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These are notes from Math  in the METU Mathematics Department, spring semes-
ter, /. Class met Tuesdays at . for two hours and Fridays at . (originally
.) for one hour. I have typeset these notes after class, from memory and from
handwritten notes prepared before class. I have done some polishing, correcting, and
rearrangement.

The main published reference for the course is [], which has apparently been on reserve
in the library since the last time this course was offered several years ago. I have that
text only in the form of a photocopy of chapters –, used by Ayşe Berkman when she
was a student. The text is a rough guide only, and I may change its terminology and
notation.

All special symbols used in these notes are found at the head of the index.
For continued fractions, the text [] used for Math  is useful, as are [] and []. I

also consult [] and [], and occasionally other works.
Class was cancelled Friday, February , because I was in İstanbul for my doçentlik

exam. Ayşe taught for me on the following Tuesday, since I was sick with a gastro-
intestinal infection from the trip. I was sick again, with the flu, on May  and ; class
was cancelled.

There were examinations on the Mondays March , April , and May , so there
were no lectures covering new material on the previous Fridays.

Class on Tuesday, April , was only one hour, because of a special seminar that day
(on teaching conic sections).

The section for April  is a reworking of what I presented vaguely and incorrectly in
class. Theorem  was not given at all in class.
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. February ,  (Tuesday)

We begin with some Diophantine equations (that is, polynomial equations in which
all constants and variables are integers).

Problem . Solve
x2 + y2 = z2 ()

(that is, find all solutions).

Solution. The following are equivalent:

(i) (a, b, c) is a solution;
(ii) (|a|, |b|, |c|) is a solution;
(iii) (na, nb, nc) is a solution, where n 6= 0;
(iv) (b, a, c) is a solution.

Also, () is equivalent to
x2 = (z + y)(z − y).

Suppose (a, b, c) is a solution of () such that a, b, c > 0 and gcd(a, b, c) = 1. Then (a, b, c)
may be called a primitive solution, and all solutions can be obtained from primitive
solutions. Observe that not both a and b are even. Also, if a, b ≡ 1 (mod 2), then
c2 ≡ a2 + b2 ≡ 2 (mod 4), which is absurd. So exactly one of a and b is even. Say a is
even. Then b and c are odd, and

(a

2

)2

=

(
c + b

2

) (
c − b

2

)

.

Also (c + b)/2 and (c − b)/2 are co-prime, since their sum is c and their difference is b.
Hence each must be a square; say

c + b

2
= n2,

c − b

2
= m2,

where n, n > 0. Then

c = n2 + m2, b = n2 − m2, a = 2nm.

Moreover, n and m are co-prime, and exactly one of them is odd (since c is odd).
Conversely, suppose n and m are co-prime, exactly one of them is odd, and 0 < m < n.

Then the triple (2nm, n2−m2, n2 +m2) solves (). Moreover, every common prime factor
of n2 −m2 and n2 + m2 is a factor of the sum 2n2 and the difference 2m2, hence of n and
m. So there is no common prime factor, and the triple is a primitive solution.

We conclude that there is a one-to-one correspondence between:

(i) pairs (m, n) of co-prime integers, where 0 < m < n, and exactly one of m and n
is odd;

(ii) primitive solutions (a, b, c) to (), where a is even.

The correspondence is (x, y) 7→ (2xy, y2 − x2, y2 + x2). �

Problem . Solve
x4 + y4 = z4. ()

Solution. Let (a, b, c) be a solution, where a, b, c > 0, and gcd(a, b, c) = 1. Then (a2, b2, c2)
is a primitive Pythagorean triple (that is, solution to ()). We may assume a is even,
and so

a2 = 2mn, b2 = n2 − m2, c2 = n2 + m2.
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In particular,
m2 + b2 = n2.

Since gcd(a, b) = 1, and every prime factor of m divides a, we have gcd(m, b) = 1. Hence
(m, b, n) is a primitive Pythagorean triple. Also m is even, since b is odd. Hence

m = 2de, b = e2 − d2, n = e2 + d2

for some d and e. Then
a2 = 2mn = 4de(e2 + d2).

But gcd(d, e) = 1, so e2 + d2 is prime to both d and e. Therefore each of d, e, and e2 + d2

must be square: say
d = r2, e = s2, e2 + d2 = t2.

This gives t2 = e2 + d2 = s4 + r4; that is, (s, r, t) is a solution to

x4 + y4 = z2. ()

But (a, b, c2) is also a solution to this; moreover,

1 6 |t| 6 t2 = e2 + d2 = n 6 n2 < n2 + m2 = c2.

We never used that c2 is a square. Thus, for every solution to () with positive entries,
there is a solution with positive entries in which the third entry is smaller. This is absurd;
therefore there is no such solution to (), or to (). �

We used here Fermat’s method of infinite descent.

In Elementary Number Theory I, we proved that the Diophantine equation

x2 + y2 + z2 + w2 = n

is soluble for every positive integer n.

Problem . Find those n for which

x2 + y2 = n

is soluble.

Solution. Let S be the set of such n. Since

(a2 + b2)(c2 + d2) = |a + bi|2|c + di|2

= |(a + bi)(c + di)|2

= |(ac − bd) + (ad + bc)i|2

= (ac − bd)2 + (ad + bd)2,

S is closed under multiplication. We ask now: Which primes are in S?
All squares are congruent to 0 or 1 modulo 4. Hence elements of S are congruent to 0,

1, or 2 modulo 4. Therefore S contains no primes that are congruent to 3 (mod 4).
However, S does contain 2, since 2 = 12 + 12.
Suppose p ≡ 1 (mod 4). Then −1 is a quadratic residue modulo p, so

−1 ≡ a2 (mod p)

for some a, where we may assume |a| < p/2. Hence

a2 + 1 = tp
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for some positive t. This means tp ∈ S. Let k be the least positive number such that
kp ∈ S. Since

0 < t =
a2 + 1

p
<

(p/2)2 + 1

p
=

p

4
+

1

p
< p,

we have 0 < k 6 t < p. By assumption,

kp = b2 + c2 ()

for some b and c. There are d and e such that

d ≡ b, e ≡ c (mod k); |d|, |e| 6
k

2
.

Then d2 + e2 ≡ b2 + c2 ≡ 0 (mod k), so

d2 + e2 = km ()

for some m, where

0 6 m =
d2 + e2

k
6

2(k/2)2

k
=

k

2
< k.

But multiply () and (), getting

k2mp = (b2 + c2)(d2 + e2)

= (bd − ce)2 + (be + cd)2

= (bd + ce)2 + (be − cd)2.

Since

bd + ce ≡ b2 + c2 ≡ 0, be − cd ≡ bc − cb ≡ 0 (mod k),

we can divide by k2, getting

mp =

(
bd + ce

k

)2

+

(
be − cd

k

)2

.

This implies mp ∈ S. By minimality of k, we have m = 0. Therefore d2 + e2 = 0, so
d = 0 = e. Then b, c ≡ 0 (mod k), so

k2 | kp,

and therefore k | p. This means k = 1, so p ∈ S.
Finally, suppose n ∈ S and p | n. Then n = a2 + b2 for some a and b, so

a2 + b2 ≡ 0 (mod p).

If p | a, then p | b, so p2 | n, which means n is not square-free. If p - a, then a is invertible
modulo p, so 1 + (b/a)2 ≡ 0 (mod p), which means −1 is a quadratic residue modulo p,
and so p = 2 or else p ≡ 1 (mod 4).

The conclusion is that S contains just those numbers of the form n2m, where m is
square-free and has no prime factors congruent to 3 modulo 4. �



 DAVID PIERCE

. February ,  (Friday)

Solving () in integers is related to finding integrals like
∫

d θ

2 + 3 sin θ
.

Indeed,

x2 + y2 = z2 ⇐⇒
(x

z

)2

+
(y

z

)2

= 1 or x = y = z = 0.

So finding Pythagorean triples corresponds to solving

x2 + y2 = 1

in rationals. To do so, since the equation defines the unit circle, consider also the line
through (−1, 0) with slope t, so that its Y -intercept is also t, as in Figure : this line is

�

�

�

t
−1

X

Y

Figure . Finding the rational points of the circle

given by
y = tx + t. ()

The circle and the line meet at (−1, 0) and also (x, y), where

x2 + (tx + t)2 = 1,

(1 + t2)x2 + 2t2x + t2 − 1 = 0,

x2 +
2t2

1 + t2
· x − 1 − t2

1 + t2
= 0.

The constant term in the left member of the last equation is the product of the roots;
one of the roots is −1; so we get

(x, y) =

(
1 − t2

1 + t2
,

2t

1 + t2

)

.

If t is rational, then so are the coordinates of this point, which is therefore a rational

point of the circle. Conversely, if x and y are rational, then so is t, by (). Hence the
function

t 7→
(

1 − t2

1 + t2
,

2t

1 + t2

)
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is a one-to-one correspondence, with inverse

(x, y) 7→ y

x + 1
,

between Q and the set of rational points (other than (−1, 0)) of the unit circle.
Hence we can conclude that every integral solution of () is a multiple of

(1 − t2, 2t, 1 + t2).

Taking t = m/n and multiplying by n2, we get

(n2 − m2, 2mn, n2 + m2).

∗ ∗ ∗ ∗ ∗

We can convert
√

2 into a continued fraction as follows:

√
2 = 1 + (

√
2 − 1) = 1 +

1√
2 + 1

= 1 +
1

2 + (
√

2 − 1)
= 1 +

1

2 +
1√

2 + 1

= · · ·

In the general procedure, given a real number x, we define an and ξn recursively as follows,
where square brackets denote the greatest-integer function:

a0 = [x], ξ0 = x − a0; ()

a1 =

[
1

ξ0

]

, ξ1 =
1

ξ0
− a1;

and generally

an =

[
1

ξn−1

]

, ξn =
1

ξn−1
− an; ()

where ξn−1 must be non-zero for an to be defined. Then

x = a0 + ξ0 = a0 +
1

a1 + ξ1
= a0 +

1

a1 +
1

a2 + ξ2

= · · ·

These are continued fractions. Taking x =
√

3, we get

a0 = 1, ξ0 =
√

3 − 1,

1

ξ0
=

√
3 + 1

2
, a1 = 1, ξ1 =

√
3 − 1

2
,

1

ξ1
=

√
3 + 1, a2 = 2, ξ2 =

√
3 − 1,

and now the process repeats:

ξn =







√
3 − 1, if n is even;√
3 − 1

2
, if n is odd;

an =

{

1, if n = 0, or n is odd;

2, if n is positive and even.
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It appears that

√
3 = 1 +

1

1 +
1

2 +
1

1 +
1

2 +
1

. . .

()

But to make this precise, we need some notion of convergence. To define this, we introduce
some notation. Here square brackets do not denote the greatest-integer function:

[a0] = a0,

[a0; a1] = a0 +
1

a1
,

[a0; a1, a2] = a0 +
1

a1 +
1

a2

,

and so forth, so that

[a0; a1, . . . , an+1] = [a0; a1, . . . , an−1, an +
1

an+1
]. ()

Here we must have an 6= 0 when n > 0; we shall assume also an > 0 when n > 0. We
can also use the notation in the infinite case. For example, from

√
3, we have obtained

[1; 1, 2, 1, 2, . . . ], which we can write as

[1; 1, 2].

But again, we have not yet established that this notation defines a particular number.

. February ,  (Tuesday)

The process of obtaining the sequences (an : n ∈ ω) and (ξn : n ∈ ω) from x as above
can be compared with the Euclidean algorithm: To find gcd(155, 42), we compute

155 = 42 · 3 + 29,

42 = 29 · 1 + 13,

29 = 13 · 2 + 3,

13 = 3 · 4 + 1,

3 = 1 · 3 + 0.
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We can rewrite this as
[
155

42

]

= 3,
155

42
− 3 =

29

42
,

[
42

29

]

= 1,
42

29
− 1 =

13

29
,

[
29

13

]

= 2,
29

13
− 2 =

3

13
,

[
13

3

]

= 4,
13

3
− 4 =

1

3
,

[
3

1

]

= 3,
3

1
− 3 = 0.

Thus, when x = 155/42, then the sequence of an is just (3, 1, 2, 4, 3), and

155

42
= 3 +

1

1 +
1

2 +
1

4 +
1

3

.

Thus we can write every fraction as a (finite) continued fraction [a0; a1, . . . , an], where
the ak are integers, and all of them are positive except perhaps a0. Such a continued
fraction is called simple. We shall work only with simple continued fractions. But the
continued fraction obtained for irrational x does not terminate.

The kth convergent of [a0; a1, . . . ] is [a0; a1, . . . , ak]. For example, the convergents of
[1; 1, 2] are

1, 2,
5

3
,

7

4
,

19

11
,

26

15
,

71

41
,

97

56
, . . .

by a tedious computation to be made easier in a moment. How are these convergents as
approximations of

√
3? We have

(
5

3

)2

=
25

9
, 25 − 3 · 9 = −2,

(
7

4

)2

=
49

16
, 49 − 3 · 16 = 1,

(
19

11

)2

=
361

121
, 361 − 3 · 121 = −2,

(
26

15

)2

=
676

225
, 676 − 3 · 225 = 1,

(
71

41

)2

=
5041

1681
, 5041 − 3 · 1681 = −2.

We shall define pk and qk so that
pk

qk

= [a0; a1, . . . , ak], ()
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the kth convergent of [a0; a1, . . . ]. We start with
p0

q0

= a0, p0 = a0, q0 = 1;

p1

q1
= a0 +

1

a1
=

a0a1 + 1

a1
, p1 = p0a1 + 1, q1 = a1; ()

p2

q2
= a0 +

1

a1 +
1

a2

=
a0a1a2 + a0 + a2

a1a2 + 1
, p2 = p1a2 + p0, q2 = q1a2 + q0.

Following this pattern, we define

pk+2 = pk+1ak+2 + pk, qk+2 = qk+1ak+2 + qk. ()

Theorem . Equation () holds for all k in ω.

Proof. Use induction. The claim holds when k = 0. By assuming the claim for some k,
we can compute [a0; a1, . . . , ak+3] from it, replacing ak+2 with ak+2 + 1/ak+3:

[a0; a1, . . . , ak+3] =

pk+1 ·
(

ak+2 +
1

ak+3

)

+ pk

qk+1

(

ak+2 +
1

ak+3

)

+ qk

=
pk+1ak+2ak+3 + pk+1 + pkak+3

qk+1ak+2ak+3 + qk+1 + qkak+3

=
pk+2ak+3 + pk+1

qk+2ak+3 + qk+1
.

By induction, we have () for all k. �

Is pk/qk in lowest terms?

Theorem . The integers pk and qk are co-prime; in fact,

pk+1

qk+1

− pk

qk

=
(−1)k

qk+1qk

,

equivalently,
pk+1qk − pkqk+1 = (−1)k.

Proof. Again use induction. We have

p1

q1
− p0

q0
=

1

a1
=

(−1)0

q1q0
,

so the claim holds when k = 0. Suppose it holds for some k. Then

pk+2qk+1 − pk+1qk+2 = (pk+1ak+2 + pk)qk+1 − pk+1(qk+1ak+2 + qk) = pkqk+1 − pk+1qk,

which is = −(−1)k or (−1)k+1. Thus the claim holds for all k. �

Corollary. {p2n/q2n} is increasing, and {p2n+1/q2n+1} is decreasing, and
p0

q0

<
p2

q2

< · · · <
p3

q3

<
p1

q1

.

The two sequences converge to the same limit. If the convergents are obtained as above
from x, then their limit is x.

Now we are justified in writing (), for example.
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∗ ∗ ∗ ∗ ∗

With these tools, we turn now to the Pell equation,

x2 − dy2 = 1. ()

We first take care of some trivial cases:
(i) If d < −1, then (x, y) = (±1, 0).
(ii) If d = −1, then (x, y) is (±1, 0) or (0,±1).
(iii) If d = 0, then x = ±1, while y is anything.
(iv) If d is a positive square, as a2, then 1 = (x + ay)(x− ay), so x± ay are alike ±1,

and therefore y = 0 and x = ±1.
Henceforth we assume d is a positive non-square. Then () still has the solution (±1, 0);
but perhaps it has others too. Indeed, in case d = 3, we found (on p. ) solutions (49, 16)
and (676, 225), with a possibility of finding more if the pattern continues.

Suppose (a, b) and (s, t) are solutions to (). Then

a2 − db2 = 1, s2 − dt2 = 1,

so multiplication gives

1 = (a2 − db2)(s2 − dt2) = (as ± dbt)2 − d(at ± bs)2, ()

so (as ± dbt, at ± bs) is a solution. We can repeat this process on (a, b) as follows. We
can define the ordered pair (an, bn) of integers by

an + bn

√
d = (a + b

√
d)n.

Then also an − bn

√
d = (a − b

√
d)n, so

an
2 − dbn

2 = (an + bn

√
d)(an − bn

√
d) = (a + b

√
d)n(a − b

√
d)n = (a2 − b2d)n = 1,

and (an, bn) is a solution. If a+b
√

d > 1, then these solutions (an, bn) must all be distinct.
We ask now: Is there one solution (a, b) such that a + b

√
d > 1?

Lemma . If d is a positive non-square, then, for some positive k, the equation

x2 − dy2 = k ()

has infinitely many solutions.

Proof. Let (pn/qn : n ∈ ω) be the sequence of convergents for
√

d. When n is odd, we
have

0 <
pn

qn

−
√

d <
pn

qn

− pn+1

qn+1

=
1

qn+1qn

<
1

qn
2
,

0 <
pn

qn

+
√

d <
2pn

qn

;

multiplying gives

0 <
pn

2

qn
2
− d <

2pn

qn
3
, 0 < pn

2 − dqn
2 <

2pn

qn

<
2p1

q1
.

Thus there are finitely many possibilities for pn
2 − dqn

2, so one of them must be realized
infinitely many times. �

If (a, b) solves (), and each of a and b is positive, then let us refer to (a, b) as a
positive solution.
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Lemma . If d is a positive non-square, then the equation () has a positive solution.

Proof. By the previous lemma, we may let k be a positive number such that () has
infinitely many solutions. But there are just finitely many pairs (a, b) such that 0 6 a < k
and 0 6 b < k. Hence there must be one such pair for which () together with the
congruences

x ≡ a, y ≡ b (mod k)

have infinitely many solutions. Let (m, n) and (s, t) be two such solutions. Then by the
identity in (), we have

k2 = (m2 − dn2)(s2 − dt2) = (ms − dnt)2 − d(mt − ns)2.

But we have also

ms − dnt ≡ m2 − dn2 ≡ 0, mt − ns ≡ mn − nm ≡ 0 (mod k).

So we can divide by k2 to get

1 =

(
ms − dnt

k

)2

− d

(
mt − ns

k

)2

.

Hence (|ms − dnt|/k, |mt − ns|/k) is a positive solution to (). �

Theorem . If d is a positive non-square, let (a, b) be the positive solution (`, m) of ()
for which ` + m

√
d is minimized. Then the equation () has just the solutions (s, t),

where (|s|, |t|) = (an, bn) for some non-negative integer n, where an + bn

√
d = (a+ b

√
d)n.

Proof. Let (a, b) be as in the statement. (It exists by Lemma .) Then a + b
√

d > 1,
so the powers of a + b

√
d grow arbitrarily large. We know that all of the (an, bn) are

solutions of (). Let (s, t) be an arbitrary positive solution. Then

(a + b
√

d)n 6 s + t
√

d < (a + b
√

d)n+1

for some non-negative n. Since (a + b
√

d)(a − b
√

d) = 1, and a + b
√

d is positive, so is
a − b

√
d. We can therefore multiply by the nth power of this, getting

1 6 (s + t
√

d)(a − b
√

d)n < a + b
√

d.

But we have

(s + t
√

d)(a − b
√

d)n = ` + m
√

d

for some ` and m, and then also (s − t
√

d)(a + b
√

d)n = ` − m
√

d. Hence `2 − m2d = 1,
so (`, m) is a solution of (). But we have

1 6 ` + m
√

d < a + b
√

d.

Hence 0 6 `− m
√

d 6 1, so neither ` nor m can be negative. By minimality of a + b
√

d,
we must have ` + m

√
d = 1, so (s, t) = (an, bn). �
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. March ,  (Tuesday)

If F1 is a subfield of a field F2, then F2 is a vector-space over F1: the dimension is
denoted by

[F2 : F1].

If K is a field such that Q ⊆ K, and [K : Q] = 2, we say K is a quadratic field.

Suppose K is a quadratic field. In particular, there is x in K r Q. Then 1 and x are
linearly independent over Q, so {1, x} must be a basis of K over Q. In particular,

x2 + bx + c = 0

for some b and c in Q, so

x =
−b ±

√
b2 − 4c

2
.

Then
√

b2 − 4c ∈ K r Q. We can write b2 − 4c as s2d, where s ∈ Q and d is a square-free
integer different from 1. Then

√
d ∈ K r Q, so {1,

√
d} is a basis of K, and

K = {x + y
√

d : x, y ∈ Q}.
Also, K is the smallest subfield of C that contains

√
d; so we can denote K by

Q(
√

d).

It is an exercise to check that, conversely, we always have

Q(
√

d) = {x + y
√

d : x, y ∈ Q}.
In particular, if a, b ∈ Q, and b 6= 0, then, assuming d is not a square, we have

1

a + b
√

d
=

a − b
√

d

a2 − b2d
=

a

a2 − b2d
− b

a2 − b2d

√
d.

So non-zero elements of {x + y
√

d : x, y ∈ Q} have multiplicative inverses.
A rational number is an integer if and only if it satisfies an equation

x + c = 0,

where c ∈ Z. This is a trivial observation, but it motivates the following definition. An
element of a quadratic field is an integer of that field if it is an integer in the old sense,
or else it satisfies an equation

x2 + bx + c = 0,

where b, c ∈ Z. Henceforth, integers in the old sense can be called rational integers.

More generally, an algebraic integer is the root of an equation

xn + a1x
n−1 + · · · + an−1x + an = 0,

where ai ∈ Z; but we shall not go beyond the quadratic case, n = 2.

∗ ∗ ∗ ∗ ∗

The integers of Q(i), that is, Q(
√
−1), are called the Gaussian integers. The subset

{x + yi : x, y ∈ Z} of Q(i) is denoted by

Z[i].

Theorem . The Gaussian integers compose the set Z[i].
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Proof. Let α = m + ni. Then (α − m)2 = (ni)2 = −n2, so α2 − 2mα + m2 + n2 = 0, and
α is a Gaussian integer.

Suppose conversely α is a Gaussian integer. Then α2 + bα + c = 0 (by definition) for
some b and c in Z. Hence

α =
−b ±

√
b2 − 4c

2
.

We must have α ∈ Q(i). So ±(b2 − 4c) is a square in Z. Say b2 − 4c = ±e2. Then

b2 ∓ e2 = 4c ≡ 0 (mod 4); b ≡ e (mod 2).

Also,

α =
−b ± e

2
or α =

−b ± ei

2
.

If b ≡ e ≡ 0 (mod 2), then α is in Z or Z ⊕ Zi. If b ≡ e ≡ 1 (mod 2), then 4 - b2 + e2, so
b2 − e2 = 4c, which means b2 − 4c = e2, so that α ∈ Z. �

It is an exercise to check that Z[i] is a ring. But multiplicative inverses may fail to
exist in Z[i]. For example, 2 ∈ Z[i], but 1/2 /∈ Z[i].

The norm on Q(i) is the function given by

N(a + bi) = a2 + b2 = |a + bi|2; ()

so its values are non-negative rational numbers, and

N(αβ) = N(α) N(β).

Note that
1

a + bi
=

a − bi

a2 + b2
=

a − bi

N(a + bi)
.

Hence
1

a + bi
∈ Z[i] ⇐⇒ N(a + bi) = ±1 ⇐⇒ N(a + bi) = 1.

So a + bi is a unit of Z[i] if and only if a2 + b2 = 1, and the unit Gaussian integers are ±1
and ±i.

. March ,  (Friday)

An integral domain (tamlık alanı), or simply a domain, is a sub-ring of a field. For
us, the field will usually be C. As an example, Z[i] is an integral domain. A Euclidean

domain is a domain in which the Euclidean algorithm works. This means we can perform
division with remainder, where the remainder is “smaller” than the divisor; and a sequence
of remainders of decreasing size must terminate. Since decreasing sequences of natural
numbers must terminate, we shall use natural numbers to measure size. So, formally, a
domain R is a Euclidean domain if there is a function x 7→ d(x), the degree, from
R r {0} into N such that, for all α and β in R, if β 6= 0, then the system

α = βx + y & d(y) < d(β)

is soluble in R.
Gaussian integers have a size, namely the absolute value, but this need not be a rational

integer. The square is, however. So we let d(x) be the norm N(x) as in ().

Theorem . Z[i] with x 7→ N(x) is a Euclidean domain.
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Proof. Given α and β in Z[i], where β 6= 0, we must solve

α = βx + y & N(y) < N(β)

The Gaussian-integral multiples of β compose a square lattice (kafes) in C, as in Figure .
Then α is in one of the squares whose vertices are among these multiples. The closest

�α�

�

�

�

�

�

�

�

�

�

�

�

β
βi

γ

Figure . A lattice of Gaussian multiples

vertex to α is some γ such that

|α − γ| 6

√
2

2
|β|, N(α − γ) 6

1

2
N(β).

So our solution is (γ/β, α − γ). �

Doing the proof more algebraically, we have α/β = r+ si for some r and s in Q. There
are m and n in Z such that |r − m|, |s − n| 6 1/2. Then

N(α − β(m + ni)) = N(β) N(
α

β
− (m + ni)) = N(β) N(r − m + (s − n)i) 6

1

2
N(β).

Now we can find greatest common divisors in Z[i]. In any domain, a greatest common

divisor of two elements α and β, not both 0, is a common divisor that is divisible by
every other common divisor. This greatest common divisor need not be unique. Two
greatest common divisors divide each other and so are called associates. Conversely,
the associate of a greatest common divisor is a greatest common divisor.

Problem . In Z[i], find a greatest common divisor of 7 + 6i and −1 + 7i.

Solution. We can compute thus:

7 + 6i

−1 + 7i
=

(7 + 6i)(−1 − 7i)

50
=

35 − 55i

50
=

7 − 11i

10
= 1 − i +

−3 − i

10
,

7 + 6i = (−1 + 7i)(1 − i) +
(−1 + 7i)(−3 − i)

10
= (−1 + 7i)(1 − i) + 1 − 2i,

−1 + 7i

1 − 2i
=

(−1 + 7i)(1 + 2i)

5
= −3 + i.
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So 1 − 2i is a greatest common divisor of 7 + 6i and −1 + 7i. The others are obtained
by multiplying by the units of Z[i], namely ±1 and ±i. So the gcd’s are ±(1 − 2i) and
±(2 + i). �

. March ,  (Tuesday)

All Euclidean domains are principal-ideal domains, and all principal-ideal domains are
unique-factorization domains; therefore Z[i] is a unique-factorization domain. But
we can prove this directly, using that

N(ξη) = N(ξ) N(η).

First, an element of any domain, other than 0 or a unit, is irreducible if its only divisors
are itself and units. Suppose α is a reducible Gaussian integer. Then

α = βγ

for some β and γ, neither of which is a unit. But then N(β) and N(γ) are greater than
1, so

1 < N(β) < N(α), 1 < N(γ) < N(α).

Since there is no infinite strictly decreasing sequence of natural numbers, the process of
factorizing the factors of α as products of non-units must terminate. Thus α can be
written as a product of irreducible factors.

The definition of unique-factorization domain requires that irreducible factorizations
must be unique. This means, if

α0α1 · · ·αm = β0β1 · · ·βn,

where each αi and each βj are irreducible, then each αi must be an associate of some
βj. To prove this for Z[i], it is enough to show that each irreducible Gaussian integer is
prime. In any domain, an element α (not 0 or a unit) is prime, provided

α | βγ & α - β =⇒ α | γ.

In Z[i], suppose α is irreducible, and α | βγ & α - β. Then the greatest common divisors
of α and β are just the units, and we have

αξ + βη = 1

for some ξ and η in Z[i]. But then

αγξ + βγη = γ,

and since α divides the two summands on the left, it divides γ.
We now ask: What are the primes of Z[i]? Suppose π is one of them. Then π is not a

unit, so N(π) has rational-prime factors. But

ππ = N(π).

Therefore, since π is prime, we have
π | p

for some rational-prime factor of N(π). If q is another rational prime, then ap + bq = 1
for some rational integers a and b. Since π - 1, it must be that π - q. Thus p is unique.

We now consider three cases:
(i) p = 2;
(ii) p ≡ 3 (mod 4);
(iii) p ≡ 1 (mod 4).



ELEMENTARY NUMBER THEORY II 

We have
2 = (1 + i)(1 − i).

Also, 1 ± i must be irreducible, since N(1 ± i) = 2 (so if 1 ± i = αβ, then α or β must
have norm 1 and so be a unit). So we have the unique prime factorization of 2. Also 1+ i
and 1 − i are associates. Hence the only prime divisors of 2 are the four associates

1 + i, 1 − i, −1 + i, −1 − i.

Now suppose p ≡ 3 (mod 4), and π | p. Then N(π) | N(p), that is,

ππ | p2.

So ππ is either p2 or p. But the latter is impossible, since N(π) = x2 + y2 ≡ 0, 1, or 2
(mod 4). Therefore

ππ = p2.

But ππ is a prime factorization, so it is unique. Therefore π and π are associates of p
and hence of each other. In short, p is a Gaussian prime.

Finally, suppose p ≡ 1 (mod 4). Then −1 is a quadratic residue modulo p, so −1 ≡ x2

(mod p) for some x, that is, p | 1 + x2, and therefore

p | (1 + xi)(1 − xi).

But (1 ± xi)/p is not a Gaussian integer. Therefore p must not be a Gaussian prime.
Consequently, if π is a prime factor of p, then N(π) = p, that is,

ππ = p.

This is a prime factorization. Moreover, π and π are not associates. Indeed, π = x + yi
for some rational integers x and y, so that

π

π
=

(x + yi)2

p
=

x2 − y2 + 2xyi

p
.

If this is a Gaussian integer, then p | 2xy, so p | xy (since p is odd), so p < x2 + y2 = p,
which is absurd. We have now shown:

Theorem . The Gaussian primes are precisely the associates of the following:

(i) 1 + i;
(ii) the rational primes p, where p ≡ 3 (mod 4);
(iii) α, where N(α) is a rational prime p such that p ≡ 1 (mod 4) (and two such

non-associated α exist for every such p).

If n is a positive rational integer, then the Diophantine equation

x2 + y2 = n ()

is soluble if and only if the equation

N(ξ) = n ()

is soluble, where ξ is a Gaussian integer. Moreover, there is a bijection (x, y) 7→ x + yi
between the solution-sets. We now have an alternative proof, using general theory, that,
when n is a rational prime p, then () has a solution if and only if p = 2 or p ≡ 1
(mod 4).

Indeed, if n = p ≡ 1 (mod 4), then () has exactly  solutions: the associates of π for
some prime π, and the associates of π. Then the solutions when n = p2 are the associates
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of π2, of ππ, and of π2, so there are  solutions. But if p 6= q ≡ 1 (mod 4), then there
are  solutions when n = pq.

Lemma . The number of solutions of () is 4(a − b), where

a = |{x ∈ N : x | n & n ≡ 1}|, b = |{x ∈ N : x | n & n ≡ 3}|,
the modulus being 4.

Proof. Exercise. �

Theorem . Let π be the circumference of the unit circle; then

π

4
= 1 − 1

3
+

1

5
− 1

7
+ · · ·

Proof. The area of a circle of radius r is πr2. Hence

πr2 ≈ |{ξ ∈ Z[i] : 1 6 |ξ| 6 r}| =

r2

∑

n=1

|{ξ ∈ Z[i] : N(ξ) = n}|.

(See Figure .) By Lemma , to this number, each positive 4m+1 contributes 4 for each

Figure . Estimating the area of a circle

of its multiples between 1 and r2, while each positive 4m + 3 takes away 4 for each such
multiple. Therefore

πr2

4
≈

∞∑

n=0

([
r2

4n + 1

]

−
[

r2

4n + 3

])

= r2 −
[
r2

3

]

+

[
r2

5

]

−
[
r2

7

]

+ · · ·

Dividing by r2 and taking the limit yields the claim. (For details, see [].) �

∗ ∗ ∗ ∗ ∗
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Recall the Pell equation (),

1 = x2 − dy2 = (x + y
√

d)(x −
√

d). ()

This factorization suggests looking at Q(
√

d). Let us assume d is square-free.
We may write K for Q(

√
d); here K is for the German Körper “body”, the name in

most languages (besides English) for a field.
On K we define ξ 7→ ξ′ by

(a + b
√

d)′ = a − b
√

d.

When d < 0, this is complex conjugation. We then define:
(i) Tr(α) = α + α′, the trace of α;
(ii) N(α) = αα′, the norm of α.

These are rational numbers. Indeed, if α = a + b
√

d, then

Tr(α) = 2a, N(α) = a2 − b2d.

Also, α is a root of

(x − α)(x − α′) = x2 − (α + α′)x + αα′ = x2 − Tr(α)x + N(α).

If α 6∈ Q, then this must be the minimal polynomial of α over Q, that is, the polynomial
of least degree with rational coefficients, and leading coefficient 1, of which α is a root.
(This must exist, since the ring Q[x] of polynomials is a Euclidean domain with respect
to degree.) Therefore, if α ∈ Q(

√
d) r Q, then the following are equivalent:

(i) α2 − mα − n = 0 for some rational integers m and n;
(ii) Tr(α) and N(α) are rational integers.

So we have two equivalent conditions for being a an integer of Q(
√

d). The set of these
integers can be denoted by

OK .

This is a ring, hence an integral domain, since if Tr(αi) and N(αi) are in Z, then so are
Tr(α0 + α1) and N(α0 + α1) and Tr(α0α1) and N(α0α1) (exercise).

. March ,  (Friday)

Moreover, N(αβ) = N(α) N(β). This is simply because (αβ)′ = α′β ′.
Immediately,

Z[
√

d] = {x + y
√

d : x, y ∈ Z} ⊆ OK.

How about the reverse? Suppose α = a + b
√

d ∈ OK . Then 2a, a2 − b2d ∈ Z. Consider
two cases:

(i) If a ∈ Z, then b2d ∈ Z, so b ∈ Z (since d is square-free), which means α ∈ Z[
√

d].
(ii) Suppose a 6∈ Z. Then 2a is odd, so, modulo 4, we have 4a2 ≡ (2a)2 ≡ 1. But

also 4a2 − 4b2d ≡ 0, so that (2b)2d ≡ 4b2d ≡ 4a2 ≡ 1. Since (2b)2 ≡ 0 or 1, we
conclude (2b)2 ≡ 1, hence d ≡ 1.

But now suppose d ≡ 1. We have shown, if α 6∈ Z[
√

d], that 2a and 2b are odd, so that

α = a − b + b + b
√

d = a − b + 2b · 1 +
√

d

2
∈ Z

[1 +
√

d

2

]

.

Conversely, if α = (1 +
√

d)/2, then (2α − 1)2 = d, so 4α2 − 4α + 1 − d = 0, hence
α2 − α + (1 − d)/4 = 0, which means α ∈ OK (since d ≡ 1 (mod 4)). Thus:
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Theorem . The ring of integers of K is given by

OK =







Z[
√

d], if d ≡ 2 or 3 (mod 4);

Z
[1 +

√
d

2

]

, if d ≡ 1 (mod 4).

∗ ∗ ∗ ∗ ∗

Assuming a, b, c ∈ Q, let

f(x, y) = ax2 + bxy + cy2; ()

this is a binary quadratic form. We shall investigate the rational-integral solutions of

f(x, y) = m,

where m ∈ Q. The Pell equation () is a special case. We can factorize f over a
quadratic field by completing the square:

f(x, y) = a
(

x2 +
b

a
· xy +

b2

4a2
· y2

)

−
( b2

4a
− c

)

y2

= a
(

x +
b

2a
· y

)2

−
( b2

4a
− c

)

y2

=
1

a

(

ax +
b

2
· y

)2

− 1

a

(b2

4
− ac

)

y2

=
1

a

[(

ax +
b

2
· y

)2

− D

4
· y2

]

where D = b2 − 4ac, the discriminant of f . Then

f(x, y) =
1

a

(

ax +
b

2
· y +

√
D

2
· y

)(

ax +
b

2
· y −

√
D

2
· y

)

=
1

a

(

ax +
b +

√
D

2
· y

)(

ax +
b −

√
D

2
· y

)

.

We can write D as s2d, where s ∈ Q, but d is a square-free rational integer. Working in
Q(

√
d), letting

α = a, β =
b +

√
D

2
=

b + s
√

d

2
,

we have

f(x, y) =
1

a
(αx + βy)(α′x + β ′y) =

1

a
N(αx + βy).

Moreover, α and β are linearly independent over Q; that is, the only rational solution to
αx + βy = 0 is (0, 0).

For any α and β in K (which is Q(
√

d)), let us denote the set {αx + βy : x, y ∈ Z} of
all rational-integral linear combinations of α and β by

Zα + Zβ or 〈α, β〉.
If α and β are linearly independent over Q, then 〈α, β〉 is a lattice in K: that is, 〈α, β〉
is a free abelian subgroup of K, and the number of generators is the dimension [K : Q].
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For example, as a group, OK is the lattice 〈1, ω〉, where

ω =







√
d, if d ≡ 2 or 3 (mod 4);

1 +
√

d

2
, if d ≡ 1 (mod 4).

Henceforth ω will always have this meaning.
In general, if Λ is a lattice in K, let

End(Λ) = {ξ ∈ C : ξΛ ⊆ Λ}.
This set is a sub-ring of K and and can be understood as the ring of endomorphisms

of the abelian group Λ. That is, the function ξ 7→ αξ is an endomorphism of Λ if and
only if α ∈ End(Λ). For example, if Λ = 〈1, i〉 in Q(i), then End(Λ) = 〈1, i〉.

But suppose Λ = 〈1, τ〉, where

τ =
−1 +

√
−7

4
.

Then (4τ +1)2 = −7, so 16τ 2 +8τ +8 = 0, or 2τ 2 + τ +1 = 0. Suppose x+yτ ∈ End(Λ).
Equivalently, Λ contains both x + yτ and (x + yτ)τ . But

(x + yτ)τ = xτ + yτ 2 = xτ + y
−τ − 1

2
= −y

2
+

(

x − y

2

)

τ.

So y must be even. Conversely, this is enough to ensure x + yτ ∈ End(Λ). Thus

End(Λ) = 〈1, 2τ〉.
See Figure .

1
τ

1

2τ

Figure . A lattice and its endomorphisms

. March ,  (Tuesday)

To give a sense for where things may lead (though not in this course; but see for
example []): In a more general sense, a lattice is a subgroup Zα + Zβ or 〈α, β〉 of C
such that α 6= 0 and β/α 6∈ R. Let Λ be such a lattice. Then we can form the quotient
group C/Λ. Geometrically, this is the parallelogram with vertices 0, α, β, and α + β (as
in Figure ), with opposite edges identified: thus it is a torus. There is a function ℘,
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0

α + β

α

β

Figure . A fundamental parallelogram of a lattice

that is, ℘Λ: the Weierstraß function, given by

℘(z) =
1

z2
+

∑

ζ∈Λr{0}

( 1

(z − ζ)2
− 1

ζ2

)

.

This is doubly periodic, with period Λ: that is,

ζ ∈ Λ ⇐⇒ ℘(z + ζ) = ℘(z) for all z.

Hence ℘ is well-defined as a function on the torus C/Λ. There are g2 and g3 (depending
on Λ) in C such that (℘(z), ℘′(z)) solves the equation

y2 = 4x3 − g2x − g3.

This equation defines an elliptic curve (Figure ). This curve can be made into a group

�

�

�
P

Q
R

Figure . An elliptic curve

by the rule that, if a straight line meets the curve in P , Q, and R, then P + Q + R = 0.
(Also, a vertical line meets the curve at the ‘point at infinity’, which is defined to be the
0 of the group.) Then (℘, ℘′) is an isomorphism from C/Λ to the elliptic curve.

An analytic endomorphism of C/Λ is a function z 7→ αz, where α ∈ C, such that
αΛ ⊆ Λ. The set of these α is what we are calling End(Λ). Always Z ⊆ End(Λ). You
can show that Z = End(Λ) if and only if β/α is not quadratic—not the root of some
x2 + bx + c, where b, c ∈ Q.

∗ ∗ ∗ ∗ ∗
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We are interested in the quadratic case. Again suppose K = Q(
√

d), where d is square-
free. Say α, β ∈ K, and 〈α, β〉 is a lattice Λ. In particular then, α 6= 0 and β/α 6∈ Q.
Every element αx + βy of Λ is a matrix product:

αx + βy =
(
x y

)
(

α
β

)

.

Then 〈γ, δ〉 ⊆ 〈α, β〉 if and only if
(

γ
δ

)

=

(
x y
z w

) (
α
β

)

for some x, y, z, and w in Z. Then 〈γ, δ〉 = 〈α, β〉 if and only if
(

γ
δ

)

= M

(
α
β

)

for some invertible matrix M over Z: this means det M = ±1.
Along with the sub-ring End(Λ) of K, we have the sub-ring OK . What is the relation

between the two rings?

Lemma . End(Λ) ⊆ OK .

Proof. Suppose γ ∈ End(Λ). Then there are x, y, z, and w in Z such that
(

x y
z w

) (
α
β

)

= γ

(
α
β

)

=

(
γ 0
0 γ

) (
α
β

)

,

(
0
0

)

=

(
γ − x −y
−z γ − w

) (
α
β

)

.

Hence the last square matrix is not invertible over any field, so its determinant is 0: that
is,

0 = (γ − x)(γ − w) − yz = γ2 − (x + w)γ + xw − yz.

Since the coefficients here belong to Z, we have that γ ∈ OK. �

∗ ∗ ∗ ∗ ∗

Problem . Solve the Pell equation

x2 − 14y2 = 1. ()

Solution. We first find the continued fraction expansion of
√

14 by our algorithm:

a0 = 3, ξ0 =
√

14 − 3;

1√
14 − 3

=

√
14 + 3

5
, a1 = 1, ξ1 =

√
14 − 2

5
;

5√
14 − 2

=

√
14 + 2

2
, a2 = 2, ξ2 =

√
14 − 2

2
;

2√
14 − 2

=

√
14 + 2

5
, a3 = 1, ξ3 =

√
14 − 3

5
;

5√
14 − 3

=
√

14 + 3, a4 = 6, ξ4 =
√

14 − 3 = ξ0;
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therefore √
14 = [3; 1, 2, 1, 6].

For the convergents pn/qn, we have

p0

q0

=
3

1
,

p1

q1

=
4

1
,

pn

qn

=
anpn−1 + pn−2

anqn−1 + qn−2

,

so the list is
3

1
,

4

1
,

11

3
,

15

4
,

101

27
, . . .

Check for a solution to ():

32 − 14 · 12 = −5,

42 − 14 · 12 = 2,

112 − 14 · 32 = 121 − 126 = −5,

152 − 14 · 42 = 225 − (15 − 1)(15 + 1) = 1.

Then 15/4 = [3; 1, 2, 1], and (15, 4) solves (). This is the positive solution (a, b) for
which a + b

√
14 is least: we shall prove this later, but meanwhile you can check it by

trying all pairs (a, b) such that 0 < a < 15 and 0 < b < 4. Then every positive solution is

(an, bn), where an + bn

√
14 = (15 + 4

√
14)n.

Moreover, each of these solutions is (p4n+3, q4n+3), and
p4n+3

q4n+3
= [3; 1, 2, 1, 6

︸ ︷︷ ︸
, . . . , 1, 2, 1, 6

︸ ︷︷ ︸
︸ ︷︷ ︸

n

, 1, 2, 1]

Indeed, if (k, `) is a solution, then by the computation

(15 + 4
√

14)(k + `
√

14) = 15k + 56` + (4k + 15`)
√

14,

we have that (15k + 56`, 4k + 15`) is a solution. But also, writing (p4n+3, q4n+3) as (a, b),
we have

p4n+7

q4n+7
=

[

3; 1, 2, 1, 3 +
a

b

]

= 3 +
1

1 +
1

2 +
1

1 +
1

3 +
a

b

= 3 +
1

1 +
1

2 +
1

1 +
b

a + 3b

= 3 +
1

1 +
1

2 +
a + 3b

a + 4b

= 3 +
1

1 +
a + 4b

3a + 11b

= 3 +
3a + 11b

4a + 15b
=

15a + 56b

4a + 15b
.

By induction, our claim is proved. �

The expansion [3; 1, 2, 1, 6] of
√

14 has the period (1, 2, 1, 6) of length 4, which is even.
But √

13 = [3; 1, 1, 1, 1, 6] ()
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with a period of odd length 5. The convergents pn/qn of
√

d are alternately above and
below

√
d (assuming this is irrational); in particular, the convergents p2n/q2n are below.

Therefore [3; 1, 1, 1, 1] cannot provide a solution to x2 − 13y2 = 1. But

[3; 1, 1, 1, 1, 6, 1, 1, 1, 1]

does provide the fundamental solution that generates the others: the solutions here are
p10n+9/q10n+9.

. March ,  (Tuesday)

A problem on last night’s examination was to find solutions to the Diophantine equation

2x2 − 3y2 = 2. ()

Let us define

f(x, y) = 2x2 − 3y2

= 2(x2 − 3

2
y2)

= 2(x +
√

3

2
· y)(x −

√
3

2
· y)

=
1

2
(2x +

√
6 · y)(2x −

√
6 · y).

Working in Q(
√

6), we have

f(x, y) =
1

2
N(2x +

√
6 · y) =

1

2
N(αx + βy),

where α = 2 and β =
√

6. We have a bijection (x, y) 7→ αx + βy between:

(i) the solution-set of ();
(ii) the set of ξ in 〈α, β〉 such that N(ξ) = 4.

In particular, (5, 4) is a solution of (), and N(5α + 4β) = 4. Then other solutions to
N(ξ) = 4 include ε · (5α + 4β), provided:

(i) N(ε) = 1;
(ii) ε · (5α + 4β) ∈ 〈α, β〉,—and this is achieved if ε〈α, β〉 ⊆ 〈α, β〉, that is, ε ∈

End(〈α, β〉).

∗ ∗ ∗ ∗ ∗

Let f(x, y) = ax2 + bxy + cy2 for some a, b, and c in Q (as in ()). Again, the
discriminant of f is given by

D = b2 − 4ac = s2d,
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where s ∈ Qr{0}, d ∈ Z, and d is square-free or 0. Let us assume d 6= 0 or 1: equivalently,√
D 6∈ Q. Then a 6= 0. By the quadratic formula,

f(x, y) = a
(

x − −b +
√

D

2a
y
)(

x − −b −
√

D

2a
y
)

=
1

a

(

ax +
b −

√
D

2
y
)(

x +
b +

√
D

2
y
)

=
1

a
(α′x + β ′y)(αx + βy)

=
1

a
N(αx + βy),

where α = a and β = (b +
√

D)/2, and the computations are in K, where K = Q(
√

d).
Since

√
D is irrational, we have β/α 6∈ Q, that is, α and β are linearly independent over

Q; equivalently, {α, β} is a basis of K over Q.
Now suppose conversely α, β ∈ K. Let

f(x, y) = N(αx + βy) = (αx + βy)(α′x + β ′y) = N(α)x + Tr(αβ ′)xy + N(β)y2.

Then

D = Tr(αβ ′)2 − 4 N(αβ) = (αβ ′ + α′β)2 − 4αβα′β ′ = (αβ ′ − α′β)2 =

∣
∣
∣
∣

α α′

β β ′

∣
∣
∣
∣

2

. ()

Lemma . Let K be a quadratic field Q(
√

d), where d is a square-free rational integer
(different from 1). Let α, β ∈ K, and let D be the discriminant of the quadratic form
N(αx + βy). Then D = s2d for some s in Q. The following are equivalent:

(i) D 6= 0;
(ii) α and β are linearly independent over Q;
(iii)

√
D is irrational.

Proof. If α = 0, then (i), (ii), and (iii) all fail. Suppose α 6= 0. Then we can write β/α
as r + t

√
d for some r and t in Q. From (), we have

D =

(

αα′
(β ′

α′
− β

α

))2

= N(α)2

((β

α

)′

−
(β

α

))2

= N(α)2 · 4t2d = (2t N(α))2 · d.

Since 2t N(α) ∈ Q, we have
√

D ∈ Q ⇐⇒ D = 0 ⇐⇒ t = 0 ⇐⇒ β/α ∈ Q.

Thus, (i), (ii), and (iii) are again equivalent. �

We have observed that two lattices 〈α, β〉 and 〈γ, δ〉 of K are the same lattice Λ if and
only if

(
γ
δ

)

=

(
a b
c d

) (
α
β

)

for some a, b, c, and d in Z such that ad − bc = ±1. In this case,
(

γ γ′

δ δ′

)

=

(
a b
c d

) (
α α′

β β ′

)

,

so that ∣
∣
∣
∣

γ γ′

δ δ′

∣
∣
∣
∣

2

=

∣
∣
∣
∣

α α′

β β ′

∣
∣
∣
∣

2

.
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Then this number is the discriminant of Λ, and we write

∆(Λ) = ∆(α, β) =

∣
∣
∣
∣

α α′

β β ′

∣
∣
∣
∣

2

.

So this is the discriminant of the quadratic forms N(αx + βy) and N(γx + δy).

Lemma . Suppose α, β ∈ K. Then

(i) ∆(α, β) ∈ Q;
(ii) α, β ∈ OK =⇒ ∆(α, β) ∈ Z;
(iii) {α, β} is a basis for K if and only if ∆(α, β) 6= 0.

Proof. We have (i) and (iii) by Lemma . As for (ii), if α, β ∈ OK , then ∆(α, β) ∈
OK ∩ Q = Z (exercise). �

∗ ∗ ∗ ∗ ∗

Suppose
f(x, y) = 2x2 + 6xy + 3y2.

Then D = 36 − 24 = 12 = 22 · 3. Also

f(x, y) = 2
(

x2 + 3xy +
3

2
y2

)

= 2
(

x − −3 + 2
√

3

2
y
)(

x − −3 + 2
√

3

2
y
)

=
1

2

(
2x + (3 + 2

√
3)y

)(
2x + (3 − 2

√
3)y

)
.

So we have a bijection (x, y) 7→ 2x + (3 + 2
√

3)y between {(x, y) ∈ Z × Z : f(x, y) = m}
and {ξ ∈ 〈2, 3 + 2

√
3〉 : N(ξ) = 2m}, where the norm is computed in Q(

√
3). We can

write the form as a matrix product:

f(x, y) =
(
x y

)
(

2 3
3 3

) (
x
y

)

.

Then making a change of variable, as by
(

x
y

)

=

(
a b
c d

) (
u
v

)

,

means forming a new product
(
u v

)
(

a c
b d

) (
2 3
3 3

) (
a b
c d

) (
u
v

)

.

Such a change may be useful particularly if what we want to understand is the possible
values of f(x, y).

∗ ∗ ∗ ∗ ∗

As usual, let d be square-free, and different from 1; and K = Q(
√

d).

Lemma . Let L be a subset of K. Then L is a lattice of K if and only if:

(i) L is an additive subgroup of K (that is, K contains 0 and is closed under addition
and subtraction);

(ii) as a vector-space, K is spanned by L (over Q);
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(iii) nL ⊆ OK for some n in Z r {0}.
Proof. Suppose L is a lattice of K. Then (i) and (ii) hold by definition of lattice. Also
L = 〈α, β〉 for some α and β in K. But OK is a lattice 〈1, ω〉 for some ω. In particular,
(1, ω) spans K. So α = k + `ω and β = r + sω for some k, `, r, and s in Q. Let n be a
common multiple of their denominators. Then nα, nβ ∈ OK , so nL ⊆ OK.

Now suppose conversely that (i), (ii), and (iii) hold. Then L contains α and β such
that {α, β} is a basis for K; and there is n in Z r {0} such that, for every such basis,
nα, nβ ∈ OK . By Lemma , this means ∆(nα, nβ) ∈ Z. Also ∆(α, β) 6= 0. So we
may suppose α and β have been chosen from L so as to minimize |∆(nα, nβ)|, which is
n4|∆(α, β)|. We shall show L = 〈α, β〉. Suppose γ ∈ L. Then γ ∈ K, so

γ = αr + βs

for some r and s in Q. We want to show r, s ∈ Z. Since

γ − α[r] = α(r − [r]) + βs,

we have

∆(γ − α[r], β) =

∣
∣
∣
∣

γ − α[r] γ′ − α′[r]
β β ′

∣
∣
∣
∣

2

=

∣
∣
∣
∣

α(r − [r]) + βs α′(r − [r]) + β ′s
β β ′

∣
∣
∣
∣

2

=

∣
∣
∣
∣

α(r − [r]) α′(r − [r])
β β ′

∣
∣
∣
∣

2

= (r − [r])2

∣
∣
∣
∣

α α′

β β ′

∣
∣
∣
∣

2

= (r − [r])2∆(α, β).

By minimality of |∆(α, β)|, we must have r− [r] = 0, so r ∈ Z. By symmetry, s ∈ Z. �

. March ,  (Friday)

If Λ is a lattice of K, then the ring End(Λ) is also called the order of Λ and denoted
by

OΛ.

By Lemma , we know that this is a sub-ring of OK .

Lemma . Let Λ be a lattice of K. Then OΛ is also a lattice of K.

Proof. By Lemma , it is enough to show that OΛ spans K over Q. Write Λ as 〈α, β〉.
Let γ ∈ K. Then

γ

(
α
β

)

=

(
r s
t u

)(
α
β

)

for some rational numbers r, s, t, and u. Let n be a common multiple of their denomi-
nators. Then nγΛ ⊆ Λ, that is, nγ ∈ OΛ. But γ = (1/n)nγ. �

Theorem . OΛ = 〈1, cω〉 for some positive rational integer c.

Proof. We know 1 ∈ OΛ and OΛ ⊆ 〈1, ω〉. Since OΛ is a lattice, we must therefore have
m + nω ∈ OΛ for some integers m and n, where n 6= 0. Hence nω ∈ OΛ. Let c be
the least positive integer such that cω ∈ OΛ. Then 〈1, cω〉 ⊆ OΛ. Conversely, suppose
m+nω ∈ OΛ. Then nω ∈ OΛ, hence gcd(c, n)ω ∈ OΛ. By minimality of c, we must have
gcd(c, n) = c, so c | n. Thus OΛ ⊆ 〈1, cω〉. �

The number c in the theorem is called the conductor of OΛ.

Lemma . OγΛ = OΛ for all non-zero γ in K.
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Proof. Since ξ 7→ γξ is a bijection from K to itself, we have ξΛ ⊆ Λ ⇐⇒ ξγΛ ⊆ γΛ. �

In looking for OΛ, we may therefore assume that Λ = 〈1, τ〉 for some τ . Then

aτ 2 + bτ + c = 0

for some a, b, and c in Z, where gcd(a, b, c) = 1 and a > 0. Then

aτ 2 = −bτ − c,

which shows 〈1, aτ〉 ⊆ OΛ. That this inclusion is an equality can be seen in some
examples. If b = 0 and c = 1, then we may assume τ = i/

√
a: see Figure . If b = −1

� � �

� � �i

1
� � �

� � �
i/
√

2

1
� � �

� � �
i/
√

3

1

Figure . Lattices 〈1, i/
√

a〉

and c = 1, then |τ | = 1/
√

a, and we may assume τ = (1 + i
√

4a − 1)/2a: see Figure .

� � �

� �

1 + i
√

3

2

1
� � �

� �

1 + i
√

7

4

1
	 	 	

	 	

1 +
√

11

6

1

Figure . Lattices 〈1, (1 + i
√

4a − 1)/2a〉

Theorem . Suppose Λ = 〈α, β〉. Let τ = β/α, so that

aτ 2 + bτ + c = 0

for some a, b, and c in Z, where gcd(a, b, c) = 1. Then

OΛ = 〈1, aτ〉.
Proof. We have the following equivalences:

θ ∈ OΛ ⇐⇒ θ〈1, τ〉 ⊆ 〈1, τ〉
⇐⇒ θ ∈ 〈1, τ〉 & θτ ∈ 〈1, τ〉
⇐⇒ θ = x + yτ & xτ + yτ 2 ∈ 〈1, τ〉 for some x and y in Z

⇐⇒ θ = x + yτ & yτ 2 ∈ 〈1, τ〉 for some x and y in Z

⇐⇒ θ = x + yτ &
yb

a
τ +

yc

a
∈ 〈1, τ〉 for some x and y in Z

⇐⇒ θ = x + yτ & a | yb & a | yc for some x and y in Z

⇐⇒ θ = x + yτ & a | y for some x and y in Z.

In short, θ ∈ OΛ ⇐⇒ θ ∈ 〈1, aτ〉. �
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. April ,  (Tuesday)

What then is the conductor of OΛ? Since τ ∈ K, we have

τ =
−b ±

√
b2 − 4ac

2a
=

−b ± s
√

d

2a
for some s in Z. Hence

OΛ =
〈

1,
−b ± s

√
d

2

〉

.

But we have
s2d ≡ b2 (mod 4).

If d ≡ 2 or 3, then (since squares are congruent to 0 or 1), we must have s2 ≡ 0, so s is
even, and also b is even, so that

OΛ =
〈

1,
s

2

√
d
〉

=
〈

1,
s

2
ω
〉

.

If d ≡ 1, then s2 ≡ b2, so b ± s is even, and hence

OΛ =
〈

1,
−b ∓ s ± s ± s

√
d

2

〉

=
〈

1,±s
1 ±

√
d

2

〉

;

this is either 〈1, sω〉 immediately, or 〈1,−sω′〉, which is 〈1, sω − s〉, which is 〈1, sω〉.

∗ ∗ ∗ ∗ ∗

We now ask which elements of OΛ satisfy N(ξ) = 1.

Lemma . The units of OΛ are just those elements that satisfy N(ξ) = ±1.

Proof. We know OΛ ⊆ OK, so N(α) ∈ Z for all α in OΛ. Suppose α is a unit of OΛ.
Then α 6= 0, and α−1 ∈ OΛ. But 1 = N(1) = N(αα−1) = N(α) N(α−1), and since these
factors are in Z, we have that N(α) is a unit in Z, that is, N(α) = ±1.

Suppose conversely α ∈ OΛ and N(α) = ±1. This means αα′ = ±1, so α−1 = ±α′.
But OΛ = 〈1, cω〉 for some c, so OΛ is closed under ξ 7→ ξ′. Therefore α−1 ∈ OΛ, so α is
a unit of OΛ. �

Since OΛ = 〈1, cω〉, the units of OΛ are those elements x+ cωy such that N(x+ cωy) =
±1, that is,

±1 =

{

x2 − dc2y2, if d ≡ 2 or 3 (mod 4);

(x + cy/2)2 − dc2y2/4, if d ≡ 1.
()

The easier case to consider is d < 0, when N(ξ) = |ξ|2. Then all units of OΛ lie on the
unit circle: see Figure . If d ≡ 2 or 3, then () has the solutions

(i) (±1, 0), if c > 1 or d < −1;
(ii) (±1, 0) and (0,±1), if c = 1 and d = −1.

If d ≡ 1, then either d = −3, or else d 6 −7. In the latter case, the only solutions to ()
are (±1, 0). But if d = −3, so that () becomes

(

x +
c

2
y
)2

+
3

4
c2y2 = ±1,

then the solutions are
(i) (±1, 0), if c > 1;
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1
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√
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i
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√

3

2

−1

−1 − i
√
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2
−i 1 − i

√
3

2

Figure . Units in imaginary quadratic fields

(ii) (±1, 0), (±1,∓1), (0,±1), if c = 1.

Thus we have shown:

Theorem . When d < 0, then the units of 〈1, cω〉 are:

(i) ±1, ±ω, when c = 1 and d = −1;
(ii) ±1, ±ω′, ±ω, when c = 1 and d = −3;
(iii) ±1, in all other cases.

Problem . Solve the quadratic Diophantine equation

x2 + xy + y2 = 3. ()

Solution. Evidently (1, 1) is a solution. What are the others? We have

x2 + xy + y2 = x2 + xy +
1

4
y2 +

3

4
y2

=
(

x +
1

2
y
)2

+
(
√

3

2
y
)2

=
(

x +
1

2
y +

i
√

3

2

)(

x +
1

2
y − i

√
3

2

)

= (x + ωy)(x + ω′y)

= N(x + ωy),

where we work in Q(
√
−3). Let Λ = 〈1, ω〉, so that OΛ = Λ = OK, which has the six

units ±1, ±ω, and ±ω′, all of norm 1. Since 1 + ω is a solution of

N(ξ) = 3

from Λ, so are ±(1+ω), ±ω(1+ω), and ±ω′(1+ω). Since ω2−ω+1 = 0, and ω+ω′ = 1,
these solutions are ±(1+ω), ±(2ω−1), and ±(2−ω), as in Figure . The corresponding
 solutions of () are

(±1,±1), (∓1,±2), (±2,∓1),

as in Figure . It is easy to see from Figure  that there are no other solutions. Also,
we can rewrite () as

(x + y/2)2

3
+

y2

4
= 1,
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Figure . Solutions of N(ξ) = 3 from 〈1, ω〉 in Q(
√
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� � � � � �
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� � �� �

(1, 1)

(−1, 2)

(−2, 1)

(−1,−1)

(1,−2)

(2,−1)

Figure . Solutions of x2 + xy + y2 = 3

which defines the ellipse in Figure ; then we just look for the integer points on the
ellipse—there are only finitely many. However, it is not see easy to tell at a glance which
integer points are on the ellipse. �

Problem . Solve

4x2 + 2xy + y2 = 7. ()

Solution. Again, one solution is (1, 1). We can try to factorize:

4x2 + 2xy + y2 = 3x2 + (x + y)2

= (
√

3x + i(x + y))(
√

3x − i(x + y))

= ((
√

3 + i)x + iy)((
√

3 − i)x − iy), ()

but this is not over a quadratic field. Indeed, a field that contains
√

3 + i and i contains
also

√
3. But [Q(

√
3, i) : Q] = 4 (see Figure ). We can fix this problem by multiplying

each factor in () by the appropriate unit, such as −i and i. What amounts to the same
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Q(
√

3, i)

Q(
√

3)

2
ttttttttt

Q(i)

2
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Q

2
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2

uuuuuuuuuu

Figure . Subfields of Q(
√

3, i)

thing is to compute as follows. We have

3x2 + (x + y)2 = (x + y)2 + 3x2

= (x + y + i
√

3x)(x + y − i
√

3x)

= (2ωx + y)(2ω′x + y)

= N(2ωx + y),

again in Q(
√
−3). Let Λ = 〈2ω, 1〉 = 〈1, 2ω〉. We want to find the solutions of

N(ξ) = 7 ()

in Λ. We know one solution, namely 1 + 2ω. Since (2ω)2 − 2(2ω) + 4 = 0, we have
OΛ = 〈1, 2ω〉 = Λ. The only units of OK in this are ±1. Hence we have the solutions
±(1 + 2ω) of (). To find any others, again we can draw a picture, Figure . So ()
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�� �� �� �� �� �� �� ��

�� �� �� �� �� ��
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1 + 2ω2ω − 3

−1 − 2ω 3 − 2ω

Figure . Solutions of N(ξ) = 7 from 〈1, 2ω〉 in Q(
√
−3)

has the solutions ±(1 + 2ω) and ±(3 − 2ω), and no others. The solutions of () are
therefore (±1,±1) and (∓1,±3). These appear on the graph of () in Figure . �

In the same way, we can solve any quadratic Diophantine equation

ax2 + bxy + cy2 = m,
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(1, 1)

(−1, 3)

(−1,−1)

(1,−3)

Figure . Solutions to 4x2 + 2xy + 1 = 7

provided b2 − 4ac < 0. For in this case, the equation defines an ellipse, which is bounded,
so that there are only finitely many possible solutions to check.

∗ ∗ ∗ ∗ ∗

Now we move to the case where d > 0, so K ⊆ R. We have

〈1, c
√

d〉 ⊆ 〈1, cω〉 = OΛ.

A unit of OΛ of the form x + cy
√

d thus corresponds to a solution of

x2 − dc2y2 = ±1.

The Pell equation x2 − dc2y2 = ±1 has infinitely many solutions, and therefore OΛ has
infinitely many units. We want to find them.

Suppose ε is a unit of OΛ. Since there are infinitely many units, there are units other
than ±1. So we may assume ε 6= ±1. If ε < 0, then −ε is a unit greater than 0. So we
may assume ε > 0. If 0 < ε < 1, then ε−1 is a unit greater than 1. So we may assume
ε > 1. Also ε < n for some n. But

ε2 − (ε + ε′)ε + εε′ = 0,

that is, ε2 − Tr(ε)ε + N(ε) = 0. Since ±1 = N(ε) = εε′, we have |ε′| = ε−1. Hence

|Tr(ε)| = |ε + ε′| 6 ε + ε−1 < n + 1.

This shows that there are only finitely many possibilities for the equation x2 − Tr(ε)x +
N(ε) = 0. Hence there are only finitely many units of OΛ between 1 and n. Therefore
there is a least such unit, the fundamental unit, which we may denote by

εΛ.
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Then (εn
Λ

: n ∈ Z) is an increasing sequence, lim
n→∞

εn
Λ

= ∞, and lim
n→−∞

εn
Λ

= 0. Suppose ζ

is a positive unit of OΛ. Then
εΛ

n 6 ζ < εΛ
n+1

for some n. Hence 1 6 εΛ
−nζ < εΛ. But εΛ

−nζ is a unit too. By minimality of εΛ, we
conclude that ζ = εΛ

n. We have proved:

Theorem . When d > 0, then the units of OΛ compose the multiplicative group gen-
erated by εΛ and −1. In particular, every unit is ±εΛ

n for some n in Z. If N(εΛ) = 1,
then every unit has norm 1. If N(εΛ) = −1, then the units of norm 1 are ±εΛ

2n.

How do we find εΛ?

Lemma . Assuming d > 0, let ε be a unit x + ωy of OK such that ε > 1. Then either
x, y > 0, or else d = 5 and ε = ω = (1 +

√
5)/2.

Proof. We have
(ω − ω′)y = ε − ε′ > ε − |ε−1| > 0,

and ω > ω′, so y > 0. Also
1 > |ε′| = |x + ω′y|;

so since ω′ < 0, and hence ω′y < 0, we must have x > 0, since x ∈ Z. If x > 0, we are
done. Suppose x = 0. Then

±1 = N(ωy) =







−dy2, if d ≡ 2 or 3 (mod 4);
1 − d

4
y2, if d ≡ 1.

The only way this can happen is if d = 5 and y = 1 (since y > 0). �

. April ,  (Friday)

When d = 5, then ω = φ, the so-called Golden Ratio:

φ =
1 +

√
5

2
.

This has an intimate connexion with the sequence (Fn : n ∈ ω) of Fibonacci numbers,

given by
F0 = 0, F1 = 1, Fn+2 = Fn + Fn+1 .

We can continue the sequence backwards, so that, if n < 0, then

Fn = Fn+2 −Fn+1 .

Then the bi-directional sequence is

. . . , 13, −8, 5, −3, 2, −1, 1, 0, 1, 1, 2, 3, 5, 8, 13, . . .

Theorem . The units of the ring of integers of Q(
√

5) are ±φn; and

φn = Fn−1 + Fn φ. ()

Proof. Let K = Q(
√

5). By Lemma , φ is the least unit of OK that is greater than 1.
Then every unit is ±φn for some n in Z, by Theorem . Trivially () holds when n = 1.
Also, φ is a root of

x2 − x − 1 = 0,
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so φ2 = 1 + φ, which means

(x + yφ)φ = xφ + yφ2 = y + (x + y)φ. ()

Hence, if () holds when n = k, then

φk+1 = (Fk−1 + Fk φ)φ = Fk +(Fk−1 + Fk)φ = Fk + Fk+1 φ,

so it holds when n = k + 1. Therefore () holds for all positive n. But from () we
have

x + yφ = (y + (x + y)φ)φ−1.

By letting y = u and x = v − u, we get

v − u + uφ = (u + vφ)φ−1.

Thus, if () holds for some k, then

φk−1 = (Fk−1 + Fk φ)φ−1 = Fk −Fk−1 + Fk−1 φ = Fk−2 + Fk−1 φ,

so () holds when n = k − 1. Thus () holds for all n in Z. �

. April ,  (Tuesday)

Problem . Solve the quadratic Diophantine equation

4x2 + 2xy − y2 = 4. ()

Solution. We have

4x2 + 2xy − y2 = 4x2 + 2xy +
1

4
y2 − 5

4
y2

=
(

2x +
1

2
y
)2

− 5

4
y2

= (2x + yφ)(2x + yφ′)

= N(2x + yφ)

in Q(
√

5). Let Λ = 〈2, φ〉. Then OΛ = End(〈2, φ〉) = End(〈1, φ/2〉) by Lemma . Since

4
(φ

2

)2

− 2 · φ

2
− 1 = 0,

we have by Theorem  that OΛ = 〈1, 2φ〉. Since N(φ) = −1, the positive elements
of OΛ of norm 1 are the powers of the least power φ2n (where n > 0) that belongs to
〈1, 2φ〉. By Theorem , we have

n 2 4 6
φn 1 + φ 2 + 3φ 5 + 8φ

So every element of OΛ of norm 1 is ±(5 + 8φ)n for some n in Z. This means, if γ is a
solution of

N(ξ) = 4

from Λ, then so is ±(5 + 8φ)nγ. But we can choose n so that

1 6 (5 + 8φ)n|γ| < 5 + 8φ.

Let (5 + 8φ)n|γ| = 2k + `φ. Then (k, `) is a point on the graph of

1 6 2x + yφ < 5 + 8φ;
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2x + yφ′ = 0

2x + yφ = 0

2x + yφ = 1

2x + yφ′ = 42x + yφ = 5 + 8φ

� �

� �

� �

� �

� �

� �

� �

�

4

5

4

1

16

11

4

Figure . Solutions of 4x2 + 2xy − y2 = 4

that is, (k, `) lies between the straight lines given by

2x + yφ = 1; 2x + yφ = 5 + 8φ. ()

(See Figure .) But also, (k, `) lies on the hyperbola given by

4 =
(

2x +
1

2
y
)2

− 5

4
y2 = (2x + yφ)(2x + yφ′), ()

whose asymptotes are given by

(2x + yφ)(2x + yφ′) = 0.

One of the asymptotes, given by 2x + yφ = 0, is parallel to the bounding lines given
by (). Directly from (), the hyperbola itself meets the bounding line given by 2x +
yφ = 1 at this line’s intersection with the line given by 2x + yφ′ = 4, parallel to the
other asymptote. This means (k, `) lies within the parallelogram in Figure . There are
finitely many integer points in that parallelogram; for every such point (x, y), we compute
N(2x+yφ). In fact, once we have computed the norms indicated in the figure, we can see
that the only points for which the corresponding norm is 4 are (1, 0), (1, 2), and (2, 6).
Therefore the solutions to () are those (x, y) such that 2x + yφ = ±(5 + 8φ)nγ, where
n ∈ Z and γ ∈ {2, 2 + 2φ, 4 + 6φ}. �
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Theorem  can be understood in terms of matrices. Multiplication in 〈1, φ〉 by φ

corresponds to a matrix multiplication:
(

0 1
1 1

) (
x
y

)

=

(
y

x + y

)

Inverting the matrix, we have
(
−1 1
1 0

) (
x
y

)

=

(
y − x

x

)

.

corresponding to multiplication by φ−1.
We have

(x + yφ)(5 + 8φ) = 5x + (8x + 5y)φ + 8yφ2 = 5x + 8y + (8x + 13y)φ,

and
(

5 8
8 13

)−1

=

(
13 −8
−8 5

)

.

We also have the correspondence (x, y) 7→ 2x+yφ between solutions to () and elements
of 〈2, φ〉 of norm 4. If (a, b) is a solution, we compute

(
5 8
8 13

) (
2a
b

)

=

(
10a + 8b
16a + 13b

)

,

(
13 −8
−8 5

) (
2a
b

)

=

(
26a − 8b
−16a + 5b

)

,

so that (5a + 4b, 16a + 13b) and (13a − 4b,−16a + 5b) are also solutions. Hence the
three bi-directional sequences of solutions (along the right-hand branch of the hyperbola
depicted in Figure ) can be written thus:

. . . , (4181,−5168), (233,−288), (13,−16), (1, 0), (5, 16), (89, 288), (1597, 5168), . . .

. . . , (1597,−1974), (89,−110), (5,−6), (1, 2), (13, 42), (233, 754), (4181, 13530), . . .

. . . , (610,−754), (34,−42), (2,−2), (2, 6), (34, 110), (610, 1974), (10946, 35422), . . .

We may note that each entry (except 0) appears more than once. And we can combine
these solutions into one sequence, thus:

. . . , (34,−42), (13,−16), (5,−6), (2,−2), (1, 0), (1, 2), (2, 6), (5, 16), (13, 42), (34, 110), . . .

Dividing the second coordinates by 2 leaves

. . . , (34,−21), (13,−8), (5,−3), (2,−1), (1, 0), (1, 1), (2, 3), (5, 8), (13, 21), (34, 55), . . .

Here we see all of the Fibonacci numbers. We can obtain all solutions of () from (1, 0)
by the composition of operations

(x, 2y) 7→ (x, y) 7→ (x + y, x + 2y) 7→ (x + y, 2x + 4y),

along with the inverse of this composition. The middle operation in this composition
corresponds to multiplication by 1 + φ:

(x + yφ)(1 + φ) = x + (x + y)φ + yφ2 = x + y + (x + 2y)φ.

Thus every solution of () is (x, y), where 2x + yφ = ±2(1 + φ)n for some n in Z. Note
however that 1 + φ 6∈ 〈1, 2φ〉, that is, 1 + φ 6∈ OΛ when Λ = 〈2, φ〉.
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If we convert a quadratic Diophantine equation to the form N(xα + yβ) = m, where
α, β ∈ K, then we can solve as in Problems , , and , provided we can find the units
of OK. The case where d > 0 is the challenging case. What is the fundamental unit ε
(such that every unit of OK is ±εn for some n)?

We have OK = 〈1, ω〉, and

N(x + yω) =

{

x2 − dy2, if d ≡ 2 or 3 (mod 4);

(x + y/2)2 − dy2/4, if d ≡ 1.

We know ε = a + bω for some positive a and b, unless d = 5. Assuming d 6= 5, we shall
show that a/b is a convergent of

√
d, if d ≡ 2 or 3; otherwise, (2a + b)/b is a convergent

of
√

d.

Lemma . Assuming
√

d = [a0; a1, a2, . . . ], let pn/qn = [a0; a1, . . . , an], the nth conver-
gent. Suppose a, b ∈ Z and 1 6 b < qn+1. Then

|pn − qn

√
d| 6 |a − b

√
d|,

so that

qn

∣
∣
∣
pn

qn

−
√

d
∣
∣
∣ 6 b

∣
∣
∣
a

b
−
√

d
∣
∣
∣.

Proof. By Theorem , we have

(−1)n = pn+1qn − pnqn+1 =

∣
∣
∣
∣

pn+1 pn

qn+1 qn

∣
∣
∣
∣
.

So there are s and t in Z such that
(

a
b

)

=

(
pn+1 pn

qn+1 qn

) (
s
t

)

=

(
spn+1 + tpn

sqn+1 + tqn

)

.

Then

a − b
√

d = spn+1 + tpn − sqn+1

√
d − tqn

√
d = s(pn+1 − qn+1

√
d) + t(pn − qn

√
d).

So it is enough to show that t 6= 0 and the two terms here, s(pn+1 − qn+1

√
d) and

t(pn − qn

√
d) have the same sign. But the factors pn+1 − qn+1

√
d and pn − qn

√
d have

opposite sign. So it is enough to show t 6= 0 and st 6 0.
To show t 6= 0, we note

(
s
t

)

= (−1)n

(
qn −pn

−qn+1 pn+1

) (
a
b

)

,

so
t = (−1)n(−aqn+1 + bpn+1).

If t = 0, then aqn+1 = bpn+1; but gcd(pn+1, qn+1) = 1, so qn+1 | b, hence qn+1 6 b.
To show st 6 0, suppose s 6= 0. We have

b = sqn+1 + tqn.

If s < 0 and 1 6 b, then t > 0; if s > 0 and b < qn+1, then t < 0. �

The lemma uses only that
√

d has convergents up to pn+1/qn+1. The following theorem
requires only that all convergents of

√
d exist, that is,

√
d must be irrational.
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Theorem . If a and b are positive rational integers, and
∣
∣
∣
a

b
−

√
d
∣
∣
∣ <

1

2b2
,

then a/b is a convergent of
√

d.

Proof. Since (qn : n ∈ ω) increases to ∞, we can find n such that

qn 6 b < qn+1.

By Lemma , we have

qn

∣
∣
∣
pn

qn

−
√

d
∣
∣
∣ 6 b

∣
∣
∣
a

b
−

√
d
∣
∣
∣ <

1

2b
,

∣
∣
∣
pn

qn

−
√

d
∣
∣
∣ <

1

2bqn

.

Then
1

bqn

|aqn − bpn| =
∣
∣
∣
a

b
− pn

qn

∣
∣
∣ 6

∣
∣
∣
a

b
−

√
d
∣
∣
∣ +

∣
∣
∣

√
d − pn

qn

∣
∣
∣ <

1

2b2
+

1

2bqn

6
1

bqn

,

|aqn − bpn| < 1,

so aqn = bpn and a/b = pn/qn. �

Theorem . Assuming d > 0, let a + bω be a unit of OK , where a, b > 0.

(i) If d ≡ 2 or 3 (mod 4), then a/b is a convergent of
√

d.
(ii) If d ≡ 1, then (2a + b)/b is a convergent of

√
d, provided either d > 17, or else

d = 13 and a + bω is the fundamental unit of OK.

Also, a is the nearest integer to −bω′.

Proof. Suppose first d ≡ 2 or 3, so that

a2 − db2 = ±1. ()

By Theorem , it is enough to show
∣
∣
∣
a

b
−

√
d
∣
∣
∣ <

1

2b2
,

that is,

|a − b
√

d| <
1

2b
,

that is (multiplying by a + b
√

d and using ()),

1 <
a + b

√
d

2b
=

1

2

(a

b
+
√

d
)

.

But we have (again from ())

a2 − db2 > −1,
(a

b

)2

> d − 1

b2
> d − 1,

a

b
>

√
d − 1,

1

2

(a

b
+
√

d
)

>
1

2
(
√

d − 1 +
√

d) > 1

since d > 2.
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In case d ≡ 1, we try to proceed as before. We have

(2a + b)2 − db2 = ±4,

so that
(2a + b

b

)2

> d − 4

b2
> d − 4. ()

We should like to show

4 <
1

2

(2a + b

b
+
√

d
)

. ()

It is enough if we can show

4 <
1

2
(
√

d − 4 +
√

d).

We have this if d > 21. It remains to consider the cases when d is 13 or 17. We can do
this with the second part of the theorem.

Indeed, since a, b > 1, we have a + bω > 2. Since

1 = (a + bω)|a + bω′|,
we conclude

|a + bω′| <
1

2
,

so a is the nearest integer to −bω′.
In case d = 13, we have −ω′ ≈ 1.3, to which 1 is the nearest integer; and 1+ω is indeed

a unit (of norm −1) and is the least possible unit greater than 1, so it is the fundamental
unit of OK . But (2 · 1 + 1)/1 = 3, which is the first convergent of

√
13.

When d = 17, we have −ω′ ≈ 1.56, to which 2 is nearest; but N(2 + ω) = 2. So b > 1.
Then instead of () we have

(2a + b

b

)2

> d − 4

b2
> d − 1.

So it is enough if we have

4 <
1

2
(
√

d − 1 +
√

d);

but we do have this. �

. April ,  (Friday)

The argument for Case (ii) of Theorem  does not work when d = 13, because 13 is
too small. We cannot show (), because we do not have

4 <
1

2
(
√

d +
√

d),

when d = 13. But we can show
√

13 = [3; 1, 1, 1, 1, 6] (this was ()) and obtain the
convergents listed in Table . Also, the positive units of OK (when d = 13) are the
powers of 1 + ω, and we have

ω =
1 +

√
13

2
,

(

ω − 1

2

)2

=
13

4
, ω2 = 3 + ω,

so that

(x + yω)(1 + ω) = x + (x + y)ω + y(3 + ω) = x + 3y + (x + 2y)ω.

This gives the rest of Table .
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n 0 1 2 3 4

pn

qn

3

1

4

1

7

2

11

3

18

5
pn

2 − 13qn
2 −4 3 −3 4 −1

2a + b

b

3

1

11

3

36

10
(1 + ω)k, or a + bω 1 + ω 4 + 3ω 13 + 10ω

k 1 2 3

n 5 6 7 8 9

pn

qn

119

33

137

38

256

71

393

109

649

180
pn

2 − 13qn
2 4 −3 3 −4 1

2a + b

b

119

33

393

109

1298

360
(1 + ω)k, or a + bω 43 + 33ω 142 + 109ω 469 + 360ω

k 4 5 6

Table . Convergents of
√

d, units of OK , when d = 13

Theorem . Assuming d = 13, let pk/qk be the kth convergent of
√

d, and let

a` + b`ω = (1 + ω)`.

Then

2a3m+i + b3m+i

b3m+i

=







p5m/q5m, if i = 1;

p5m+3/q5m+3, if i = 2;

p5m+4/q5m+4, if i = 3.

Proof. Use the method of Problem . The claim holds when m = 0. Writing p/q for
pk/qk, and p′/q′ for pk+5/qk+5, we have

p′

q′
=

[

3; 1, 1, 1, 1, 3 +
p

q

]

=
[

3; 1, 1, 1, 1 +
q

p + 3q

]

=
[

3; 1, 1, 1 +
p + 3q

p + 4q

]

=
[

3; 1, 1 +
p + 4q

2p + 7q

]

=
[

3; 1 +
2p + 7q

3p + 11q

]

= 3 +
3p + 11q

5p + 18q

=
18p + 65q

5p + 18q
.
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Writing a + bω for a` + b`ω, and a′ + b′ω for a`+3 + b`+3ω, we have

a′ + b′ω =(a + bω)(13 + 10ω)

=13a + (10a + 13b)ω + 10b(3 + ω)

=13a + 30b + (10a + 23b)ω.

Therefore, if
p

q
=

2a + b

b
,

so that
p − q

2q
=

a

b
,

then
2a′ + b′

b′
=

26a + 60b + 10a + 23b

10a + 23b

=
36a + 83b

10a + 23b

=
36(p − q) + 83 · 2q
10(p − q) + 23 · 2q

=
36p − 36q + 166q

10p − 10q + 46q

=
36p + 130q

10p + 36q

=
18p + 65q

5p + 18q
=

p′

q′
.

Therefore the claim holds for all m. �

But not all units of OK are obtained from convergents of
√

d when d = 5:

Theorem . The nth convergent of
√

5 is (2 F3n+2 + F3n+3)/ F3n+3.

Proof. Exercise. �

. April ,  (Tuesday)

We can give alternative proofs of Theorems  and , avoiding the computations, by
developing more of the theory of continued fractions. Along the way, we shall establish
that, whenever d is a positive non-square, then

√
d is indeed [a0; a1, . . . , an] for some

n; and, moreover, (a, b) is a positive solution to the Pell equation () if and only if
(a, b) = (pn−1, qn−1) for some even n such that

√
d = [a0; a1, . . . , an].

Part of the last claim follows from the proof of case (i) of Theorem :

Porism. If (a, b) is a positive solution of (), then (a, b) = (pn, qn) for some convergent
pn/qn of

√
d.

Proof. We have a/b = pn/qn from the proof of Theorem ; then a = pn and b = qn since
each fraction must be in lowest terms (the latter by Theorem ). �

The computation of the continued-fraction expansions of particular
√

d (as in Prob-
lem ) suggests the following.
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Lemma . Let d be a positive non-square, and, in the notation of () and (), let
x =

√
d. Then

ξn =

√
d − tn
sn

,

where sn and tn are rational integers.

Proof. It is easy to establish that sn and tn are rational numbers. Indeed, the claim holds
when n = 0, since ξ0 =

√
d − a0. Suppose the claim holds when n = k. Then

ξk+1 =
1

ξk

− ak+1

=
sk√

d − tk
− ak+1

=

√
d + tk

(d − tk
2

sk

) − ak+1

=

√
d −

(

ak+1
d − tk

2

sk

− tk

)

d − tk
2

sk

,

so we have

sk+1 =
d − tk

2

sk

, tk+1 = ak+1sk+1 − tk.

In particular, these are rational. Also, since s0 = 1 and t0 = a0, we have s1 = d−a0
2, and

all of these are integers. Suppose sk, tk, and sk+1 are integers. Immediately, tk+1 ∈ Z.
Also,

sk+1 | d − tk
2,

so that, modulo sk+1,

d − tk+1
2 ≡ d − (ak+1sk+1 − tk)

2 ≡ d − tk
2 ≡ 0,

and therefore sk+2 ∈ Z. �

Lemma . If x is irrational, with infinite continued-fraction expansion [a0; a1, . . . ], then

x = [a0; a1, . . . , an−1, an + ξn]

for all n.

Proof. The claim is trivially true when n = 0, and also

[a0; a1, . . . , ak, ak+1 + ξk+1] = [a0; a1, . . . , ak−1, ak,
1

ξk

]

= [a0; a1, . . . , ak−1, ak + ξk]

by () and (). �

Theorem . If pn/qn is the nth convergent of
√

d, and sn+1 is as in Lemma , then
(pn, qn) is a solution of

x2 − dy2 = (−1)n+1sn+1.
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Proof. We use Lemmas  and . In case n = 0,

p0
2 − dq0

2 = a0
2 − d = −s1.

By (), when k > 1, we have
pk+1

qk+1
=

pkak+1 + pk−1

qkak+1 + qk−1
.

Since
√

d = [a0; a1, . . . , ak, ak+1 + ξk+1], this means
√

d =
pk(ak+1 + ξk+1) + pk−1

qk(ak+1 + ξk+1) + qk−1

,

(qkak+1 + qk−1)
√

d + qkξk+1

√
d = pkak+1 + pk−1 + pkξk+1,

sk+1(qkak+1 + qk−1)
√

d + qk(
√

d − tk+1)
√

d = sk+1(pkak+1 + pk−1) + pk(
√

d − tk+1),
(
sk+1(qkak+1 + qk−1) − qktk+1

)√
d + qkd =

(
sk+1(pkak+1 + pk−1) − pktk+1

)
+ pk

√
d.

Since only
√

d is irrational, we obtain
{

pk = sk+1(qkak+1 + qk−1) − qktk+1,

qkd = sk+1(pkak+1 + pk−1) − pktk+1.

Multiplying by pk and qk respectively, then subtracting, yields

pk
2 − dqk

2 = sk+1(pkqk−1 − qkpk−1) = (−1)k+1sk+1

by Theorem . �

Corollary. sn > 0.

Proof. By Theorem  and its corollary,

(−1)n+1 = 1 ⇐⇒ pn

qn

>
√

d

⇐⇒ pn − qn

√
d > 0

⇐⇒ pn
2 − dqn

2 > 0,

which yields the claim. �

Lemma . If [a0; a1, . . . , an−1, b] = [a0; a1, . . . , an−1, c], then b = c.

Proof. Let [a0; a1, . . . , an−1, x] = y. The claim is easy if 0 6 n 6 1. Suppose n > 1. By
Theorem , we have

y =
pn−1x + pn−2

qn−1x + qn−2
.

Then we can recover x by

x =
qn−2y − pn−2

−qn−1y + pn−1
,

since y 6= pn−1/qn−1 by Theorem . �

Theorem . If d is a positive non-square, then
√

d = [a0; a1, . . . , an] ()

for some n. If m is the least such n, then the positive solutions of the Pell equation ()
are precisely (pkm−1, qkm−1), where k > 0 and km is even.
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Proof. The Pell equation has a positive solution by Lemma . This solution is (pn−1, qn−1)
for some n, by the porism from Theorem . Then n is even, and and sn = 1, by
Theorem  and its corollary. Then ξn =

√
d − tn by Lemma , and tn is unique such

that 0 <
√

d−tn < 1. But 0 <
√

d−a0 < 1, so tn = a0, and ξn = ξ0. Therefore an+1 = a1,
and ξn+1 = ξ1, and so forth, so () holds. If m is the least such n, then, for any such n,
we must have m | n.

Conversely, suppose
√

d = [a0; a1, . . . , am]. Then
√

d = [a0; a1, . . . , akm−1, akm, a1, . . . , am]

= [a0; a1, . . . , akm−1, akm − a0 + a0, a1, . . . , am]

= [a0; a1, . . . , akm−1, akm − a0 +
√

d].

But also
√

d = [a0; a1, . . . , akm−1, akm + ξkm],

by Lemma ; hence, by Lemma , ξkm =
√

d − a0. In particular, skm = 1, so
(pkm−1, qkm−1) solves () by Theorem , as long as km is even. �

Porism. If (), then ξn+k = ξk for all k.

Proof. Under the assumption, pn−1
2 −dqn−1

2 = (−1)n, so sn = 1, and ξn = ξ0. Hence the
claim. �

Some of the computations in Theorems  and  are special cases of the following.

Theorem . If
√

d = [a0; a1, . . . , an], then

pk+n + qk+n

√
d = (pn−1 + qn−1

√
d)(pk + qk

√
d),

equivalently,
(

pk+n

qk+n

)

=

(
pn−1 dqn−1

qn−1 pn−1

) (
pk

qk

)

.

Proof. We shall use that
√

d = [a0; a1, . . . , an−1, an − a0 + a0, a1, . . . , an]

= [a0; a1, . . . , an−1, an − a0 +
√

d].

By Theorem  we have

[a0; a1, . . . , an−1, an − a0 + x] =
(an − a0 + x)pn−1 + pn−2

(an − a0 + x)qn−1 + qn−2

=
pn−1x + (an − a0)pn−1 + pn−2

qn−1x + (an − a0)qn−1 + qn−2
.

(Here, if n = 1, then pn−2 = 1 and qn−2 = 0.) Letting x =
√

d, and using that this is
irrational, we have

√
d =

pn−1

√
d + (an − a0)pn−1 + pn−2

qn−1

√
d + (an − a0)qn−1 + qn−2

,

{
dqn−1 = (an − a0)pn−1 + pn−2,

pn−1 = (an − a0)qn−1 + qn−2.
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Combining all of this, we have

[a0; a1, . . . , an−1, an − a0 + x] =
pn−1x + dqn−1

qn−1x + pn−1
.

Now letting x = pk/qk, we get

pk+n

qk+n

=
[

a0; a1, . . . , an−1, an − a0 +
pk

qk

]

=
pn−1pk + dqn−1qk

qn−1pk + pn−1qk

.

We are done, once we establish that the last fraction is in lowest terms. Writing this
fraction as a/b, by Theorem  we have

qn−1a − pn−1b = −(−1)nqk,

pn−1a − dqn−1b = (−1)npk,

so gcd(a, b) = 1 since gcd(pk, qk) = 1. �

Finally, as a refinement of Theorem , we have the following.

Theorem . If d is a positive non-square, then
√

d = [a0; a1, . . . , an−1, 2a0]

for some n, where
ak = an−k ()

when 0 < k < n.

Proof. By Theorem , we have (). We shall show first

ξk =
1

−ξn−(k+1)
′

()

whenever 0 6 k < n. By Lemma , we have

1

ξk

=
sk√

d − tk
=

√
d + tk
sk+1

.

Now using also Lemma , as well as () and Theorem , we have

sk+1 ·
1

ξk

=
√

d + tk =
[

a0 + tk; a1, . . . , ak,
1

ξk

]

=

pk ·
1

ξk

+ pk−1

qk ·
1

ξk

+ qk−1

,

sk+1qk ·
( 1

ξk

)2

+ (sk+1qk−1 − pk) ·
1

ξk

− pk−1 = 0.

Thus 1/ξk and hence 1/ξk
′ are the roots of the quadratic polynomial

sk+1qkx
2 + (sk+1qk−1 − pk)x − pk−1.

Call this f(x). Then f(−1) = sk+1(qk − qk−1) + pk − pk−1 > 0, while f(0) = −pk−1 < 0,
so f has a root between −1 and 0. That root must be 1/ξk

′, since 1/ξk > 0. Therefore

0 <
1

−ξk
′
< 1.

We also have
0 < ξk < 1.
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We can now establish () by induction. Since 1/ξn−1 = an + ξn = ξ0 +an =
√

d−a0 +an

by the porism to Theorem , so that 1/−ξn−1
′ =

√
d + a0 − an; while ξ0 =

√
d − a0; we

must have

ξ0 =
1

−ξn−1
′
, an = 2a0.

In particular, we have () when k = 0. Suppose we have it when k = j, where j +1 < n.
Then

ξj+1 + aj+1 =
1

ξj

= −ξn−(j+1)
′ = −

( 1

ξn−(j+2)

− an−(j+1)

)′

=
1

ξn−(j+2)
′
− an−(j+1).

Thus we have () when k = j+1. By induction, we have it for all k such that 0 6 k < n,
and incidentally we have () when 0 < k < n. �

. April ,  (Tuesday)

We know OK is a Euclidean domain when d ∈ {−1,−3}. But when d = −5, then

3 · 2 = (1 +
√
−5)(1 −

√
−5), ()

although each factor is irreducible. To prove this, suppose for example

1 +
√
−5 = αβ.

Then N(α) N(β) = N(αβ) = N(1 +
√
−5) = 6. But no element of OK has norm 2, since

the equation
x2 + 5y2 = 2

is insoluble. Hence one of N(α) and N(β) is 1, so α or β is a unit. Thus there can be
irreducibles that are not prime.

To avoid such problems, instead of working with the numbers in a quadratic field, we
shall work with ‘ideal numbers,’ that is, ideals. Recall that an ideal of a commutative
ring R is an additive subgroup of R that is closed under multiplication by elements of R.
In other words, it is an R-submodule of R. (The definition of R-module is the same as
the definition of a real vector-space, with R replaced by R.)

We shall generalize this definition slightly so that every lattice Λ of the quadratic field
K is an ideal of OΛ, even if Λ 6⊆ OΛ. Let O be an order of K, that is, a sub-ring of
OK that spans K as a vector-space over Q. Then O is a lattice Λ by Lemma , and
OΛ = O (exercise). An additive subgroup G of K is an ideal of O if it is closed under
multiplication by elements of O, and αG ⊆ O for some non-zero α in K; we also require
G 6= {0}.
Theorem . Ideals of O are lattices of K.

Proof. Let L be an ideal of O. We have O = 〈1, cω〉 for some positive rational integer c
by Theorem . Now use Lemma . There, (i) is immediate. For (ii), note that L contains
some non-zero α, hence also αcω. But {α, αcω} is a basis of K over Q. For (iii), we have
βL ⊆ O for some non-zero β. Multiplying β by some positive rational integer, we may
assume β ∈ O. Then β ′ ∈ O, so N(β)L = β ′βL ⊆ β ′O ⊆ O. �

So ideals are nothing new for us. Instead of saying that Λ is an ideal of OΛ, we may
say that Λ belongs to OΛ.

Given an order, we aim to develop something like unique factorization for the lattices
belonging to it. To do this, we shall use a norm for lattices.
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In the old sense of norm, in any quadratic field K, if n ∈ Z, then N(n) = n2. But the
smallest ideal of OK that contains n is nOK or 〈n, nω〉, and the quotient group OK/nOK

or 〈1, ω〉/〈n, nω〉 has size n2. Indeed, every coset of 〈n, nω〉 is a + bω + 〈n, nω〉 for some
a and b in Z, but

a + bω + 〈n, nω〉 = s + tω + 〈n, nω〉 ⇐⇒ a ≡ s & b ≡ t (mod n),

so there are just n2 distinct cosets. Generalizing this idea, we define

N(Λ) = |OΛ/Λ| = (OΛ : Λ),

assuming Λ ⊆ OΛ; in this case, Λ is an integral lattice.
Suppose Λ and M are arbitrary lattices of K, and Λ ⊆ M . What is (M : Λ)? We can

write M as 〈α, β〉; then

Λ = 〈eα + fβ, gα + hβ〉.
By the Euclidean algorithm, we can eliminate β from one generator. Indeed, suppose
gcd(f, h) = a, so that

fx + hy = a

for some x and y in Z. Then
∣
∣
∣
∣

h/a −f/a
x y

∣
∣
∣
∣
= 1,

(
h/a −f/a
x y

)(
eα + fβ
gα + hβ

)

=

(
(he − fg)α/a

(ex + gy)α + aβ

)

.

Thus

Λ = 〈bα, cα + aβ〉, ()

where b = (he − fg)/a and c = ex + gy. In particular,

|ab| =
∣
∣
∣det

(
e f
g h

)∣
∣
∣. ()

We may then assume that b > 0 and 0 6 c < b, while () and () continue to hold.
Then the cosets of Λ in M are in one-to-one correspondence with the pairs (i, j) such
that 0 6 i < a and 0 6 j < b. That is, every element of M is congruent modulo Λ to
some unique jα + iβ, where 0 6 i < a and 0 6 j < b. Thus

(M : Λ) = ab =
∣
∣
∣det

(
e f
g h

)∣
∣
∣ =

√
∣
∣
∣
∣

e f
g h

∣
∣
∣
∣

2

.

For example, say M = 〈1, i〉 and Λ = 〈3, 1 + 2i〉. Then (M : Λ) = |M/Λ| = 6. See
Figure . In the general situation, we have

1

i

0

Figure . Lattices 〈1, i〉 and 〈3, 1 + 2i〉
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(M : Λ)2 =

∣
∣
∣
∣

e f
g h

∣
∣
∣
∣

2

=

∣
∣
∣
∣

e f
g h

∣
∣
∣
∣

2 ∣
∣
∣
∣

α α′

β β ′

∣
∣
∣
∣

2

∣
∣
∣
∣

α α′

β β ′

∣
∣
∣
∣

2 =
∆(Λ)

∆(M)
.

We can use this to define the norm in general:

N(Λ) =

√

∆(Λ)

∆(OΛ)
.

This is always positive, unlike the norm of some numbers when d > 0. But suppose
α ∈ K, and let O be an order of K. Then αO is a lattice belonging to O; and since
O = 〈1, cω〉 for some positive rational integer c, we have

N(αO) =

√

∣
∣
∣
∣

α α′

αcω α′cω′

∣
∣
∣
∣

2

∣
∣
∣
∣

1 1
cω cω′

∣
∣
∣
∣

2 =
√

(αα′)2 = |N(α)|.

. May ,  (Friday)

The product of lattices Λ and M of K is the smallest subgroup of K that includes the
set {xy : x ∈ Λ & y ∈ M}. If Λ = 〈α, β〉 and M = 〈γ, δ〉, then

ΛM = 〈αγ, αδ, βγ, βδ〉.
Then ΛM is a lattice by Lemma , since nΛ, nM ⊆ OK for some m and n, and then
nmΛM ⊆ OK. (Also ΛM spans K since ΛM contains αγ and βγ, which span.)

Lemma . Multiplication of lattices is commutative and associative, and

OΛ · Λ = Λ.

Proof. The first part follows from the same properties of multiplication of numbers. For
the second part, Λ ⊆ OΛ · Λ since 1 ∈ OΛ, and OΛ · Λ ⊆ Λ by definition of OΛ. �

Lemma . For all lattices Λ belonging to an order O,

ΛΛ
′ = N(Λ) · O.

Proof. Suppose first Λ = 〈1, τ〉, where

Aτ 2 + Bτ + C = 0, gcd(A, B, C) = 1, A > 0.

Then
B

A
= −(τ + τ ′),

C

A
= ττ ′, OΛ = 〈1, Aτ〉.

Hence

〈1, τ〉〈1, τ ′〉 = 〈1, τ ′, τ, ττ ′〉 =
〈A

A
, τ,

B

A
,
C

A

〉

=
〈 1

A
, τ

〉

=
1

A
〈1, Aτ〉 =

1

A
· OΛ.

But

N(〈1, τ〉) =

√

∣
∣
∣
∣

1 1
τ τ ′

∣
∣
∣
∣

2

∣
∣
∣
∣

1 1
Aτ Aτ ′

∣
∣
∣
∣

2 =
1

A
.
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We can write an arbitrary lattice as 〈α, ατ〉. Then

〈α, ατ〉〈α′, α′τ ′〉 = α〈1, τ〉α′〈1, τ ′〉 = αα′ N(〈1, τ〉)OΛ = N(〈α, ατ〉)OΛ,

where Λ can be understood indifferently as 〈1, τ〉 or 〈α, ατ〉, by Lemma . �

Theorem . The lattices belonging to an order O compose an abelian group under
multiplication; the identity is O itself, and inversion given by

Λ
−1 =

1

N(Λ)
Λ

′.

Proof. By Lemmas  and , it remains to show that the set of lattices belonging to O

is actually closed under multiplication. We have

N(Λ) N(M)O = ΛΛ
′MM ′

= (ΛM)(ΛM)′

= N(ΛM)OΛM .

But since O = 〈1, cω〉 and OΛ,M = 〈1, eω〉 for some positive rational integers c and e, we
must have c = e and OΛ = OΛM . �

Porism. If Λ and M belong to the same order, then

N(ΛM) = N(Λ) N(M).

. May ,  (Tuesday)

In addition to multiplying, we can add lattices:

Λ + M = {ξ + η : ξ ∈ Λ & η ∈ M}.
Lemma . Let Λ and M be lattices of K.

(i) Λ + M is a lattice, and

〈α, β〉 + 〈γ + δ〉 = 〈α, β, γ, δ〉.
(ii) Addition of lattices is commutative and associative.
(iii) Multiplication of lattices distributes over addition.
(iv) If Λ and M belong to O, then O ⊆ OΛ+M .
(v) If Λ and M belong to OK , then OΛ+M = OK .

Proof. Exercise. �

Although Λ and M belong to the same order O, possibly Λ + M does not belong to
O. For example, 〈n, 1 + ω〉 and 〈1, nω〉 both belong to 〈1, nω〉 (exercise), but

〈n, 1 + ω〉 + 〈1, nω〉 = 〈n, 1 + ω, 1, nω〉 = 〈1, ω〉.
We aim to show that the integral lattices belonging to O have unique prime factoriza-

tions. What does this mean? The integral lattices have norms that are positive rational
integers, since in this case N(Λ) = (O : Λ). Also,

N(Λ) = 1 ⇐⇒ Λ = O

(again assuming Λ ⊆ O). By the porism to Theorem , no non-trivial factorization can
go on forever. That is, we obtain

Λ = P1P2 · · ·Pn, ()
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where each Pi is an integral lattice of norm greater than 1, with no factors other than
itself and O. In a word, each Pi is irreducible.

For example, if N(P ) is a rational prime p, then P is irreducible, since p is irreducible:

P = Λ0Λ1 =⇒ p = N(P ) = N(Λ0) N(Λ1)

=⇒ N(Λi) = 1 for some i

=⇒ Λi = O & Λ1−i = P for some i.

We want (if possible) to establish uniqueness of the factorization in (). For this, we
use the notion of a prime lattice. Working with the integral lattices of some order O,
we define divisibility by

Λ | M ⇐⇒ ΛA = M for some A.

Theorem . For all integral lattices Λ and M of an order O,

Λ | M ⇐⇒ M ⊆ Λ.

Proof. If ΛA = M , where A ⊆ O, then M = ΛA ⊆ ΛO = Λ. Conversely, suppose
M ⊆ Λ. Then

Λ · 1

N(Λ)
Λ

′M = OM = M,
1

N(Λ)
Λ

′M ⊆ 1

N(Λ)
Λ

′
Λ = O,

so (1/ N(Λ))Λ′M is integral, and Λ | M . �

Having division, we may have greatest common divisors: An integral lattice Π is a
greatest common divisor of Λ and M if

(i) Π | Λ & Π | M ;
(ii) if Σ | Λ and Σ | M , then Σ | Π .

But what is Π here? We have

Λ, M ⊆ Λ + M ;

Λ, M ⊆ Σ =⇒ Λ + M ⊆ Σ .

Then we can apply Theorem , provided Λ+M also belongs to O. (Easily Λ+M ⊆ O.)
So we have:

Lemma . If Λ and M are integral lattices of OK , then Λ+M is their greatest common
divisor.

Proof. By the comments just made, it is enough refer to Lemma  (v). �

An integral lattice P is prime if

P | ΛM & P - Λ =⇒ P | M,

equivalently,
ΛM ⊆ P & Λ 6⊆ P =⇒ M ⊆ P.

Lemma . Irreducible integral lattices of OK are prime.

Proof. Suppose Π is irreducible, ΛM ⊆ Π , but Λ 6⊆ Π . But Π + Λ | Π by Lemma .
Since Π is irreducible, Π + Λ is either Π or O. But Π - Λ, so Π + Λ = O. Hence

M = OM = (Π + Λ)M = ΠM + ΛM.
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Figure . Two index-2 sublattices of 〈1,
√
−5〉

But ΛM = ΠΣ for some integral Σ since Π | ΛM . Hence

M = ΠM + ΠΣ = Π (M + Σ ).

By Lemma  (v), we have Π | M . �

Theorem . The integral lattices of OK admit unique prime factorizations.

Proof. Suppose P1P2 · · ·Pm and Q1Q2 · · ·Qm are two irreducible factorizations of the
same lattice Λ. Then P1 | Λ, so P1 | Qi for some i by Lemma . We may assume i = 1.
Then P1 = Q1, since P1 6= OK and Q1 is irreducible. We now have

P1P2 · · ·Pm = P1Q2 · · ·Qn,

P2 · · ·Pm = Q2 · · ·Qn

since we are in a group. Continuing, we get that m = n and we may assume Pi = Qi. �

. May ,  (Friday)

We want to find prime factorizations. For example, let O = OK , where K = Q(
√
−5),

so that O = 〈1, ω〉, where ω =
√
−5. From () we have

(3O)(2O) = ((1 + ω)O)((1 − ω)O),

that is,

〈3, 3ω〉〈2, 2ω〉 = 〈1 + ω, ω + ω2〉〈1 − ω, ω − ω2〉
= 〈1 + ω, ω − 5〉〈1 − ω, ω + 5〉
= 〈6, 1 + ω〉〈6, 1− ω〉.

These cannot be prime factorizations. What, for example, are the prime factors of 2O,
that is, 〈2, 2ω〉? We have N(2O) = N(2) N(O) = 4, so we should look for factors of norm
2. Two possibilities are 〈2, ω〉 and 〈1, 2ω〉. (See Figure .) But 〈2, ω〉 = 2〈1, ω/2〉, and
4(ω/2)2 + 5 = 0, so O〈2,ω〉 = 〈1, 4ω/2〉 = 〈1, 2ω〉 6= O. So 〈2, ω〉 does not belong to O.
Similarly, 〈1, 2ω〉 does not: in fact, it belongs to itself. A third option for a prime factor
of 〈2, 2ω〉 is 〈2, 1 + ω〉 (Figure ). This works: if x = (1 + ω)/2, then (2x − 1)2 = −5,
that is, 4x2 − 4x + 6 = 0, so 2x2 − 2x + 3 = 0, and 〈2, 1 + ω〉 belongs to O. Also
〈2, 1 + ω〉′ = 〈2, 1 + ω〉. By Lemma , we have

〈2, 1 + ω〉2 = 2O.
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Figure . A third index-2 sublattice of 〈1,
√
−5〉

Now let K be an arbitrary quadratic field, O = OK , and P be a prime lattice of
O. There is a non-zero element α of P . Then α′ ∈ O, so P contains αα′, a rational
integer. Since P is prime, the least positive rational integer that it contains must be
prime. Suppose this is p. then

P | pO.

Conversely, suppose p be a rational prime, and P is a prime factor of pO. Then

N(P ) | p2.

If N(P ) = p2, is means P is just pO. If N(P ) = p, then PP ′ = pO, but possibly P = P ′.
So there are three possibilities:

(i) pO is itself prime: then p is inert in O;
(ii) pO = PP ′, where P 6= P ′; then p splits in O;
(iii) pO = P 2; then p ramifies in O.

. May ,  (Tuesday)

To compute which of the three possibilities actually happens, it is convenient to let

∆ = ∆(O) =

∣
∣
∣
∣

1 1
ω ω′

∣
∣
∣
∣

2

=

{

d, if d ≡ 1 (mod 4);

4d, if d ≡ 2 or 3.

Theorem .

(i) If p - ∆, and ∆ ≡ x2 (mod 4p) has no solution, then p is inert in O.
(ii) If p - ∆, and ∆ ≡ s2 (mod 4p), then p splits in O, and

pO =
〈

p,
s +

√
∆

2

〉〈

p,
s −

√
∆

2

〉

.

(iii) If p | ∆, then p ramifies in O, and

pO =







〈

p,
∆ +

√
∆

2

〉2

, if p is odd;

〈2,
√

d〉2, if p = 2 & d ≡ 2;

〈2, 1 +
√

d〉2, if p = 2 & d ≡ 3.
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Proof. Suppose p is not inert in O. Then pO has a proper prime factor P , of norm p, so
that

(O : P ) = p.

So there are just p distinct congruence-classes modulo P . Moreover, they are represented
by the elements of {0, 1, . . . , p − 1}. Indeed, if 0 6 i 6 j < p, and i ≡ j (mod P ), then
P | (j − i)O, so N(P ) | N((j − i)O), that is,

p | (j − i)2,

so i = j. Therefore, in particular, there is a rational integer r such that 0 6 r < p and

∆ +
√

∆

2
≡ r (mod P ),

2r − ∆ −
√

∆ ≡ 0 (mod 2P ),

2P | (2r − ∆ −
√

∆)O,

N(2P ) | N((2r − ∆ −
√

∆)O),

4p | (2r − ∆)2 − ∆,

∆ ≡ (2r − ∆)2 (mod 4p).

This proves (i).
Now suppose ∆ ≡ s2 (mod 4p), and let

P =
〈

p,
s +

√
∆

2

〉

.

To compute OP by means of Theorem , we have

x =
s +

√
∆

2p
=⇒ 2px − s =

√
∆

=⇒ 4p2x2 − 4psx + s2 − ∆ = 0

=⇒ px2 − sx +
s2 − ∆

4p
= 0.

If p - ∆, then p - s, and we can conclude

OP =
〈

1,
s +

√
∆

2

〉

= O.

So P belongs to O; and it has norm p, so pO = PP ′ by Lemma . Finally, P 6= P ′,
since P + P ′ contains s, but P does not. Thus (ii).

Finally, to prove (iii), since each of the given lattices is its own conjugate, it is enough
to show that the lattices belong to O. For example, in case p is odd, assuming p | ∆, we
have

x =
∆ +

√
∆

2p
=⇒ 2px − ∆ =

√
∆

=⇒ 4p2x2 − 4p∆x + ∆
2 − ∆ = 0

=⇒ px2 − ∆x +
∆

2 − ∆

4p
= 0.
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We always have ∆ ≡ 0 or 1 (mod 4), so 4 | ∆
2 − ∆; hence 4p | ∆

2 − ∆. But ∆
2 − ∆ =

∆(∆−1), and p - ∆−1, but also p2 - ∆, since d is squarefree. Therefore 〈p, (∆+
√

∆)/2〉
does belong to O. The remaining cases are easier. �

For example, if d = 21, then ∆ = 21, and the primes ramifying in O are just 3 and 7.



Index

K (a quadratic field, usually Q(
√

d)), 
C (the field of complex numbers), 
End(Λ), 
Fn, 
N (the set {x ∈ Z : x > 0}), 
Q (the field of rational numbers), 

Q(
√

d), 
R (the field of real numbers), 
Z (the ring of rational integers), 
∆(Λ), ∆(α, β), 
d(x), 
εΛ, 
Z[i] (the ring of Gaussian integers), 
φ (the Golden Ratio), 
〈α, β〉, 
∆, 
i (not the variable i, but

√
−1), 

π (the circumference of the unit circle), 
N(x), , 
ω (generator of OK over Z), 
OΛ, 
π (an arbitrary prime of Z[i]), 
OK , 
Tr(x), 
ω (another name for N), 
d (a square-free element of Z, not 1), 

algebraic integer, 
associate, 

belong, 
binary quadratic form, 

conductor, 
continued fraction, , 
convergence, 
convergent, 

degree, 
Diophantine equation, 
discriminant, , 
divisibility, 
domain, 
doubly periodic, 

elliptic curve, 
endomorphism, 
Euclidean algorithm, 
Euclidean domain, 

Fibonacci number, 
free abelian subgroup, 
fundamental unit, 

Gaussian integer, 

Golden Ratio, 
greatest common divisor, , 

ideal, 
inert, 
infinite descent, 
integer, 
integral, 
integral domain, 
irreducible, , 

lattice, , , 

minimal polynomial, 

norm, , , 

order, , 

Pell equation, 
positive, 
prime, , 
primitive solution, 
principal-ideal domain, 
Pythagorean triple, 

quadratic field, 

ramify, 
rational integer, 
rational point, 

simple, 
split, 

torus, 
trace, 

unique-factorization domain, 

Weierstraß function, 
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