NUMBER-THEORY EXERCISES, II.V

DAVID PIERCE

Exercise 1. Prove that the nth convergent of $\sqrt{ } 5$ is $\frac{2 \mathrm{~F}_{3 n+2}+\mathrm{F}_{3 n+3}}{\mathrm{~F}_{3 n+3}}$.
Exercise 2. Verify that an order \mathfrak{O} of K is in particular a lattice Λ such that $\mathfrak{O}_{\Lambda}=\mathfrak{O}$.

Exercise 3. Let Λ and M be lattices of K. Prove the following.
(a) $\Lambda+M$ is a lattice, and

$$
\langle\alpha, \beta\rangle+\langle\gamma+\delta\rangle=\langle\alpha, \beta, \gamma, \delta\rangle .
$$

(b) Addition of lattices is commutative and associative.
(c) Multiplication of lattices distributes over addition.
(d) If Λ and M belong to \mathfrak{O}, then $\mathfrak{O} \subseteq \mathfrak{O}_{\Lambda+M}$.
(e) If Λ and M belong to \mathfrak{O}_{K}, then $\mathfrak{O}_{\Lambda+M}=\mathfrak{O}_{K}$.

Exercise 4. Show that $\langle n, 1+\omega\rangle$ and $\langle 1, n \omega\rangle$ both belong to $\langle 1, n \omega\rangle$.

Mathematics Dept, Middle East Tech. Univ., Ankara o6531, Turkey
E-mail address: dpierce@metu.edu.tr
URL: http://www.math.metu.edu.tr/~dpierce/courses/366/

[^0]
[^0]: Date: May 18, 2008.

