

Simple Polyadic Groups

H. Khodabandeh, M. Shahryari

AAD

May 2012

H. Khodabandeh, M. Shahryari

A simple notation

During this presentation, we use the following notations: 1. Any sequence of the form $x_i, x_{i+1}, \ldots, x_j$ will be denoted by

 x_i^j

2. The notation $\stackrel{(t)}{x}$ will denote the sequence x, x, \ldots, x (*t* times). So if *G* is a set and $f: G^n \to G$ is a function, we can denote the element $f(x_1, x_2, \ldots, x_n)$ by $f(x_1^n)$.

H. Khodabandeh, M. Shahryari

ÇEŞME

A polyadic group is . . .

a non-empty set G together with an $n\text{-}\mathrm{ary}$ operation $f:G^n\to G$ such that

1. The operation f is associative, i.e.

$$f(x_1^{i-1}, f(x_i^{n+i-1}), x_{n+i}^{2n-1}) = f(x_1^{j-1}, f(x_j^{n+j-1}), x_{n+j}^{2n-1}),$$

where $1 \le i, j \le n$, and $x_1, \ldots, x_{2n-1} \in G$. 2. For fixed $a_1, a_2, \ldots, a_n, b \in G$ and all $i \in \{1, \ldots, n\}$, the following equations have unique solutions for x;

$$f(a_1^{i-1}, x, a_{i+1}^n) = b.$$

We denote the polyadic group by (G, f). More precisely, we call (G, f) an *n*-ary group.

H. Khodabandeh, M. Shahryari

Examples of polyadic groups

Suppose (G, \circ) is an ordinary group and define

$$f(x_1^n) = x_1 \circ x_2 \circ \cdots \circ x_n.$$

Then (G, f) is polyadic group which is called of *reduced* type. We write $(G, f) = der^n(G, \circ)$.

Example ...

Suppose (G, \circ) is an ordinary group and $b \in Z(G)$. Define

$$f(x_1^n) = x_1 \circ x_2 \cdots \circ x_n \circ b.$$

Then (G, f) is polyadic group which is called *b*-derived polyadic group from *G* and it is denoted by $der_h^n(G, \circ)$.

Example ...

Suppose $G = S_m \setminus A_m$, (the set of all odd permutations of degree *m*). Then by the ternary operation

$$f(x_1, x_2, x_3) = x_1 x_2 x_3$$

the set G is a ternary group.

H. Khodabandeh, M. Shahryari

Example ...

Suppose ω is a primitive n-1-th root of unity in a field K. Let

$$G = \{ x \in GL_m(K) : det \ x = \omega \}.$$

Then G is an n-ary group by the operation

$$f(x_1^n) = x_1 x_2 \cdots x_n.$$

H. Khodabandeh, M. Shahryari

Identity in polyadic groups

An *n*-ary group (G, f) is of reduced type iff it contains an element *e* (called an *n*-ary identity) such that

$$f({{i-1} \choose e}, x, {{e} \choose e}) = x$$

holds for all $x \in G$ and $i = 1, \ldots, n$.

H. Khodabandeh, M. Shahryari

Skew element

From the definition of an *n*-ary group (G, f), we can directly see that for every $x \in G$, there exists only one $z \in G$ satisfying the equation

$$f(\overset{(n-1)}{x},z) = x.$$

This element is called *skew* to x and is denoted by \overline{x} .

٠

Retracts of polyadic groups

Let (G, f) be an *n*-ary group and $a \in G$ be a fixed element. Define a binary operation on *G* by

$$x * y = f(x, a^{(n-2)}, y).$$

It is proved that (G, *) is an ordinary group, which we call the **retract** of *G* over *a*.

The notation for retract: $Ret_a(G, f)$, or simply by $Ret_a(G)$. Retracts of a polyadic group are isomorphic.

The identity and inverse

The identity of the group $Ret_a(G)$ is \overline{a} . The inverse element to x has the form

$$x^{-1} = f(\overline{a}, \overset{(n-3)}{x}, \overline{x}, \overline{a}).$$

H. Khodabandeh, M. Shahryari

Recovering a polyadic group from its retracts

Any *n*-ary group can be uniquely described by its retract and some automorphism of this retract.

Theorem

Let (G, f) be an *n*-ary group. Then 1. on *G* one can define an operation \cdot such that (G, \cdot) is a group, 2. there exist an automorphism θ of (G, \cdot) and $b \in G$, such that $\theta(b) = b$, 3. $\theta^{n-1}(x) = bxb^{-1}$, for every $x \in G$, 4. $f(x_1^n) = x_1\theta(x_2)\theta^2(x_3)\cdots\theta^{n-1}(x_n)b$, for all $x_1,\ldots,x_n \in G$.

H. Khodabandeh, M. Shahryari

Remark

According to this theorem, we use the notation $der_{\theta,b}(G, \cdot)$ for (G, f) and we say that (G, f) is (θ, b) -derived from the group (G, \cdot) .

The binary group (G, \cdot) is in fact $Ret_a(G, f)$. We will assume that $(G, f) = der_{\theta,b}(G, \cdot)$.

Normal subgroups

An $n\text{-}\mathrm{ary}$ subgroup H of a polyadic group (G,f) is called normal if

$$f(\overline{x}, \overset{(n-3)}{x}, h, x) \in H$$

for all $h \in H$ and $x \in G$.

GTS

If every normal subgroup of (G, f) is singleton or equal to G, then we say that (G, f) is group theoretically simple or it is GTSfor short. If H = G is the only normal subgroup of (G, f), then we say it is strongly simple in the group theoretic sense or GTS^* for short.

UAS

An equivalence relation R over G is said to be a *congruence*, if 1. $\forall i: x_i R y_i \Rightarrow f(x_1^n) R f(y_1^n)$,

2. $xRy \Rightarrow \overline{x}R\overline{y}$.

We say that (G, f) is *universal algebraically simple* or UAS for short, if the only congruence is the *equality* and $G \times G$.

ÇEŞME

Quotients are reduced

Theorem

Suppose $H \trianglelefteq (G, f)$ and define $R = \sim_H$ by

$$x \sim_H y \Leftrightarrow \exists h_1, \dots, h_{n-1} \in H : y = f(x, h_1^{n-1}).$$

Then *R* is a congruence and if we let $xH = [x]_R$, (the equivalence class of *x*), then the set $G/H = \{xH : x \in G\}$ is an *n*-ary group with the operation

$$f_H(x_1H,\ldots,x_nH) = f(x_1^n)H.$$

Further we have

$$(G/H, f_H) = der(ret_H(G/H, f_H)),$$

H. Khodabandeh, M. Shahryari

UAS is also GTS

Theorem

Every UAS is also GTS. But the converse is not true!

H. Khodabandeh, M. Shahryari

Facts about congruences

Cong(G, f) is the set of all congruences of (G, f). This set is a lattice under the operations of intersection and product (composition). We also denote by Eq(G) the set of all equivalence relations of G.

Theorem

 $R \in Cong(G, f)$ iff $R \in Eq(G)$ and R is a θ -invariant subgroup of $G \times G$.

Corollary

We have $Cong(G, f) = \{R \leq_{\theta} G \times G : \Delta \subseteq R\}.$

H. Khodabandeh, M. Shahryari

UAS

Theorem

(G, f) is UAS iff the only normal θ -invariant subgroups of (G, \cdot) are trivial subgroups.

H. Khodabandeh, M. Shahryari

Structure of normals

For $u \in G$, define a new binary operation on G by $x * y = xu^{-1}y$. Then (G, *) is an isomorphic copy of (G, \cdot)

Theorem

We have $H \trianglelefteq (G, f)$ iff there exists an element $u \in H$ such that 1. *H* is a ψ_u -invariant normal subgroup of G_u , 2. for all $x \in G$, we have $\theta^{-1}(x^{-1}u)x \in H$.

GTS

Theorem

A polyadic group (G, f) is GTS^* iff whenever K is a θ -invariant normal subgroup of (G, \cdot) with θ_K inner, then K = G.

H. Khodabandeh, M. Shahryari

Example

Example

Let (G, \cdot) be a non-abelian simple group and θ be an automorphism of order n-1. Then $der_{\theta}(G, \cdot)$ is a UAS *n*-ary group.

The number of non-isomorphic polyadic groups of the form $der_{\theta}(G, \cdot)$ is the same as the number of conjugacy classes of Out(G), the group of outer automorphisms of (G, \cdot)

Example

Example

Suppose p is a prime and $G = \mathbb{Z}_p \times \mathbb{Z}_p$. Let $q(t) = t^2 + at + b$ be an irreducible polynomial over the field \mathbb{Z}_p and choose a matrix $A \in GL_2(p)$ with the characteristic polynomial q(t). Let $A^{n-1} = I$ and define an automorphism $\theta : G \to G$ by $\theta(X) = AX$. Clearly, θ has no non-trivial invariant subgroup, since q(t) is irreducible. So, $der_{\theta}(G, \cdot)$ is a UAS *n*-ary group. Note that, we have

$$f(X_1^n) = X_1 + AX_2 + \dots + A^{n-2}X_{n-1} + X_n.$$

H. Khodabandeh, M. Shahryari

Example

Example

Let *H* be a non-abelian simple group with an outer automorphism θ . Let $\theta^{n-1} = id$ and $G = H \times H$. Then θ extends to *G* by $\theta(x, y) = (\theta(x), \theta(y))$. The subgroups $K_1 = H \times 1$ and $K_2 = 1 \times H$ are the only θ -invariant normal subgroups of *G*. Clearly $\theta_{K_i} : G/K_i \to G/K_i$ is not inner as we supposed θ an outer automorphism. Therefore $der_{\theta}(G, \cdot)$ is a GTS polyadic group but it is not UAS.

Thanks to

The ParticipantsFor Listening...

and

The Organizers For Taking Care of Everything...

H. Khodabandeh, M. Shahryari

