ELEMENTARY NUMBER THEORY II, EXAMINATION II

Instructions. Solve four of these five problems in 90 minutes. *İyi çalışmalar*.

Problem 1. Assuming a > 0, prove

$$\sqrt{a^2 + 1} = [a; \overline{2a}].$$

Problem 2. Let $K = \mathbb{Q}(\sqrt{5})$ and $\Lambda = \langle 1, \sqrt{5} \rangle$.

- (a) Find the order \mathfrak{O}_{Λ} (that is, $\{\xi \in K : \xi \Lambda \subseteq \Lambda\}$).
- (b) Find the elements of \mathfrak{O}_{Λ} having norm 1.

Problem 3. Solve in \mathbb{Z} :

$$x^2 + 2xy + 4y^2 = 19.$$

Problem 4.

(a) Prove that, for each n in \mathbb{Z} , there are a_n and b_n in \mathbb{Z} such that

$$a_n + b_n \sqrt{21} = 2\left(\frac{5+\sqrt{21}}{2}\right)^n.$$

(b) Find a quadratic form f(x, y) and a rational integer m such that each $(\pm a_n, \pm b_n)$ is a solution of

$$f(x,y) = m. \tag{(*)}$$

(c) Prove that each solution of (*) is $(\pm a_n, \pm b_n)$ for some n.

Problem 5.

(a) Find a quadratic field K, a lattice $\langle \alpha, \beta \rangle$ or Λ of K, and m in \mathbb{Z} for which the function

 $(x, y) \mapsto x\alpha + y\beta$

is a bijection between the solution-set (in $\mathbb{Z} \times \mathbb{Z}$) of

$$2x^2 - 3y^2 = 2 (\dagger)$$

and the solution-set in Λ of $N(\xi) = m$.

(b) Describe a parallelogram Π in the plane \mathbb{R}^2 such that, for every solution (a, b) of (\dagger) , there is a solution (c, d) in Π such that

$$\frac{a\alpha + b\beta}{c\alpha + d\beta} \in \mathfrak{O}_{\Lambda}.$$
(‡)

(c) Find Π as in (b) with the additional condition that, if (a, b) and (c, d) are distinct solutions to (\dagger) in Π , then (\ddagger) fails.

MATHEMATICS DEPT, MIDDLE EAST TECHNICAL UNIVERSITY, ANKARA 06531, TURKEY *E-mail address*: dpierce@metu.edu.tr *URL*: http://www.math.metu.edu.tr/~dpierce/

Date: April 28, 2008.