NUMBER-THEORY EXERCISES, II.II

DAVID PIERCE

Exercise 1. If d is a positive non-square rational integer, prove \sqrt{d} is irrational.

Exercise 2. Find a greatest common divisor α of the Gaussian integers 27 + 55i and 20 + 18i, and solve

$$(27+55i)\xi + (20+18i)\eta = \alpha.$$

Exercise 3. Find all solutions of the Diophantine equation

$$x^2 + y^2 = 1170.$$

Exercise 4. Assuming n is positive, prove that the number of solutions of the Diophantine equation

$$x^2 + y^2 = n$$

is 4 times the excess of the number of positive factors of n that are congruent to 1 modulo 4 over the number that are congruent to 3 modulo 4.

Exercise 5.

- (a) Characterize (by describing their prime factorizations) those Gaussian integers α such that $|\alpha|^2$ is square as a rational integer.
- (b) Use this characterization to solve the Diophantine equation

$$x^2 + y^2 = z^2$$

Exercise 6. The polynomial $x^2 + x + 1$ has two conjugate roots. Let ω be the root with positive imaginary part.

- (a) Write ω in radicals.
- (b) Sketch $\mathbb{Z}[\omega]$ as a subset of the complex plane.
- (c) Letting $N(z) = |z|^2$, show that $N(\alpha) \in \mathbb{N}$ when $\alpha \in \mathbb{Z}[\omega]$.
- (d) Express $N(x + \omega y)$ in terms of x and y.
- (e) Show that $\mathbb{Z}[\omega]$ with $z \mapsto N(z)$ is a Euclidean domain.

(The elements of $\mathbb{Z}[\omega]$ are the **Eisenstein integers.**)

MATHEMATICS DEPT, MIDDLE EAST TECH. UNIV., ANKARA 06531, TURKEY E-mail address: dpierce@metu.edu.tr

URL: http://www.math.metu.edu.tr/~dpierce/courses/366/

Date: March 11, 2008.