ELEM. Nº THY II, EXAMINATION II SOLUTIONS

Solution 1. By the algorithm for finding continued fractions, when $x = \sqrt{a^2 + 1}$:

$$a_0 = a$$
, $\xi_0 = \sqrt{a^2 + 1} - a$, $\frac{1}{\xi_0} = \frac{\sqrt{a^2 + 1} + a}{a^2 + 1 + a^2} = \sqrt{a^2 + 1} + a$,

so $a_1 = 2a$ and $\xi_1 = \sqrt{a^2 + 1} - a = \xi_0$. Therefore $x = [a; \overline{2a}]$.

Remark. Alternatively, one may let

$$x = [a; \overline{2a}] = [a; a + a, \overline{2a}] = [a; a + [a, \overline{2a}]] = [a; a + x] = a + \frac{1}{a + x} = \frac{a^2 + ax + 1}{a + x},$$

so that $ax + x^2 = a^2 + ax + 1$ and therefore $x^2 = a^2 + 1$. Since a > 0, we have $[a; \overline{2a}] > 0$ and therefore $[a; \overline{2a}] = x = \sqrt{a^2 + 1}$.

- Solution 2. (a) Since $\sqrt{5}$ is a root of $x^2 5$, whose leading coefficient is 1, we can conclude $\mathfrak{O}_A = \langle 1, \sqrt{5} \rangle = \Lambda$.
 - (b) We know that the units of \mathfrak{O}_K (when $K = \mathbb{Q}(\sqrt{5})$) are $\pm \phi^n$. Of these, those that are greater than 1 form the list

$$\phi, 1 + \phi, 1 + 2\phi, 2 + 3\phi, 3 + 5\phi, 5 + 8\phi, \dots$$

(and in general $\phi^n = F_{n-1} + F_n \phi$). But since $2\phi = 1 + \sqrt{5}$, we have $\mathfrak{O}_A = \langle 1, 2\phi \rangle$; also, N(ϕ) = -1. The first power of ϕ greater than 1 that belongs to \mathfrak{O}_A and has norm 1 is therefore ϕ^6 . Hence the elements of \mathfrak{O}_A of norm 1 are $\pm \phi^{6n}$, where $n \in \mathbb{Z}$.

Solution 3. We want to solve

$$19 = x^{2} + 2xy + 4y^{2} = (x+y)^{2} + 3y^{2}.$$

Hence $y^2 \leq 19/3 < 9$, so |y| < 3. When $y = \pm 2$, the equation becomes $(x \pm 2)^2 = 7$, which has no solution. When $y = \pm 1$, we get $(x \pm 1)^2 = 16$, so $(x \pm 1) \in \{4, -4\}$. When y = 0, there is no solution. So the solutions of the original equation are (3, 1), (-5, 1), (5, -1), (-3, -1).

Remark. Solving an equation means not only finding solutions, but showing that there are no other solutions. This is done here by noting that there are only 5 possibilities for y. Alternatively, one may rewrite the equation as

$$19 = (x + y + y\sqrt{-3})(x + y - y\sqrt{-3}) = N(x + 2\omega y),$$

where we work in $\mathbb{Q}(\sqrt{-3})$. Since (x, y) is a solution if and only if (|x|, |y|) is a solution, we can obtain all solutions from Figure 1.

Solution 4. (a) In $\mathbb{Q}(\sqrt{21})$, we have $(5 + \sqrt{21})/2 = 2 + \omega$, and $N((5 + \sqrt{21})/2) = 1$. Hence $(5 + \sqrt{21})/2$ is a unit of \mathfrak{O}_K , so its powers are also units of \mathfrak{O}_K . Let $\alpha \in \mathfrak{O}_K$. Since

$$\mathfrak{O}_K = \langle 1, \omega \rangle = \left\langle 1, \frac{1 + \sqrt{21}}{2} \right\rangle,$$

Date: April 30, 2008.

FIGURE 1. Solutions of $N(\xi) = 7$ from $\langle 1, 2\omega \rangle$ in $\mathbb{Q}(\sqrt{-3})$

we have $2\alpha \in \langle 2, 1 + \sqrt{21} \rangle \subseteq \langle 1, \sqrt{21} \rangle$. This proves

$$a_n + b_n \sqrt{21} = 2\left(\frac{5+\sqrt{21}}{2}\right)^n \in \langle 1,\sqrt{21}\rangle,$$

so $a_n, b_n \in \mathbb{Z}$.

- (b) Since $N(a_n + b_n\sqrt{21}) = 4$, the pairs $(\pm a_n, \pm b_n)$ are solutions of $x^2 21y^2 = 4$.
- (c) Suppose (a, b) is an arbitrary solution of $x^2 21y^2 = 4$. Then $a \equiv b \pmod{2}$, so $2 \mid a b$. Hence

$$\frac{a+b\sqrt{21}}{2} = \frac{a-b+b+b\sqrt{21}}{2} = \frac{a-b}{2} + b\frac{1+\sqrt{21}}{2} = \frac{a-b}{2} + b\omega \in \langle 1, \omega \rangle,$$

so $(a + b\sqrt{21})/2$ is an element of \mathfrak{O}_K of norm 1. But there is ε or $r + s\omega$ in \mathfrak{O}_K of norm 1 such that r, s > 0 and every element of \mathfrak{O}_K of norm 1 is $\pm \varepsilon^n$ for some n. But $(5 + \sqrt{21})/2 = 2 + \omega$ and has norm 1, so it must be ε . Hence $(a, b) = (\pm a_n, \pm b_n)$ for some n.

Remark. The pair $(a_n/2, b_n/2)$ solves the Pell equation $x^2 - 21y^2 = 1$, but its entries need not belong to \mathbb{Z} . For example, $(a_1/2, b_1/2) = (5/2, 1/2)$.

Solution 5. (a) We have $2 = 2x^2 - 3y^2 \iff 4 = 4x^2 - 6y^2 = N(2x + y\sqrt{6})$ in $\mathbb{Q}(\sqrt{6})$. So let

$$K = \mathbb{Q}(\sqrt{6}), \quad \alpha = 2, \quad \beta = \sqrt{6}, \quad m = 4.$$

(b) We want the elements of \mathfrak{O}_A of norm 1. But $(1/2)A = \langle 1, \sqrt{6/2} \rangle$, and $\sqrt{6/2}$ is a root of $2x^2 - 3$. Hence $\mathfrak{O}_A = \langle 1, 2\sqrt{6/2} \rangle = \langle 1, \sqrt{6} \rangle = \langle 1, \omega \rangle = \mathfrak{O}_K$. We obtain the units of \mathfrak{O}_K from the continued-fraction expansion of $\sqrt{6}$:

$$x = \sqrt{6}, \qquad a_0 = 2, \qquad \xi_0 = \sqrt{6} - 2;$$

$$\frac{1}{\xi_0} = \frac{\sqrt{6} + 2}{2}, \qquad a_1 = 2, \qquad \xi_1 = \frac{\sqrt{6} - 2}{2};$$

$$\frac{1}{\xi_1} = \sqrt{6} + 2, \qquad a_2 = 4, \qquad \xi_2 = \sqrt{6} - 2 = \xi_0;$$

so $\sqrt{6} = [2; \overline{2, 4}]$. Since [2; 2] = 5/2, and $N(5 + 2\omega) = 1$, we can conclude that the elements of \mathcal{O}_K of norm 1 are $\pm (5 + 2\omega)^n$. Therefore the desired parallelogram Π

can be bounded by the straight lines given by

$$2x + y\sqrt{6} = 1;$$
 $2x + y\sqrt{6} = 5 + 2\sqrt{6}.$

Also, we are looking for points on the hyperbola

$$4 = 4x^2 - 6y^2 = (2x + y\sqrt{6})(2x - y\sqrt{6}),$$

one of whose asymptotes, given by

$$2x - y\sqrt{6} = 0,$$

forms a third side of Π ; the fourth side is given by

$$2x - y\sqrt{6} = 4,$$

since this line meets the hyperbola where $2x + y\sqrt{6} = 1$ does.

(c) Same as (b).

Remark. The point in (b) is that, if γ is from Λ and solves $N(\xi) = 4$, then the same is true of δ or $2a + b\omega$, where $\delta = \pm (5 + 2\omega)^n \gamma$; and we should be able to pick the sign and n so that $(a, b) \in \Pi$. But we can pick n so that

$$1 \le |\delta| < |5 + 2\omega| < 10$$

We also have $4 = \delta \delta'$, so

$$|\delta'| = \frac{4}{\delta} \leqslant 4.$$

Since

$$\delta = \frac{\delta + \delta'}{2} + \frac{\delta - \delta'}{2\omega}\omega.$$

we conclude

$$|a| = \left|\frac{\delta + \delta'}{4}\right| < 4, \quad |b| = \left|\frac{\delta - \delta'}{2\omega}\right| < 4$$

Thus, in (b), Π can be the square with vertices $(\pm 4, 4)$ and $(\pm 4, -4)$. But this isn't good enough for (c).

MATHEMATICS DEPT, MIDDLE EAST TECHNICAL UNIVERSITY, ANKARA 06531, TURKEY *E-mail address*: dpierce@metu.edu.tr *URL*: http://www.math.metu.edu.tr/~dpierce/