NUMBER-THEORY EXERCISES, II.II

DAVID PIERCE

Exercise 1. If d is a positive non-square rational integer, prove $\sqrt{ } d$ is irrational.

Exercise 2. Find a greatest common divisor α of the Gaussian integers $27+55$ i and $20+18$ i, and solve

$$
(27+55 \mathrm{i}) \xi+(20+18 \mathrm{i}) \eta=\alpha .
$$

Exercise 3. Find all solutions of the Diophantine equation

$$
x^{2}+y^{2}=1170 .
$$

Exercise 4. Assuming n is positive, prove that the number of solutions of the Diophantine equation

$$
x^{2}+y^{2}=n
$$

is 4 times the excess of the number of positive factors of n that are congruent to 1 modulo 4 over the number that are congruent to 3 modulo 4.

Exercise 5.

(a) Characterize (by describing their prime factorizations) those Gaussian integers α such that $|\alpha|^{2}$ is square as a rational integer.
(b) Use this characterization to solve the Diophantine equation

$$
x^{2}+y^{2}=z^{2} .
$$

Exercise 6. The polynomial $x^{2}+x+1$ has two conjugate roots. Let ω be the root with positive imaginary part.
(a) Write ω in radicals.
(b) Sketch $\mathbb{Z}[\omega]$ as a subset of the complex plane.
(c) Letting $\mathrm{N}(z)=|z|^{2}$, show that $\mathrm{N}(\alpha) \in \mathbb{N}$ when $\alpha \in \mathbb{Z}[\omega]$.
(d) Express $\mathrm{N}(x+\omega y)$ in terms of x and y.
(e) Show that $\mathbb{Z}[\omega]$ with $z \mapsto \mathrm{~N}(z)$ is a Euclidean domain.
(The elements of $\mathbb{Z}[\omega]$ are the Eisenstein integers.)

Mathematics Dept, Middle East Tech. Univ., Ankara o6531, Turkey E-mail address: dpierce@metu.edu.tr
URL: http://www.math.metu.edu.tr/~dpierce/courses/366/
Date: March 11, 2008.

