NUMBER-THEORY EXERCISES, II.III

DAVID PIERCE

Exercise 1. Verify that the integers of a quadratic field do compose a ring.

Exercise 2. Suppose $\tau=(15+3 \sqrt{ } 17) / 4$. Find A, B, and C in \mathbb{Z} such that $A \tau^{2}+B \tau+C=0$ and $\operatorname{gcd}(A, B, C)=1$.

Exercise 3. Suppose $A \tau^{2}+B \tau+C=0$ for some A, B, and C in \mathbb{Z}, where $A>0$ and $\operatorname{gcd}(A, B, C)=1$.
(a) Show $\langle 1, A \bar{\tau}\rangle\langle 1, \tau\rangle=\langle 1, \tau\rangle$.
(b) Show $\langle A, A \bar{\tau}\rangle\langle 1, \tau\rangle=\langle 1, A \bar{\tau}\rangle$.
(c) Using (a) and (b), show $\mathfrak{O}_{\Lambda}=\langle 1, A \bar{\tau}\rangle$, where $\Lambda=\langle 1, \tau\rangle$.

Exercise 4. Let Λ be the lattice

$$
\left\langle\frac{3+5 \sqrt{ } 6}{2}, \frac{6+\sqrt{ } 6}{3}\right\rangle
$$

of $\mathbb{Q}(\sqrt{ } 6)$. Find \mathfrak{O}_{Λ}.
Exercise 5. Suppose $\tau \in \mathbb{C} \backslash \mathbb{Q}$. Show that the following are equivalent:
(i) $A \tau^{2}+B \tau+C=0$ for some A, B, and C in \mathbb{Z};
(ii) $\alpha\langle 1, \tau\rangle \subseteq\langle 1, \tau\rangle$ for some α in $\mathbb{C} \backslash \mathbb{Z}$.

Exercise 6. Let $f(x, y)$ be the quadratic form

$$
60 x^{2}+224 x y-735 y^{2}
$$

(a) Find the discriminant of f in the form $n \sqrt{ } d$, where n and d are rational integers, and d is square-free.
(b) Find all solutions from \mathbb{Z} of $f(x, y)=1$.
(c) Find all solutions from \mathbb{Z} of $f(x, y)=6$.

Exercise 7. For every lattice Λ of a quadratic field K, show that the units of \mathfrak{O}_{Λ} are just the units of \mathfrak{O}_{K} that are in \mathfrak{D}_{Λ}.

Mathematics Dept, Middle East Tech. Univ., Ankara o6531, Turkey E-mail address: dpierce@metu.edu.tr
URL: http://www.math.metu.edu.tr/~dpierce/courses/366/
Date: April 3, 2008.

