Products of homogeneous subspaces in free Lie algebras

Ralph Stöhr

Antalya Algebra Days at Çeşcme, May 2012

Ralph Stöhr Free Lie algebras

This is joint work with Nil Mansuroğlu.

Take any associative algebra A over a field K, define a new binary operation on A by setting

$$[a,b] = ab - ba$$
 $(a,b \in A),$

the Lie bracket, you get a Lie algebra. That is an algebra over K with a bilinear binary operation [,] satisfying

$$[a, a] = 0$$

$$[[a, b], c] + [[b, c], a] + [[c, a], b] = 0.$$
 for all $a, b, c \in A.$

Now take a set $X = \{x_1, \ldots, x_r\}$, take the algebra of non-commutative polynomials A = A[X], turn it into a Lie algebra. Then take the Lie subalgebra generated by X. This is the free Lie algebra L = L(X) on X.

The elements of L(X) are called *Lie elements* or *Lie polynomials*.

Every non-commutative polynomial is a linear combination of homogeneous polynomials, i.e. linear combinations of monomials of a given degree. In the same way any Lie polynomial is a linear combination of homogeneous Lie polynomials. If A_n denotes the space of all homogeneous polynomials of degree n, then $A = \bigoplus_{n \ge 0} A_n$. dim $A_n = r^n$.

If L_n denotes the space of all homogeneous Lie polynomials of degree *n*, then $L = \bigoplus_{n \ge 0} L_n$.

$$\dim L_n = f(n,r) = \frac{1}{n} \sum_{d|n} \mu(d) r^{n/d}.$$

(Witt 1937)

Easy in some special cases:

- If m/2 < n < m, then dim $[L_m, L_n] = \dim L_m \dim L_n$.
- If m = n, then dim $[L_m, L_m] = {\dim L_m \choose 2}$.

Partial result (Sundaram 1993): If m > n and $n \nmid m$, then

 $\dim[L_m, L_n] = \dim L_m \dim L_n.$

Theorem (Vaughan-Lee and RS, 2009)

If m > n and $n \nmid m$, then

$$\dim([L_m, L_n]) = \dim L_m \dim L_n,$$

and if m = sn with $s \ge 1$, then

 $\dim([L_m, L_n]) = (\dim L_m - f(s, \dim L_n)) \dim L_n + f(s+1, \dim L_n).$

The main ingredient of the proof is **Shirshov's Lemma**, a very powerful tool in the theory of free Lie algebras. The celebrated **Shirshov-Witt Theorem** asserts that *any subalgebra of a free Lie algebra is itself free*. Shirshov's Lemma was the main ingredient in Shirshov's original proof of that result. A set of elements in L is called *independent*, if it is a free generating set for the subalgebra it generates. A set of homogeneous elements in L is called *reduced*, if none of its elements belonges to the subalgebra generated by the remaining elements.

Shirshov's Lemma (1953) - a special case:

Any reduced set of homogeneous elements in L is independent.

Given that we know dim $[L_m, L_n]$ for all $m, n \ge 1$, the next question that arises naturally is:

$$\dim[[L_m, L_n], L_k] = ?$$

Surprise: In contrast to products of two homogeneous components, the dimension of a product of three homogeneous components may depend on the field K. In fact, this happens for

$$[[L_2, L_2], L_1].$$

This is an immediate consequence of an old result by Yu.V. Kuz'min on free centre-by-metabelian Lie rings.

Let $\mathfrak{L} = \mathfrak{L}(X)$ denote the free Lie ring on $X = \{x_1, \ldots x_r\}$. The free centre-by-metabelian Lie ring $\mathfrak{G} = \mathfrak{G}(X)$ is the quotient

$$\mathfrak{G}=\mathfrak{L}/[\mathfrak{L}'',\mathfrak{L}]$$

where \mathfrak{L}'' is the second derived ring of \mathfrak{L} . In a celebrated paper of 1977 Kuz'min studied the underlying abelian group of \mathfrak{G} .

Theorem (Kuz'min, 1977)

If $r \ge 5$, then the degree 5 homogeneous component of the second derived ring \mathfrak{G}'' is a direct sum of a free abelian group and an elementary abelian 2-group of rank $\binom{r}{5}$.

However, for the degree 5 homogeneous component of $\mathfrak{G}^{\prime\prime}$ there is an isomorphism

$$\mathfrak{G}'' \cap \mathfrak{L}_5 \cong [\mathfrak{L}_3, \mathfrak{L}_2]/[[\mathfrak{L}_2, \mathfrak{L}_2], \mathfrak{L}_1].$$

Then Kuz'min's result and some additional argument gives:

Proposition (Mansuroğlu and RS, 2012)

Let L be a free Lie algebra of rank r over a field K. Then

$$\dim[[L_2, L_2], L_1] = \begin{cases} \dim[L_2, L_2] \dim L_1, & \text{if char } K \neq 2; \\ \dim[L_2, L_2] \dim L_1 - \binom{r}{5}, & \text{if char } K = 2, \end{cases}$$

with the convention that $\binom{r}{5} = 0$ for r < 5.

Our main results are dimension formula for product of three homogeneous components in the free Lie algebra *L*. The main technical tool is a generalization of the result on the dimension for products of two homogeneous components to products of two arbitrary homogeneous subspaces.

Lemma

Let U and V be subspaces of L such that $U \subseteq L_m$, $V \subseteq L_n$ with $m \ge n \ge 1$. Then

 $\dim[U, V] = \dim[U \cap L(V), V] + (\dim U - \dim(U \cap L(V))) \dim V.$

Finally, here is our main result on $[[L_m, L_n], L_k]$

Theorem (Mansuroğlu and RS, 2012)

Let m, n and k be positive integers with $m \ge n$.

(i) If m + n > k and k ∤ m or k ∤ n, or k ≥ m + n and (m + n) ∤ k, then dim[L_m, L_n, L_k] = dim[L_m, L_n] dim L_k,
(ii) if m + n > k and m = sk and n = tk with s, t ≥ 1, then

$$dim[L_m, L_n, L_k] = dim[L_s(L_k), L_t(L_k), L_k] + (dim[L_m, L_n] - dim[L_s(L_k), L_t(L_k)]) dim L_k$$

(iii) if $k \ge m + n$ and k = p(m + n) with $p \ge 1$, then

$$dim[L_m, L_n, L_k] = dim L_{p+1}([L_n, L_m]) + (dim L_k - dim(L_p([L_m, L_n]))) dim[L_m, L_n].$$

Teşekkür ederim.