ELEMENTARY NUMBER THEORY II, EXAMINATION II

Instructions. Solve four of these five problems in 90 minutes. İyi çalışmalar.
Problem 1. Assuming $a>0$, prove

$$
\sqrt{a^{2}+1}=[a ; \overline{2 a}] .
$$

Problem 2. Let $K=\mathbb{Q}(\sqrt{ } 5)$ and $\Lambda=\langle 1, \sqrt{ } 5\rangle$.
(a) Find the order \mathfrak{O}_{Λ} (that is, $\{\xi \in K: \xi \Lambda \subseteq \Lambda\}$).
(b) Find the elements of \mathfrak{O}_{Λ} having norm 1.

Problem 3. Solve in \mathbb{Z} :

$$
x^{2}+2 x y+4 y^{2}=19 .
$$

Problem 4.

(a) Prove that, for each n in \mathbb{Z}, there are a_{n} and b_{n} in \mathbb{Z} such that

$$
a_{n}+b_{n} \sqrt{ } 21=2\left(\frac{5+\sqrt{ } 21}{2}\right)^{n}
$$

(b) Find a quadratic form $f(x, y)$ and a rational integer m such that each $\left(\pm a_{n}, \pm b_{n}\right)$ is a solution of

$$
\begin{equation*}
f(x, y)=m . \tag{*}
\end{equation*}
$$

(c) Prove that each solution of $(*)$ is $\left(\pm a_{n}, \pm b_{n}\right)$ for some n.

Problem 5 .

(a) Find a quadratic field K, a lattice $\langle\alpha, \beta\rangle$ or Λ of K, and m in \mathbb{Z} for which the function

$$
(x, y) \mapsto x \alpha+y \beta
$$

is a bijection between the solution-set (in $\mathbb{Z} \times \mathbb{Z}$) of

$$
2 x^{2}-3 y^{2}=2
$$

and the solution-set in Λ of $\mathrm{N}(\xi)=m$.
(b) Describe a parallelogram Π in the plane \mathbb{R}^{2} such that, for every solution (a, b) of (\dagger), there is a solution (c, d) in Π such that

$$
\frac{a \alpha+b \beta}{c \alpha+d \beta} \in \mathfrak{O}_{\Lambda}
$$

(c) Find Π as in (b) with the additional condition that, if (a, b) and (c, d) are distinct solutions to (\dagger) in Π, then (\ddagger) fails.

Mathematics Dept, Middle East Technical University, Ankara o6531, Turkey
E-mail address: dpierce@metu.edu.tr
URL: http://www.math.metu.edu.tr/~dpierce/

