ELEMENTARY NUMBER THEORY II, EXAMINATION I SOLUTIONS

DAVID PIERCE

Solution 1. (i) Apply the Euclidean algorithm:

$$
\begin{aligned}
\frac{\alpha}{\beta}=\frac{40+5 \mathrm{i}}{39 \mathrm{i}} & =\frac{5-40 \mathrm{i}}{39}=-\mathrm{i}+\frac{5-\mathrm{i}}{39}, & 40+5 \mathrm{i} & =(39 \mathrm{i})(-\mathrm{i})+1+5 \mathrm{i} ; \\
\frac{39 \mathrm{i}}{1+5 \mathrm{i}} & =\frac{195+39 \mathrm{i}}{26}=7+\mathrm{i}+\frac{1+\mathrm{i}}{2}, & 39 \mathrm{i} & =(1+5 \mathrm{i})(7+\mathrm{i})-2+3 \mathrm{i} ; \\
\frac{1+5 \mathrm{i}}{-2+3 \mathrm{i}} & =\frac{(1+5 \mathrm{i})(-2-3 \mathrm{i})}{13}=1-\mathrm{i}, & 1+5 \mathrm{i} & =(-2+3 \mathrm{i})(1-\mathrm{i}) .
\end{aligned}
$$

Therefore $-2+3 \mathrm{i}$ is a greatest common divisor of α and β.
(ii) By the computations above,

$$
\begin{array}{lrl}
\alpha=\beta \cdot(-\mathrm{i})+1+5 \mathrm{i}, & 1+5 \mathrm{i} & =\alpha+\beta \cdot \mathrm{i} \\
\beta= & =(\alpha+\beta \cdot \mathrm{i})(7+\mathrm{i})-2+3 \mathrm{i}, & -2+3 \mathrm{i}
\end{array}=\alpha \cdot(-7-\mathrm{i})+\beta \cdot(2-7 \mathrm{i}) .
$$

Remark. In (i), each step of the computation should lower the norm of the remainder. Indeed, $\mathrm{N}(39 \mathrm{i})>\mathrm{N}(1+5 \mathrm{i})>\mathrm{N}(-2+3 \mathrm{i})$. But the way to achieve this is not unique. For example, from the second line, the computation could have been

$$
\begin{array}{rlrl}
\frac{39 \mathrm{i}}{1+5 \mathrm{i}}=\frac{195+39 \mathrm{i}}{26}=8+\mathrm{i}+\frac{-1+\mathrm{i}}{2}, & 39 \mathrm{i} & =(1+5 \mathrm{i})(8+\mathrm{i})-3-2 \mathrm{i} \\
\frac{1+5 \mathrm{i}}{-3-2 \mathrm{i}} & =\frac{(1+5 \mathrm{i})(-3+2 \mathrm{i})}{13}=-1-\mathrm{i}, & 1+5 \mathrm{i} & =(-3-2 \mathrm{i})(-1-\mathrm{i}) .
\end{array}
$$

So $-3-2 \mathrm{i}$ could also be found as a greatest common divisor of α and β. (Also $2-3 \mathrm{i}$ and $3+2 \mathrm{i}$ are gcd's.)

In an alternative approach to (i), one might observe that

$$
\begin{array}{ll}
\alpha=5 \cdot(8+\mathrm{i})=(2+\mathrm{i})(2-\mathrm{i})(8+\mathrm{i}), & \mathrm{N}(\alpha)=5^{2} \cdot 65=5^{3} \cdot 13 ; \\
\beta=3 \cdot 13 \mathrm{i}, & \mathrm{~N}(\beta)=3^{2} \cdot 13^{2} .
\end{array}
$$

The factors $2 \pm \mathrm{i}$ of α are prime, and their norm is 5 , and $5 \nmid \mathrm{~N}(\beta)$. Also, 3 is prime, and $3 \nmid \mathrm{~N}(\alpha)$. One can therefore take γ as a gcd of $8+\mathrm{i}$ and 13 i . To find this, one could apply the Euclidean algorithm to the latter pair. Alternatively, since $\operatorname{gcd}(\mathrm{N}(\alpha), \mathrm{N}(\beta))=13$, we must have $\mathrm{N}(\gamma) \mid 13$. Since 13 has the prime factorization $(3+2 \mathrm{i})(3-2 \mathrm{i})$, each factor having norm 13, one could test whether one of these factors divides α and β : if one does, then it is γ; if neither does, then α and β are co-prime. However, these alternative approaches are not much help in solving (ii).

Once one does have an answer to (ii), it is easy to check.

Solution 2. (i) Let $x=\sqrt{3 / 2}=\sqrt{ } 6 / 2$. Applying our algorithm to x, we have

$$
\begin{array}{lll}
& a_{0}=[x]=1, & \xi_{0}=\frac{\sqrt{ } 6}{2}-1=\frac{\sqrt{ } 6-2}{2} ; \\
\frac{2}{\sqrt{ } 6-2}=\sqrt{ } 6+2, & a_{1}=4, & \xi_{2}=\sqrt{ } 6-2 ; \\
\frac{1}{\sqrt{ } 6-2}=\frac{\sqrt{ } 6+2}{2}, & a_{2}=2, & \xi_{2}=\frac{\sqrt{ } 6-2}{2}=\xi_{0} ;
\end{array}
$$

therefore $\sqrt{3 / 2}=[1 ; \overline{4,2}]$.
(ii) The equation $(*)$ can be written as $x^{2}-(3 / 2) y^{2}=1$. Assuming it is like a Pell equation, we expect solutions to $(*)$ to come from convergents of x. These are:

$$
\frac{1}{1}, \quad \frac{5}{4}, \quad \frac{11}{9}, \quad \frac{49}{40}, \quad \frac{109}{89}, \quad \frac{485}{396}, \quad \ldots
$$

In particular, we expect the solutions to come from $[1 ; 4],[1 ; 4,2,4],[1 ; 4,2,4,2]$, and so on. Indeed, $(5,4)$ is a solution.
(iii) Also $(49,40)$.
(iv) Also $(485,396)$.

Remark. Since we have not yet proved that our procedure for solving a Pell equation works in general; and since (*) is not literally a Pell equation anyway, one should check one's answers to (ii), (iii), and (iv) here.
Solution 3. (i) The solutions are $\left(\frac{1-3 t^{2}}{1+3 t^{2}}, \frac{2 t}{1+3 t^{2}}\right)$, where $t \in \mathbb{Q}$; and $(-1,0)$.
(ii) Letting $t=2$ in the given formula yields $(-3+4 \mathrm{i}) / 5$, not a Gaussian integer.
(iii) Letting $t=2$ in (i) yields $(-11+4 \mathrm{i} \sqrt{ } 3) / 13$, which is not in $\mathbb{Z}[(1+\mathrm{i} \sqrt{ } 3) / 2]$.

Remark. One may solve (i) just by thinking about why the given point is on the circle. Alternatively, one may just use the same method for deriving it: find the other intersection, besides $(-1,0)$ of the line $y=t x+t$ and the ellipse $x^{2}+3 y^{2}=1$.

Solution 4 . (i) $221=13 \cdot 17$. In the Gaussian integers, $\mathrm{N}(\xi)=13$ is solved by $3 \pm 2 \mathrm{i}$ and their associates; $\mathrm{N}(\eta)=17$, by $4 \pm \mathrm{i}$ and their associates. We have

$$
(3 \pm 2 \mathrm{i})(4 \pm \mathrm{i})=10 \pm 11 \mathrm{i}, \quad(3 \pm 2 \mathrm{i})(4 \mp \mathrm{i})=14 \pm 5 \mathrm{i} .
$$

Hence the 16 desired solutions are

$$
(10, \pm 11),(-10, \mp 11),(\mp 11,10),(\pm 11,-10),(14, \pm 5),(-14, \mp 5),(\mp 5,14),(\pm 5,-14) .
$$

(ii) $27-57 \mathrm{i}=3 \cdot(9-19 \mathrm{i})$, where 3 is prime; and $\mathrm{N}(9-19 \mathrm{i})=81+361=442=2 \cdot 221$. But 2 has associated prime factors $1 \pm i$, and

$$
\frac{9-19 \mathrm{i}}{1+\mathrm{i}}=\frac{(9-19 \mathrm{i})(1-\mathrm{i})}{2}=-5-14 \mathrm{i}=-\mathrm{i} \cdot(14-5 \mathrm{i})=-\mathrm{i} \cdot(3-2 \mathrm{i})(4+\mathrm{i})
$$

by (i). Since $(1+i) \cdot(-i)=1-i$, we conclude

$$
27-57 \mathrm{i}=3 \cdot(1-\mathrm{i})(3-2 \mathrm{i})(4+\mathrm{i}) .
$$

[^0]
[^0]: Mathematics Dept, Middle East Technical University, Ankara o6531, Turkey
 E-mail address: dpierce@metu.edu.tr
 URL: http://www.math.metu.edu.tr/~dpierce/

