NUMBER-THEORY EXERCISES, II.III

DAVID PIERCE

Exercise 1. Verify that the integers of a quadratic field do compose a ring.

Exercise 2. Suppose $\tau = (15 + 3\sqrt{17})/4$. Find A, B, and C in Z such that $A\tau^2 + B\tau + C = 0$ and gcd(A, B, C) = 1.

Exercise 3. Suppose $A\tau^2 + B\tau + C = 0$ for some A, B, and C in Z, where A > 0 and gcd(A, B, C) = 1.

- (a) Show $\langle 1, A\overline{\tau} \rangle \langle 1, \tau \rangle = \langle 1, \tau \rangle$.
- (b) Show $\langle A, A\bar{\tau} \rangle \langle 1, \tau \rangle = \langle 1, A\bar{\tau} \rangle$.
- (c) Using (a) and (b), show $\mathfrak{O}_{\Lambda} = \langle 1, A\bar{\tau} \rangle$, where $\Lambda = \langle 1, \tau \rangle$.

Exercise 4. Let Λ be the lattice

$$\left\langle \frac{3+5\sqrt{6}}{2}, \frac{6+\sqrt{6}}{3} \right\rangle$$

of $\mathbb{Q}(\sqrt{6})$. Find \mathfrak{O}_{Λ} .

Exercise 5. Suppose $\tau \in \mathbb{C} \setminus \mathbb{Q}$. Show that the following are equivalent:

- (i) $A\tau^2 + B\tau + C = 0$ for some A, B, and C in \mathbb{Z} ;
- (ii) $\alpha \langle 1, \tau \rangle \subseteq \langle 1, \tau \rangle$ for some α in $\mathbb{C} \smallsetminus \mathbb{Z}$.

Exercise 6. Let f(x, y) be the quadratic form

$$60x^2 + 224xy - 735y^2.$$

- (a) Find the discriminant of f in the form $n\sqrt{d}$, where n and d are rational integers, and d is square-free.
- (b) Find all solutions from \mathbb{Z} of f(x, y) = 1.
- (c) Find all solutions from \mathbb{Z} of f(x, y) = 6.

Exercise 7. For every lattice Λ of a quadratic field K, show that the units of \mathfrak{O}_{Λ} are just the units of \mathfrak{O}_{K} that are in \mathfrak{O}_{Λ} .

MATHEMATICS DEPT, MIDDLE EAST TECH. UNIV., ANKARA 06531, TURKEY *E-mail address*: dpierce@metu.edu.tr

URL: http://www.math.metu.edu.tr/~dpierce/courses/366/

Date: April 3, 2008.