NUMBER-THEORY EXERCISES, II.I

DAVID PIERCE

Exercise 1. Let S be the set of Pythagorean triples (a, b, c) such that $\operatorname{gcd}(a, b, c)=1 ; a, b$, and c are positive; and $a<b$. Order S by the rule

$$
(a, b, c)<(d, e, f) \Longleftrightarrow(a+b<d+e) \vee(a+b=d+e \wedge b<e) .
$$

Find the first few elements of S with respect to this ordering.

Exercise 2. Solve $x^{2}+4 y^{2}=z^{2}$.

Exercise 3. Solve $x^{4}+y^{2}=z^{2}$.

Exercise 4 -

(a) Show that $f(x, y)=0$ is soluble if and only if $f(3 x+2 y, 4 x+$ $3 y)=0$ is soluble.
(b) Find necessary and sufficient conditions on a, b, c, and d such that an arbitrary Diophantine equation $f(x, y)=0$ is soluble if and only if $f(a x+b y, c x+d y)=0$ is soluble.

Exercise 5.

(a) Find the expansion of $\sqrt{ } d$ as a continued fraction for various d, including 7 .
(b) Solve the Pell equation $x^{2}-d y^{2}=1$ for these d.

Exercise 6.

(a) Show $\left[a_{0} ; a_{1}, \ldots, a_{k}, a_{k+1}, \ldots, a_{n}\right]=\left[a_{0} ; a_{1}, \ldots, a_{k},\left[a_{k+1}, \ldots, a_{n}\right]\right]$.
(b) Show $\left[a_{0} ; a_{1}, \ldots, a_{k}, a_{k+1}, \ldots\right]=\left[a_{0} ; a_{1}, \ldots, a_{k},\left[a_{k+1}, \ldots\right]\right]$.
(c) Compute $[\overline{2 ; 1}]$ (which is $[2 ; 1, \overline{2,1}]$) in terms of radicals.
(d) Show that $\left[a_{0} ; a_{1}, \ldots, a_{k}, \overline{a_{k+1}, \ldots, a_{n}}\right]$ is always the root of a quadratic polynomial.

Mathematics Dept, Middle East Tech. Univ., Ankara o6531, Turkey E-mail address: dpierce@metu.edu.tr
URL: http://www.math.metu.edu.tr/~dpierce/courses/366/

[^0]
[^0]: Date: February 26, 2008

