## ELEM. N ${ }{ }^{\circ}$ THY II, EXAMINATION II SOLUTIONS

Solution 1. By the algorithm for finding continued fractions, when $x=\sqrt{a^{2}+1}$ :

$$
a_{0}=a, \quad \xi_{0}=\sqrt{a^{2}+1}-a, \quad \frac{1}{\xi_{0}}=\frac{\sqrt{a^{2}+1}+a}{a^{2}+1+a^{2}}=\sqrt{a^{2}+1}+a
$$

so $a_{1}=2 a$ and $\xi_{1}=\sqrt{a^{2}+1}-a=\xi_{0}$. Therefore $x=[a ; \overline{2 a}]$.
Remark. Alternatively, one may let

$$
x=[a ; \overline{2 a}]=[a ; a+a, \overline{2 a}]=[a ; a+[a, \overline{2 a}]]=[a ; a+x]=a+\frac{1}{a+x}=\frac{a^{2}+a x+1}{a+x},
$$

so that $a x+x^{2}=a^{2}+a x+1$ and therefore $x^{2}=a^{2}+1$. Since $a>0$, we have $[a ; \overline{2 a}]>0$ and therefore $[a ; \overline{2 a}]=x=\sqrt{a^{2}+1}$.
Solution 2. (a) Since $\sqrt{ } 5$ is a root of $x^{2}-5$, whose leading coefficient is 1 , we can conclude $\mathfrak{O}_{\Lambda}=\langle 1, \sqrt{ } 5\rangle=\Lambda$.
(b) We know that the units of $\mathfrak{O}_{K}$ (when $K=\mathbb{Q}(\sqrt{ } 5)$ ) are $\pm \phi^{n}$. Of these, those that are greater than 1 form the list

$$
\phi, 1+\phi, 1+2 \phi, 2+3 \phi, 3+5 \phi, 5+8 \phi, \ldots
$$

(and in general $\phi^{n}=\mathrm{F}_{n-1}+\mathrm{F}_{n} \phi$ ). But since $2 \phi=1+\sqrt{ } 5$, we have $\mathfrak{O}_{\Lambda}=\langle 1,2 \phi\rangle$; also, $\mathrm{N}(\phi)=-1$. The first power of $\phi$ greater than 1 that belongs to $\mathfrak{O}_{\Lambda}$ and has norm 1 is therefore $\phi^{6}$. Hence the elements of $\mathfrak{O}_{\Lambda}$ of norm 1 are $\pm \phi^{6 n}$, where $n \in \mathbb{Z}$.
Solution 3. We want to solve

$$
19=x^{2}+2 x y+4 y^{2}=(x+y)^{2}+3 y^{2} .
$$

Hence $y^{2} \leqslant 19 / 3<9$, so $|y|<3$. When $y= \pm 2$, the equation becomes $(x \pm 2)^{2}=7$, which has no solution. When $y= \pm 1$, we get $(x \pm 1)^{2}=16$, so $(x \pm 1) \in\{4,-4\}$. When $y=0$, there is no solution. So the solutions of the original equation are $(3,1),(-5,1)$, $(5,-1),(-3,-1)$.
Remark. Solving an equation means not only finding solutions, but showing that there are no other solutions. This is done here by noting that there are only 5 possibilities for $y$. Alternatively, one may rewrite the equation as

$$
19=(x+y+y \sqrt{ }-3)(x+y-y \sqrt{ }-3)=\mathrm{N}(x+2 \omega y)
$$

where we work in $\mathbb{Q}(\sqrt{ }-3)$. Since $(x, y)$ is a solution if and only if $(|x|,|y|)$ is a solution, we can obtain all solutions from Figure 1.
Solution 4. (a) In $\mathbb{Q}(\sqrt{ } 21)$, we have $(5+\sqrt{ } 21) / 2=2+\omega$, and $N((5+\sqrt{ } 21) / 2)=1$.
Hence $(5+\sqrt{ } 21) / 2$ is a unit of $\mathfrak{O}_{K}$, so its powers are also units of $\mathfrak{O}_{K}$. Let $\alpha \in \mathfrak{O}_{K}$. Since

$$
\mathfrak{O}_{K}=\langle 1, \omega\rangle=\left\langle 1, \frac{1+\sqrt{ } 21}{2}\right\rangle,
$$

Date: April 30, 2008.


Figure 1. Solutions of $N(\xi)=7$ from $\langle 1,2 \omega\rangle$ in $\mathbb{Q}(\sqrt{ }-3)$
we have $2 \alpha \in\langle 2,1+\sqrt{ } 21\rangle \subseteq\langle 1, \sqrt{ } 21\rangle$. This proves

$$
a_{n}+b_{n} \sqrt{ } 21=2\left(\frac{5+\sqrt{ } 21}{2}\right)^{n} \in\langle 1, \sqrt{ } 21\rangle
$$

so $a_{n}, b_{n} \in \mathbb{Z}$.
(b) Since $\mathrm{N}\left(a_{n}+b_{n} \sqrt{ } 21\right)=4$, the pairs $\left( \pm a_{n}, \pm b_{n}\right)$ are solutions of $x^{2}-21 y^{2}=4$.
(c) Suppose $(a, b)$ is an arbitrary solution of $x^{2}-21 y^{2}=4$. Then $a \equiv b(\bmod 2)$, so $2 \mid a-b$. Hence
$\frac{a+b \sqrt{ } 21}{2}=\frac{a-b+b+b \sqrt{ } 21}{2}=\frac{a-b}{2}+b \frac{1+\sqrt{ } 21}{2}=\frac{a-b}{2}+b \omega \in\langle 1, \omega\rangle$,
so $(a+b \sqrt{ } 21) / 2$ is an element of $\mathfrak{O}_{K}$ of norm 1. But there is $\varepsilon$ or $r+s \omega$ in $\mathfrak{O}_{K}$ of norm 1 such that $r, s>0$ and every element of $\mathfrak{D}_{K}$ of norm 1 is $\pm \varepsilon^{n}$ for some $n$. But $(5+\sqrt{ } 21) / 2=2+\omega$ and has norm 1 , so it must be $\varepsilon$. Hence $(a, b)=\left( \pm a_{n}, \pm b_{n}\right)$ for some $n$.

Remark. The pair ( $a_{n} / 2, b_{n} / 2$ ) solves the Pell equation $x^{2}-21 y^{2}=1$, but its entries need not belong to $\mathbb{Z}$. For example, $\left(a_{1} / 2, b_{1} / 2\right)=(5 / 2,1 / 2)$.
Solution 5. (a) We have $2=2 x^{2}-3 y^{2} \Longleftrightarrow 4=4 x^{2}-6 y^{2}=\mathrm{N}(2 x+y \sqrt{ } 6)$ in $\mathbb{Q}(\sqrt{ } 6)$. So let

$$
K=\mathbb{Q}(\sqrt{ } 6), \quad \alpha=2, \quad \beta=\sqrt{ } 6, \quad m=4 .
$$

(b) We want the elements of $\mathfrak{O}_{\Lambda}$ of norm 1. But $(1 / 2) \Lambda=\langle 1, \sqrt{ } 6 / 2\rangle$, and $\sqrt{ } 6 / 2$ is a root of $2 x^{2}-3$. Hence $\mathfrak{O}_{\Lambda}=\langle 1,2 \sqrt{ } 6 / 2\rangle=\langle 1, \sqrt{ } 6\rangle=\langle 1, \omega\rangle=\mathfrak{O}_{K}$. We obtain the units of $\mathfrak{O}_{K}$ from the continued-fraction expansion of $\sqrt{ } 6$ :

$$
\begin{aligned}
& x=\sqrt{ } 6, \quad a_{0}=2, \quad \xi_{0}=\sqrt{ } 6-2 ; \\
& \frac{1}{\xi_{0}}=\frac{\sqrt{ } 6+2}{2}, \quad a_{1}=2, \quad \xi_{1}=\frac{\sqrt{ } 6-2}{2} ; \\
& \frac{1}{\xi_{1}}=\sqrt{ } 6+2, \quad a_{2}=4, \quad \xi_{2}=\sqrt{ } 6-2=\xi_{0} ;
\end{aligned}
$$

so $\sqrt{ } 6=[2 ; \overline{2,4}]$. Since $[2 ; 2]=5 / 2$, and $N(5+2 \omega)=1$, we can conclude that the elements of $\mathfrak{O}_{K}$ of norm 1 are $\pm(5+2 \omega)^{n}$. Therefore the desired parallelogram $\Pi$
can be bounded by the straight lines given by

$$
2 x+y \sqrt{ } 6=1 ; \quad 2 x+y \sqrt{ } 6=5+2 \sqrt{ } 6
$$

Also, we are looking for points on the hyperbola

$$
4=4 x^{2}-6 y^{2}=(2 x+y \sqrt{ } 6)(2 x-y \sqrt{ } 6)
$$

one of whose asymptotes, given by

$$
2 x-y \sqrt{ } 6=0,
$$

forms a third side of $\Pi$; the fourth side is given by

$$
2 x-y \sqrt{ } 6=4,
$$

since this line meets the hyperbola where $2 x+y \sqrt{ } 6=1$ does.
(c) Same as (b).

Remark. The point in (b) is that, if $\gamma$ is from $\Lambda$ and solves $\mathrm{N}(\xi)=4$, then the same is true of $\delta$ or $2 a+b \omega$, where $\delta= \pm(5+2 \omega)^{n} \gamma$; and we should be able to pick the sign and $n$ so that $(a, b) \in \Pi$. But we can pick $n$ so that

$$
1 \leqslant|\delta|<|5+2 \omega|<10
$$

We also have $4=\delta \delta^{\prime}$, so

$$
\left|\delta^{\prime}\right|=\frac{4}{\delta} \leqslant 4
$$

Since

$$
\delta=\frac{\delta+\delta^{\prime}}{2}+\frac{\delta-\delta^{\prime}}{2 \omega} \omega
$$

we conclude

$$
|a|=\left|\frac{\delta+\delta^{\prime}}{4}\right|<4, \quad|b|=\left|\frac{\delta-\delta^{\prime}}{2 \omega}\right|<4
$$

Thus, in (b), $\Pi$ can be the square with vertices $( \pm 4,4)$ and $( \pm 4,-4)$. But this isn't good enough for (c).

[^0]
[^0]:    Mathematics Dept, Middle East Technical University, Ankara o6531, Turkey
    E-mail address: dpierce@metu.edu.tr
    URL: http://www.math.metu.edu.tr/~dpierce/

