On Invariants of Towers of Function Fields over Finite Fields

Seher Tutdere (joint work with Henning Stichtenoth and Florian Hess)

Sabancı University

19 May 2012

Antalya Algebra Days XIV, Çeşme

Notations

- F/\mathbb{F}_q : a function field with full constant field \mathbb{F}_q .
- g(F): genus of F/\mathbb{F}_q ,
- $B_r(F)$: # places of F/\mathbb{F}_q of degree r,
- $\mathcal{F} = (F_n)_{n \ge 0}$: a sequence of function fields F_n/\mathbb{F}_q with $g(F_n) \to \infty$ as $n \to \infty$.

Definition (M. A. Tsfasman, 1992)

 ${\mathcal F}$ is called asymptotically exact if for all $r\geq 1$ the limit

$$\beta_r(\mathcal{F}) := \lim_{n \to \infty} \frac{B_r(F_n)}{g(F_n)}$$

exists.

Generalized Drinfeld-Vladut bound: For any exact sequence \mathcal{F} over \mathbb{F}_q , one has

$$\sum_{r=1}^{\infty} \frac{r\beta_r(\mathcal{F})}{q^{r/2} - 1} \le 1.$$
(1)

Aim: to construct exact sequences of function fields with various $\beta_r > 0$ and small

$$\delta := 1$$
-the left hand side of (1).

Problems:

For any given $N\subseteq\mathbb{N},$ find exact sequences of function fields over \mathbb{F}_q with

(1)
$$N \subseteq \mathcal{P}(\mathcal{F})$$
, where $\mathcal{P}(\mathcal{F}) := \{r \in \mathbb{N} : \beta_r(\mathcal{F}) > 0\}.$

(2)
$$\mathcal{P}(\mathcal{F}) = N$$
.

Lemma (Tsfasman, Vladut (2002)-T. Hasegawa (2007))

Any tower of function fields \mathcal{F} over \mathbb{F}_q is an exact sequence.

In 2007, T. Hasegawa and P. Lebacque proved independently the existence of towers with finitely many prescribed β_r being positive, by using class field theory.

Strategy

We consider a tower $\mathcal{F} = (F_n)_{n \geq 0}$ over \mathbb{F}_q with $\beta_1(\mathcal{F}) > 0$ and construct an appropriate finite separable extension E/F_0 such that $\mathcal{G} := (EF_n)_{n \geq 0}$ defines a tower over \mathbb{F}_q . Then we estimate the invariants $\beta_r(\mathcal{G})$ of \mathcal{G} .

Definition: Let $\mathcal{F} = (F_n)_{n \ge 0}$ be a tower over \mathbb{F}_q . (a) The genus of \mathcal{F}/\mathbb{F}_q is defined as

$$\gamma(\mathcal{F}) := \lim_{n \to \infty} \frac{g(F_n)}{[F_n : F_0]} > 0$$

(b) Let P be a place of F_0 and for any $r \ge 1$,

 $B_r(P, F_n) := \#\{ \text{ places of } F_n / \mathbb{F}_q \text{ of degree } r \text{ lying above } P \}.$

We define the local invariants of \mathcal{F} at P as

$$\nu_r(P,\mathcal{F}) := \lim_{n \to \infty} \frac{B_r(P,F_n)}{[F_n:F_0]}, \quad \beta_r(P,\mathcal{F}) := \frac{\nu_r(P,\mathcal{F})}{\gamma(\mathcal{F})} \quad \text{and}$$

the global invariants of \mathcal{F} as

$$\nu_r(\mathcal{F}) := \lim_{n \to \infty} \frac{B_r(F_n)}{[F_n : F_0]}, \quad \beta_r(\mathcal{F}) := \lim_{n \to \infty} \frac{B_r(F_n)}{g(F_n)}.$$

Then clearly

$$\nu_r(\mathcal{F}) = \sum_P \nu_r(P, \mathcal{F}) \text{ and } \beta_r(\mathcal{F}) = \sum_P \beta_r(P, \mathcal{F}) = \frac{v_r(\mathcal{F})}{\gamma(\mathcal{F})}.$$

For any $r \ge 1$, we want to estimate

$$\beta_r(\mathcal{G}) = rac{
u_r(\mathcal{G})}{\gamma(\mathcal{G})},$$

depending on the invariants of \mathcal{F} .

Lemma

Set $m := [E : F_0]$. For the genus $\gamma(\mathcal{G})$ the following holds:

$$m\gamma(\mathcal{F}) \le \gamma(\mathcal{G}) \le g(E) - 1 + m(1 - g(F_0) + \gamma(\mathcal{F})).$$

Theorem

Suppose that $\mathcal{G} := (EF_n)_{n \ge 0}$ is a tower over \mathbb{F}_q . Set $E := F_0(y)$, $m := [E : F_0]$, and consider the set

 $M:=\big\{P\in \mathbb{P}(F_0):\{1,y,...,y^{m-1}\} \text{ is an integral basis for } E/F_0 \text{ at } P\big\}.$

Let $P \in M$ s.t. for all extensions Q of P in E, the ramification index e(Q|P) is coprime to any ramification index of P in \mathcal{F} . Then for any such Q and $r \geq 1$,

$$\nu_r(Q,\mathcal{G}) = \frac{f(Q|P)}{r} \sum_{\substack{d \in \mathbb{N} \\ lcm(\deg Q,d) = r}} d \cdot \nu_d(P,\mathcal{F})$$

Theorem

Let \mathcal{F} be a tower over \mathbb{F}_q with a finite support and let $N \subset \mathbb{N}$ be a finite set. Then there exists a finite separable extension E/F_0 s.t. $\mathcal{G} := (EF_n)_{n \geq 0}$ is a tower over \mathbb{F}_q with (i) for all $r \in \mathbb{N}$,

$$\nu_r(\mathcal{G}) = \sum_{\substack{f \in N \\ d \in \mathcal{P}(\mathcal{F})}} \frac{f}{r} \sum_{\substack{P \in Supp(\mathcal{F}) \\ lcm(f \deg P, d) = r}} d \cdot \nu_d(P, \mathcal{F})$$

and

$$Supp(\mathcal{G}) = \{ Q \in \mathbb{P}(E) : Q \cap F_0 \in Supp(\mathcal{F}) \},\$$

 $\mathcal{P}(\mathcal{G}) = \left\{ r \in \mathbb{N} : r = lcm(f \deg P, d) \text{ with } f \in N, d \in \mathbb{N}, P \in Supp(\mathcal{F}) \right\}.$

Theorem continued

(ii) If furthermore \mathcal{F} is pure, then for all $r \in \mathbb{N}$,

$$\nu_r(\mathcal{G}) = \sum_{\substack{f \in N, \ d \in \mathcal{P}(\mathcal{F}) \\ fd = r}} \nu_d(\mathcal{F}) \quad \text{and}$$

 $\mathcal{P}(\mathcal{G}) = \big\{ r \in \mathbb{N} : r = fd \text{ with } f \in N, \, d \in \mathcal{P}(\mathcal{F}) \big\}.$

Corollary

For any prime power q, one can construct a tower of function fields over \mathbb{F}_q with finitely many precribed invariants β_r being positive, by using explicit extensions.

Corollary

Let $N \subseteq \mathbb{N}$ be a finite set and q be a prime power. Then there exists a recursive (explicit) tower of function fields \mathcal{F}/\mathbb{F}_q such that N is included in the set

$$\mathcal{P}(\mathcal{F}) := \{ r \in \mathbb{N} : \beta_r(\mathcal{F}) > 0 \}.$$

Moreover, in the following cases there exists a recursive tower \mathcal{F}/\mathbb{F}_q with $\mathcal{P}(\mathcal{F}) = N$:

(i) q is any prime power and N is a finite set with each $k \in N$ a multiple of r for some r such that q^r is a square,

(ii)
$$q = 2^e$$
 with $3 \nmid e$ and each element $k \in N$ is a multiple of 3,

(iii) $q = p^e$ with $p \ge 3$, e > 2 and $2 \nmid e$, and each $k \in N$ is an even integer.

Example

A. Garcia, H. Stichtenoth: The equation $y^3 = (x + \mu)^3 + 1$ (for $\mathbb{F}_4^* = \langle \mu \rangle$) defines a tower $\mathcal{F} = (F_n)_{n \geq 0}$, with $F_0 := \mathbb{F}_4(x_0)$, over \mathbb{F}_4 with $\beta_1(\mathcal{F}) = 1$. Let $E := F_0(z)$ where z satisfies $z^{6} + \mu z^{5} + \mu z^{4} - z^{3} - \mu z^{2} - \mu z - 1/x_{0} = 0.$ Then $\mathcal{G} := (EF_n)_{n \geq 0}$ gives a tower over \mathbb{F}_4 with • $\mathcal{P}(\mathcal{F}) = \{1, 2\} \text{ and } \beta_1(\mathcal{G}) = \frac{2}{3}, \ \beta_2(\mathcal{G}) = \frac{1}{6},$ • $\delta = 1 - \sum_{r=1}^{\infty} \frac{r\beta_r(\mathcal{G})}{4r/2-1} \approx 0.22.$

Problem

Are there any sequences, in particular towers, of function fields over finite fields with infinitely many positive invariants β_r ?

Thank you for your attention.