm has a zero in Fpn
}

∈ F.

Moreover,
fm has a zero in Fpn ⇐⇒ m | n.

So, combining all of our equivalences, we want to choose F on N such
that

Fpm ⊆ K ⇐⇒ {n : m | n} ∈ F.

For each m in N, the subset

{k : k | m & Fpk ⊆ K}

of N is a sublattice of the lattice of factors ofm with respect to divisibility:
in particular, it contains the least common multiple of any two members.
It also contains 1. Therefore it has a maximum element, say g(m). The
arithmetic function g is multiplicative:

gcd(m,n) = 1 =⇒ g(mn) = g(m) · g(n).

Now let
bm = {x : gcd(m,x) = g(m)}.

Then the function m 7→ bm is also multiplicative, in the sense that

gcd(m,n) = 1 =⇒ bmn = bm ∩ bn. (‡)

Indeed, suppose gcd(m,n) = 1. Then or all x in N,

gcd(mn, x) = gcd(m,x) · gcd(n, x),

and these factors are co-prime, being respectively factors of m and n.
But also g(mn) = g(m) · g(n), and these factors are co-prime, being
respectively factors of m and n. Therefore

gcd(mn, x) = g(mn) ⇐⇒ gcd(m,x) = g(m) & gcd(n, x) = g(n).

Thus it contains the least common multiple of every (finite) set of members, includ-
ing the empty set.
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So we have (‡). Moreover, we have also

m 6 n =⇒ bℓn ⊆ bℓm . (§)

For, we have

bℓn =

{

{g(ℓn) · y : ℓ ∤ y}, if g(ℓn) < ℓn,

{ℓny : y ∈ N}, if g(ℓn) = ℓn,

and also
m 6 n =⇒ g(ℓm) = min

(

ℓm, g(ℓn)
)

.

Now we can just check that (§) holds in each of the three cases

g(ℓn) = ℓn, ℓm < g(ℓn) < ℓn, g(ℓn) < ℓm.

So we have finally
bm ∩ bn = blcm(m,n).

Thus, since each bm is nonempty, the set of these generates a proper filter
on N. Let F be an ultrafilter on N that contains all of the sets bm. We
claim that this F is as desired. Indeed,

• if Fpm ⊆ K, so g(m) = m, then bm = {mx : x ∈ N};
• if Fpm * K, so g(m) < m, then bm ∩ {mx : x ∈ N} = ∅.

Consequently the following are equivalent:

Fpm ⊆ K,

{mx : x ∈ N} ∈ F,

fm has a root in
∏

n∈N

Fpn/M,

Fpm ⊆
∏

n∈N

Fpn/M.

The lemma has a companion [, Prop. ], namely that for every quasi-
finite field K of characteristic 0, there is a maximal ideal M of

∏

p Fp
such that

Abs(K) = Abs(
∏

p

Fp/M),
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but the proof is more difficult. Since all fields of characteristic 0 are per-
fect, quasi-finiteness in this case just means having exactly one extension
of each degree. In this case the field of absolute numbers has at most one
extension of each degree. This is because, if α is algebraic over Abs(K),
then α has the same degree over K that it has over Abs(K). For, the
minimal polynomial of α over Abs(K) is a product

∏

i<n

(X − αi),

the αi being the conjugates of α over Abs(K). The minimal polynomial
over K is a factor of this; so its coefficients are polynomial functions
of (some of) the conjugates of α over Abs(K). So the coefficients are
algebraic (over Abs(K)); therefore the already belong to Abs(K), by its
definition.

We now want to prove [, Thm , §, p. ], that if F and F ′ are
pseudo-finite fields, then

Abs(F ) ∼= Abs(F ′) =⇒ F ≡ F ′. (¶)

With this and the foregoing lemma, we shall have that every pseudo-finite
field (at least in positive characteristic) is elementarily equivalent to an
ultraproduct of finite fields.

To establish (¶), since Abs(F ) is determined by Th(F ), we can replace F
and F ′ (respectively) by elementarily equivalent fields. In particular, we
can replace them with ultrapowers with exponent ω; these ultrapowers
are ω1-saturated by Theorem  on page . Now take a countable ele-
mentary substructure F0 of F ; this exists by the downward Löwenheim–
Skolem–Tarski Theorem, Theorem . One shows [, ., Lemme de
plongement] that this embeds in F ′ under a monomorphism ϕ0. Then F ′

has an elementary substructure F ′
0 that includes the image of F0; and F ′

0

embeds in F under a monomorphism ϕ′
0 that extends ϕ0

−1. Continuing,
we obtain isomorphic elementary substructures Fω and F ′

ω
of F and F ′

respectively. See Figure .. This establishes (¶).
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F F ′

Fω

⋃
n∈ω

ϕn // F ′
ω

F1
ϕ1 // ϕ1[F1]

ϕ′
0[F

′
0] F ′

0

ϕ′

0oo

F0
ϕ0 // ϕ0[F0]

Figure .: Isomorphisms of pseudo-finite fields
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Sources for the algebraic geometry of this chapter include Coombes []
and Hartshorne []. The main point is to look at the ultraproduct scheme
at the end; this work is based on the first of the three MSRI/Evans Hall
Lectures, given at the University of California at Berkeley in the spring
of  by Angus Macintyre.

. The spectrum of a polynomial ring

In §., letting f range over K[X] where X = (X0, . . . , Xn−1), and
letting x range over Ln where K ⊆ L, we used the equation f(x) = 0
to establish a Galois correspondence between the K-closed subsets of Ln

and certain radical ideals of K[X]. If L is large enough (by Theorem 
on page )—more precisely, if L includes Kalg (by Theorem  and
its corollary)—, then the Galois correspondence is between the K-closed
subsets of Ln and (all of) the radical ideals of K[X]. In particular, the
correspondence is inclusion-reversing. Thus the set of radical ideals of
K[X] encodes the topological structure of Ln for sufficiently large L,
even for L including Kalg.

Suppose indeed Kalg ⊆ L. We want more than the Galois correspon-
dence. Suppose we are given a particular f in K[X]. We are interested
in its zero-locus, the K-closed set ZL(f); and this now corresponds to
IK(ZL(f)), which is

√
(f). We should should like to have a way of pick-

ing out this ideal among all of the radical ideals of K[X], without having
to refer to Ln. One way of doing this is simply to observe that

√
(f) is

the intersection of all radical ideals of K[X] that contain f . We shall
develop an alternative that is in some ways more satisfying.

These lectures used to be preserved on the MSRI website; but I could not find them
there, the last time I looked.
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If a ∈ Ln, let us write IK(a) for IK({a}). That is,

IK(a) = {f ∈ K[X] : f(a) = 0}.

This is always a prime ideal. In particular, it is radical. Moreover, for
every subset A of Ln,

IK(A) =
⋂

x∈A

IK(x).

In particular,
IK(ZL(f)) =

⋂

x∈ZL(f)

IK(x).

Thus IK(ZL(f)) is the intersection of some prime ideals of K[X] that
include it. Therefore it is the intersection of all prime ideals of K[X]
that include it.

Let us henceforth denote K[X] simply by R. Then the set of all prime
ideals of K[X] is denoted by

Spec(R).

(This will later be understood as part of the spectrum of R.) Usually p

will be understood as ranging over this set. We have the following.

Theorem . For all radical ideals a of R,

a =
⋂

{p ∈ Spec(R) : a ⊆ p}.

In particular, for all f in R,

√
(f) =

⋂

{p ∈ Spec(R) : f ∈ p}.

Proof. If L is large enough, then we now have

a = IK(ZL(a)) =
⋂

{p : IK(ZL(a)) ⊆ p} =
⋂

{p : a ⊆ p}.

Also, for all p in Spec(R),

√
(f) ⊆ p ⇐⇒ f ∈ p.
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This theorem is true for arbitrary rings R (see Theorem  below); but
in the present case the work of proving it has already been done for the
Nullstellensatz (Theorem ).

In the theorem, the condition that f ∈ p is equivalent to the condition
that f + p = 0 in R/p. Moreover:

Theorem . The homomorphism

f 7→ (f + p : p ∈ Spec(R))

from R into the product
∏

p∈Spec(R)

R/p

is an embedding.

Proof. The kernel of this map is
⋂

Spec(R), which is the trivial ideal
since this ideal is prime.

So if L is large enough, that is L ⊇ Kalg, we have a one-to-one corre-
spondence between:

• closed subsets ZL(a) of Ln;
• radical ideals a of R;
• subsets {p ∈ Spec(R) : a ⊆ p} of Spec(R).

Moreover, suppose we write

(fp : p ∈ Spec(R)) = (f + p : p ∈ Spec(R)).

That is, we consider this as a function p 7→ fp on Spec(R), where fp ∈
R/p. If A ⊆ R, then

{p ∈ Spec(R) : A ⊆ p} =
⋂

f∈A

{p ∈ Spec(R) : f ∈ p}

=
⋂

f∈A

{p ∈ Spec(R) : fp = 0}.

This is a kind of zero-locus. If f ∈ R, we can define

Z(f) = {p ∈ Spec(R) : fp = 0}
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(with no subscript on the Z this time), and if A ⊆ R, we define

Z(A) =
⋂

f∈A

Z(f).

Just as in §., by the same proofs, we have

Z(A) = Z(
√
(A)),

and these sets are the closed sets of a topology on Spec(R). In particular,
to establish

Z(a) ∪ Z(b) = Z(a ∩ b)

corresponding to (‡) on page , we need that the functions p 7→ fp
on Spec(R) take values in integral domains; and this is the case, since
fp ∈ R/p.

The inverse image of the basic closed set Z(f) under x 7→ IK(x) is just
ZL(f), since

{x ∈ Ln : IK(x) ∈ Z(f)} = {x ∈ Ln : f ∈ IK(x)}
= {x ∈ Ln : f(x) = 0}
= ZL(f).

Thus the function x 7→ IK(x) from Ln to Spec(R) is continuous, and
moreover, every closed subset of Ln is the inverse image of a closed subset
of Spec(R). The argument here uses nothing about L (except L ⊇ K, as
always).

The function x 7→ IK(x) injective on Kn, since if a ∈ Kn then

IK(a) = (X0 − a0, . . . , Xn−1 − an−1).

The map is not generally injective: if n = 2, K = Q, and L is R or C,
then

IK((π,π)) = (X − Y ) = IK((e, e)).

The map is not generally surjective, even if L is large enough to ensure
a = IK(ZL(a)) for radical a: If L = Qalg, then (X − Y ) is not in the
range. But still the map is surjective when L is large enough, not just
‘algebraically’, but also ‘transcendentally’:
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Lemma. If K(X)
alg ⊆ L, then every prime ideal of K[X] is IK(a) for

some a in Ln.

Proof. Suppose p is a prime ideal of K[X]. We can embed K[X]/p in
L over K. Let ai be the image of Xi + p under this embedding. Then
for all f in K[X] we have that f(a) is the image of f + p. Therefore
IK(a) = p.

Theorem . If K(X)
alg ⊆ L, then the map x 7→ IK(x) from Ln to

Spec(R) is surjective, continuous, closed, and open.

Proof. The lemma gives surjectivity. Before that, we proved continuity.
We also proved that closed subsets of Ln are inverse images of closed
subsets of Spec(R). Taking complements, we have that open sets are
inverse images of open sets. By surjectivity, a set is the inverse image
only of its own image; so x 7→ IK(x) must be closed and open.

Thus, if K(X)
alg, then Ln is nearly indistinguishable from Spec(R).

However, as we observed with (π,π) and (e, e), the former space can con-
tain distinct, but topologically indistinguishable, points: distinct points
a and b such that every open set containing one of them contains the
other. This just means IK(a) = IK(b), that is, the two points are sent to
the same point of Spec(R). The Spec(R) itself is not Hausdorff, but it is
‘T0’: if p and q are distinct points of Spec(R), then there is f belonging
to p △ q, and this means Z(f) contains only one of the points.

It will be useful to have a notation for the open subsets of Spec(R). If
f ∈ R, let us write

Uf = Z(f)c = {p ∈ Spec(R) : f /∈ p}.

If A ⊆ R, we let

UA = Z(A)c =
⋃

f∈A

Uf = {p ∈ Spec(R) : A 6⊆ p}.

These are the open subsets of Spec(R), and each of them is Ua for some
radical ideal a of R.
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. Regular functions

At the beginning of the last section, we considered the equation f(x) = 0,
where f ∈ K[X] and x ∈ Ln. We have generally f(x) ∈ L, that is, f is a
function from Ln to L. There can be other such functions. An arbitrary
function h from a subset S of Ln to L is regular (or more precisely
K-regular) at a point a of S if there is a neighborhood U of a (in the
Zariski topology over K, restricted to S) and there are elements f and g
of K[X] such that, for all x in U ,

h(x) =
f(x)

g(x)
.

The function is regular, simply, if it is regular at all points of its do-
main. The only regular functions on Ln itself are the elements of K[X].
However, let

S0 = ZL(Y
2 −X3)r ZL(X), S1 = ZL(Y

2 −X3)r ZL(Y ).

These are open subsets of their union. On S0 and S1 respectively there
are regular functions h0 and h1 given by

h0(x, y) =
y

x2
, h1(x, y) =

x

y
.

These two functions agree on S0 ∩ S1, since y2 = x3 for all (x, y) in that
set (and even in S0∪S1). Thus h0∪h1 is a regular function h on S0∪S1.
However, there are no f and g in K[X,Y ] such that, for all (x, y) in
S0 ∪ S1, h(x, y) = f(x, y)/g(x, y).

In the example, S0∪S1 is an open subset of the closed subset ZL(Y 2−X3)
of L2. For now, we shall look just at open subsets of the powers Ln

themselves.

If p is a prime ideal of K[X], and f and g in K[X] are such that x 7→
f(x)/g(x) is well-defined (and therefore regular) on Ln r ZL(p), this
means f/g is a well-defined element of the local ring K[X]p.

Now write R = K[X] as before, and let a be an arbitrary radical ideal
of R, so that Ua is an open subset of Spec(R). We define shall define a
sub-ring, to be denoted by

O(Ua),
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of the product
∏

p∈Ua

Rp.

See Figure .. Elements of this product are functions on Ua; so as

b

Rp

p Spec(R)

Figure .: A stalk of a sheaf (see p. )

before we have a notion of being regular: An element h of the product is
regular at a point p of Ua if, for some open subset V of Ua that contains
p, there are f and g in R such that, for all q in V ,

hq =
f

g
.

Note that this requires g /∈ q. The ring O(Ua) consists of the elements of
∏

p∈Ua
Rp that are regular at all points of Ua.

There is a simpler definition when a is a principal ideal (g). In this case,
one shows

O(U(g)) ∼= {gk : k ∈ ω}−1R,

because the map x/gn 7→ (x/gn : p ∈ U(g)) from this ring to O(U(g)) is
injective and surjective. See Hartshorne [, Prop. II.., p. ].

Note well that the factors of the product are the localizations Rp, rather than, say,
the quotient-fields of the quotients R/p. However, in the other case that we shall
be interested in, where R is itself a product of fields, then the integral domains
R/p will already be fields, which are isomorphic to the localizations Rp. See §.
below.
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If U and V are open subsets of R such that U ⊇ V , then the restriction-
map from

∏

p∈U Rp to
∏

p∈V Rp itself restricts to a map ρUV from O(U)
to O(V ). If h ∈ O(U), we then write

ρUV (h) = h ↾ V.

The function U 7→ O(U) on the collection of open subsets of R, to-
gether with these homomorphisms ρUV , is called a pre-sheaf of rings on
Spec(R) because:

O(∅) = {0}, ρUU = idU , ρUW = ρVW ◦ ρUV .

(The notation ρUV implies U ⊇ V ; so for the last equation we have U ⊇
V ⊇W .) We now have a situation that is ‘dual’ (because the arrows are
reversed) to that of the Galois group Gal(Fp): see page . For all p in
Spec(R), Rp has a certain ‘universal property’ with respect to the system
of rings O(U) such that p ∈ U :

. Rp is a ring A to which there is a homomorphism hUA from O(U)
for such that, if U ⊇ V , then

hVA ◦ ρUV = hUA.

. For every such ring A, there is a unique homomorphism h to A
from Rp such that

hUA = h ◦ hURp
.

See Figure .. Therefore Rp is called a co-limit or direct limit of
the given system of rings. This limit can be obtained as a quotient of
the sum

∑

p∈U O(U) by the smallest ideal that contains, for each pair U
and V such that U ⊃ V , every element x such that xV = ρUV (xU ), and
xW = 0 if W is not U or V .

The pre-sheaf U 7→ O(U) is further a sheaf of rings because it has two
additional properties:

. If h ∈ O(U), and h ↾ V = 0 for all V in an open covering of U , then
h = 0.

. If there is hV in O(V ) for every V in an open covering of U , and

hV ↾ (V ∩W ) = hW ↾ (V ∩W )
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Figure .: The universal property of Rp

for all V and W in this open covering, then for some h in O(U),
for each V in the open covering,

hV = h ↾ V.

The local ring Rp is the stalk of the sheaf at p. In the fullest sense,
the spectrum of R is Spec(R) as a topological space equipped with this
sheaf. The sheaf is then the structure sheaf of the spectrum of R.

. Generic points and irreducibility

This section is here for completeness, but will not be used later. Every
point a of Ln is called a generic point of ZL(IK(a)); more precisely,
a is a generic point over K of ZL(IK(a)). In the example on page ,
(π,π) and (e, e) are generic points of ZL(X − Y ) over Q.

In any case, if for some radical ideal a, the algebraic set ZL(a) has a
generic point, then a must be prime. The converse may fail. For example,
ZL((X − Y )) has no generic point if L ⊆ Qalg. However, to Theorem ,
we have the following

Corollary. If K(X)
alg ⊆ L, then the zero-locus in L of every prime

ideal has a generic point.

A closed subset of Ln is called irreducible if it cannot be written as the
union of two closed subsets, neither of which includes the other.
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Theorem . For all radical ideals a of K[X], if Kalg ⊆ L,

a is prime ⇐⇒ ZL(a) is irreducible.

Proof. If p is prime, and ZL(p) = ZL(a)∪ZL(b) for some radical ideals a
and b, then (by Hilbert’s Nullstellensatz)

p = a ∩ b,

so we may assume p = a and therefore ZL(a) ⊇ ZL(b).

Suppose conversely ZL(a) is irreducible, and fg ∈ a. Then

ZL(a) = ZL(a ∪ {f}) ∪ ZL(a ∪ {g}),

so we may assume ZL(a) = ZL(a∪{f}) and therefore (again by Hilbert’s
Nullstellensatz) f ∈ a.

For example, Ln itself is irreducible, since the zero-ideal ofK[X] is prime.
Therefore the closure of every open subset is the whole space Ln. In any
case, every closed set is the union of only finitely many irreducible closed
sets: this is by the corollary to the Hilbert Basis Theorem (Theorem 
on page ). Hence every radical ideal of K[X] is the intersection of just
finitely many elements of Spec(K[X]).

. Affine schemes

The construction of the spectrum of K[X] can be carried out for any ring
(that is, commutative unital ring). For an arbitrary ring R, we can still
let Spec(R) be the set of prime ideals of R. Then every element f of R
determines a function p 7→ fp on Spec(R), where fp is the element f + p

of R/p. However, the corresponding map

f 7→ (fp : p ∈ Spec(R)) (∗)

from R to
∏

p∈Spec(R)R/p need not be injective. For example, the kernel
of this map contains X + (X2) when R = K[X]/(X2).

We do have the generalization of Theorem  on page :





. Affine schemes

Theorem . For all subsets A of R,

√
(A) =

⋂

{p ∈ Spec(R) : A ⊆ p}.

Proof. It is clear that the intersection includes
√
(A). Now suppose x ∈

Rr
√
(A). Let b be an ideal of R that is maximal with respect to including√

(A), but not containing any power of x. Say y and z are not in b. By
maximality,

x ∈ b+ (y), x ∈ b+ (z),

and therefore
x2 ∈ b+ (yz),

so yz /∈ b (since x2 /∈ b). Thus b is prime.

Corollary.
⋂

Spec(R) =
√
{0}.

In particular, the kernel of f 7→ (fp : p ∈ Spec(R)) is
√
{0}. (Again this

is non-trivial if, for example, R = K[X]/(X2).)

As before, we still obtain a Galois correspondence between certain subsets
of R and of Spec(R). If A ⊆ R and B ⊆ Spec(R), we define

Z(A) =
⋂

f∈A

{p ∈ Spec(R) : fp = 0} = {p ∈ Spec(R) : A ⊆ p},

I(B) =
⋂

p∈B

{f ∈ R : fp = 0} =
⋂

B.

As before,
Z(A) = Z(

√
(A)).

So the sets Z(A) (where A ⊆ R) are just the sets Z(a) (where a is a
radical ideal of R). Moreover, by the last theorem, if a and b are distinct
radical ideals, then Z(a) 6= Z(b). Thus we have:

Theorem  (Nullstellensatz). The functions V 7→ I(V ) and a 7→ Z(a)
establish a one-to-one order-reversing correspondence between the radical
ideals of R and certain subsets of Spec(R).
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If A ⊆ R, we define

UA = Z(A)c = {p ∈ Spec(R) : A 6⊆ p}.

Theorem . The subsets Ua of Spec(R) are the open sets of a topology
on Spec(R).

Proof. Since the elements p of Spec(R) are prime, we have

ab ⊆ p ⇐⇒ a ⊆ p or b ⊆ p

or rather
ab * p ⇐⇒ a * p & b * p.

Therefore
Ua ∩Ub = Uab .

Also, Spec(R) = U(1). Finally, if A is a collection of ideals of Spec(R),
then

⋃

a∈A

Ua = U∑
A .

(As a special case, ∅ = U{0}.)

The topology just given is of course the Zariski topology. Just as
before, we obtain the sheaf U 7→ O(U) of rings on Spec(R), with stalks
Rp. Continuing the example on page , we may let

R = K[X,Y ]/(Y 2 −X3).

Let x and y be the images of X and Y respectively in R. Then

U(x,y) = Ux ∪Uy,

and

p ∈ Ux =⇒ y

x2
∈ Rp, p ∈ Uy =⇒ x

y
∈ Rp,

and if p ∈ Ux ∩Uy, then y/x2 and x/y are the same element of Rp. Thus
we obtain an element of O(U(x,y)).





. Regular rings (in the sense of von Neumann)

The spectrum of a ring is called an affine scheme. One point of intro-
ducing this terminology is that a scheme, simply, is a topological space
with a sheaf of rings such that such that every point of the space has
a neighborhood that, with the restriction of the sheaf to it, is an affine
scheme. However, we shall not look at schemes in general. In fact we shall
look at just one affine scheme whose underlying ring is not a polynomial
ring.

. Regular rings (in the sense of von Neumann)

Again R is an arbitrary ring (commutive and unital as always), and p

is a prime ideal. We have worked with both the quotient R/p and the
localization Rp. Are these two rings ever isomorphic? More precisely, is
there ever a well-defined isomorphism

x+ p 7→ x

1

from R/p to Rp?

• There is, if R is already a field.
• There is not, if R is an integral domain that is not a field; for in

this case the homomorphism from R to Rp is a proper embedding.

The homomorphism x+ p 7→ x/1 is well-defined if and only if

x ∈ p =⇒ x

1
= 0,

that is, if x ∈ p, then x ·s = 0 for some s in Rrp. In particular, we must
have p ⊆ I0 (the set {0} ∪ {zero-divisors}, defined on page ).

The homomorphism x+ p 7→ x/1 is injective if and only if

x

1
= 0 =⇒ x ∈ p,

that is, if x · s = 0 for some s in R r p, then x ∈ p. Since p contains
0 and is prime, the homomorphism is automatically injective (if it is
well-defined).





 Schemes

The homomorphism is surjective if and only if, for all x/y in Rp, there is
z in R and there is s in Rr p such that (x− yz) · s = 0, that is,

xs = yzs.

It is enough if, for some z,
xy = yzy.

It is then enough if z has the form xy∗ for some y∗. Then it is enough
if

y = yy∗y.

A ring in which for every element y there is y∗ with this property is called
a regular ring (in the sense of von Neumann).

A Boolean ring is a regular ring: just let x∗ be 1 or x (or anything in
between). We have shown in effect that every such ring embeds in a
power F2

Ω of the two-element field. More generally, if (Ki : i ∈ Ω) is an
indexed family of arbitrary fields, then the product

∏

i∈Ω

Ki

is a regular ring. Indeed, if x ∈ R, we can define x∗ by

x∗i =

{

xi
−1, if xi 6= 0,

0, if xi = 0.

Then indeed xx∗x = x. We shall see presently that all regular rings
embed in such products.

Theorem . Let R be a regular ring, and let p be a prime ideal, then
the map

x+ p 7→ x

1

is a well-defined isomorphism from R/p to Rp. Moreover, each of these
rings is a field. Thus p is maximal.

The definition applies to non-commutative rings as well.





. The ultraproduct scheme

Proof. For all x in R, we have x = xx∗x, that is,

x · (1− xx∗) = 0.

Since p is a proper ideal, we have

x ∈ p ⇐⇒ 1− xx∗ ∈ Rr p.

Thus, as above, the homomorphism is well-defined. It is then injective
and surjective, as we said. In particular, in Rp,

x

1
6= 0 ⇐⇒ x ∈ Rr p ⇐⇒ 1

x
is well-defined;

so Rp is a field.

The map in (∗) on page  is now an embedding into a product of
fields:

Corollary. Every regular ring R embeds in the product

∏

p∈Spec(R)

R/p

(which is a product of fields) under the map

f 7→ (f + p : p ∈ Spec(R)).

Proof. We need only note that the given map is injective, which it is
because all ideals of R are radical, so that

⋂

Spec(R) =
√
{0} = {0}.

. The ultraproduct scheme

Now let R be the product
∏

i∈ΩKi of fields as above. As p ranges over
Spec(R), the quotients R/p are just the possible ultraproducts of the
fields Ki. We want to investigate how these arise from the structure
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sheaf of the spectrum of R. So, letting a be an ideal of R, we want to
understand O(Ua).

We can identify Spec(R) with Spec(P(Ω)), and more generally, we can
identify ideals of R with ideals of P(Ω). Because Rp

∼= R/p, we may
assume

O(Ua) ⊆
∏

p∈Ua

R/p.

Here we may treat a as an ideal of P(Ω), so Ua can be thought of as
an open subset of Spec(P(Ω)). Then, in the product

∏

p∈Ua
R/p, the

index p ranges over this open subset, but in the quotient R/p, the index
returns to being the corresponding ideal of R.

Let s ∈ ∏

p∈Ua
R/p. Every principal ideal in Ua is (Ω r {i}) for some i

in Ω. In this case we have a * (Ωr {i}), that is,

i ∈
⋃

a.

Let us denote (Ω r {i}) by p(i). There is only one prime ideal of P(Ω)
that does not contain {i}, namely p(i). Thus

U{i} = {p(i)}.

In particular, s is automatically regular at p(i). We want to understand
when s is regular at not-principal ideals.

Still considering also the principal ideals, we have

R/p(i) ∼= Ki.

Let sp(i) be sent to si under this isomorphism, so whenever x in R is such
that xi = si, we have

sp(i) = x+ p(i).

By definition, we have s ∈ O(Ua) if and only if, for all p in Ua, for some
subset Ub of a such that b * p, for some x in R, for all q in Ub,

sq = x+ q.

We may assume b is a principal ideal (A), where A ∈ a r p. If q in UA
here is the principal ideal p(j), so that j ∈ A, we must have xj = sj .





. The ultraproduct scheme

More generally, q ∈ UA means A /∈ q, so A is q-large, and hence for all x
in R, x+ q is determined by (xi : i ∈ A). Thus we may assume

x = (si : i ∈ Ω).

This establishes that O(Ua) is the image of R in
∏

p∈Ua
R/p:

O(Ua) = {(x+ p : p ∈ Ua) : x ∈ R}.

In particular, O(Ua) is a quotient of R, that is, a reduced product of the
Ki. More precisely,

O(Ua) ∼= R/b,

where
b =

⋂

p∈Ua

p =
⋂

a*p

p.

It follows that
O(Ua) ∼=

∏

i∈
⋃

a

Ki. (†)

We can see this in two ways. For example, if p ∈ Ua, so that a * p,
then

⋃

a /∈ p, that is,
⋃

a is p-large. Therefore the image of x in O(Ua)
depends only on (xi : i ∈

⋃

a). This shows that O(Ua) is a quotient of
∏

i∈
⋃

aKi.

It is moreover the quotient by the trivial ideal. For, if i ∈
⋃

a, then
p(i) ∈ Ua, so that x+ p(i) depends only on xi, that is,

x+ p(i) = 0 ⇐⇒ xi = 0.

This gives us (†).
Note that possibly

⋃

a /∈ p, although a ⊆ p. Such is the case when p is
non-principal, but a is the ideal of finite sets. However, we always have

⋃

a /∈ p =⇒ (
⋃

a) * p.

Another way to establish (†) is to show
⋂

a*p

p = (Ωr
⋃

a).
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If X ⊆ Ω r
⋃

a, and a * p, then
⋃

a /∈ p, so Ω r
⋃

a ∈ p, and therefore
X ∈ p. Inversely, if X * Ωr

⋃

a, then X ∩⋃

a has an element i, so that
X /∈ p(i) and a * p(i).

Because the stalk Rp is always a direct limit of those O(U) such that p ∈
U , we have in the present situation that the ultraproduct

∏

i∈ΩKi/p is a
direct limit of those products

∏

i∈AKi such that A /∈ p. Symbolically,

∏

i∈Ω

Ki/p = lim
−→

{

∏

i∈A

Ki : A /∈ p
}

.

Equivalently, the ultraproduct is the direct limit of those R/a such that
a is a principal ideal included in p:

∏

i∈Ω

Ki/p = lim
−→

{

∏

i∈Ω

Ki/(B) : B ∈ p
}

.
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