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Lie algebras

Take any associative algebra A over a field K , define a new binary
operation on A by setting

[a, b] = ab − ba (a, b ∈ A),

the Lie bracket, you get a Lie algebra. That is an algebra over
K with a bilinear binary operation [, ] satisfying

[a, a] = 0

[[a, b], c] + [[b, c], a] + [[c, a], b] = 0.

for all a, b, c ∈ A.
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Free Lie algebras

Now take a set X = {x1, . . . , xr}, take the algebra of
non-commutative polynomials A = A[X ], turn it into a Lie algebra.
Then take the Lie subalgebra generated by X . This is the free
Lie algebra L = L(X ) on X .

The elements of L(X ) are called Lie elements or Lie polynomials.
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Homogenous components

Every non-commutative polynomial is a linear combination of
homogeneous polynomials, i.e. linear combinations of monomials
of a given degree. In the same way any Lie polynomial is a linear
combination of homogeneous Lie polynomials. If An denotes the
space of all homogeneous polynomials of degree n, then
A =

⊕
n>0 An.

dim An = rn.

If Ln denotes the space of all homogeneous Lie polynomials of
degree n, then L =

⊕
n>0 Ln.

dim Ln = f (n, r) =
1

n

∑
d |n

µ(d)rn/d .

(Witt 1937)
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Problem: dim[Lm, Ln] =?, m > n.

Easy in some special cases:

If m/2 < n < m, then dim[Lm, Ln] = dim Lm dim Ln.

If m = n, then dim[Lm, Lm] =
(dim Lm

2

)
.

Partial result (Sundaram 1993): If m > n and n - m, then

dim[Lm, Ln] = dim Lm dim Ln.
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Solution

Theorem (Vaughan-Lee and RS, 2009)

If m > n and n - m, then

dim([Lm, Ln]) = dim Lm dim Ln,

and if m = sn with s ≥ 1, then

dim([Lm, Ln]) = (dim Lm − f (s, dim Ln)) dim Ln + f (s + 1, dim Ln).
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Shirshov’s Lemma

The main ingredient of the proof is Shirshov’s Lemma, a very
powerful tool in the theory of free Lie algebras. The celebrated
Shirshov-Witt Theorem asserts that any subalgebra of a free Lie
algebra is itself free. Shirshov’s Lemma was the main ingredient in
Shirshov’s original proof of that result. A set of elements in L is
called independent, if it is a free generating set for the subalgebra
it generates. A set of homogeneous elements in L is called
reduced, if none of its elements belonges to the subalgebra
generated by the remaining elements.
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Shirshov’s Lemma

Shirshov’s Lemma (1953) - a special case:

Any reduced set of homogeneous elements in L is independent.
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Products of three subspaces

Given that we know dim[Lm, Ln] for all m, n > 1, the next question
that arises naturally is:

dim[[Lm, Ln], Lk ] =?

Surprise: In contrast to products of two homogeneous components,
the dimension of a product of three homogeneous components may
depend on the field K . In fact, this happens for

[[L2, L2], L1].

This is an immediate consequence of an old result by
Yu.V. Kuz’min on free centre–by-metabelian Lie rings.
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Free centre-by-metabelian Lie rings

Let L = L(X ) denote the free Lie ring on X = {x1, . . . xr}. The
free centre-by-metabelian Lie ring G = G(X ) is the quotient

G = L/[L′′,L]

where L′′ is the second derived ring of L. In a celebrated paper of
1977 Kuz’min studied the underlying abelian group of G.

Theorem (Kuz’min, 1977)

If r > 5, then the degree 5 homogeneous component of the second
derived ring G′′ is a direct sum of a free abelian group and an
elementary abelian 2-group of rank

(r
5

)
.
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Free centre-by-metabelian Lie rings

However, for the degree 5 homogeneous component of G′′ there is
an isomorphism

G′′ ∩ L5
∼= [L3,L2]/[[L2,L2],L1].

Then Kuz’min’s result and some additional argument gives:

Proposition (Mansuroǧlu and RS, 2012)

Let L be a free Lie algebra of rank r over a field K . Then

dim[[L2, L2], L1] =

{
dim[L2, L2] dim L1, if char K 6= 2;
dim[L2, L2] dim L1 −

(r
5

)
, if char K = 2,

with the convention that
(r
5

)
= 0 for r < 5.
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dim[[Lm, Ln], Lk ]

Our main results are dimension formula for product of three
homogeneous components in the free Lie algebra L. The main
technical tool is a generalization of the result on the dimension for
products of two homogeneous components to products of two
arbitrary homogeneous subspaces.

Lemma

Let U and V be subspaces of L such that U ⊆ Lm, V ⊆ Ln with
m > n > 1. Then

dim[U,V ] = dim[U ∩ L(V ),V ] + (dim U − dim(U ∩ L(V ))) dim V .

Finally, here is our main result on [[Lm, Ln], Lk ]
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dim[[Lm, Ln], Lk ]

Theorem (Mansuroǧlu and RS, 2012)

Let m, n and k be positive integers with m > n.

(i) If m + n > k and k - m or k - n, or k > m + n and
(m + n) - k, then dim[Lm, Ln, Lk ] = dim[Lm, Ln] dim Lk ,

(ii) if m + n > k and m = sk and n = tk with s, t > 1, then

dim[Lm, Ln, Lk ] = dim[Ls(Lk), Lt(Lk), Lk ]

+ (dim[Lm, Ln]− dim[Ls(Lk), Lt(Lk)]) dim Lk ,

(iii) if k > m + n and k = p(m + n) with p > 1, then

dim[Lm, Ln, Lk ] = dim Lp+1([Ln, Lm])

+ (dim Lk − dim(Lp([Lm, Ln]))) dim[Lm, Ln].
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Teşekkür ederim.
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