Simple Polyadic Groups

H. Khodabandeh, M. Shahryari

AAD

May 2012

A simple notation

During this presentation, we use the following notations:

1. Any sequence of the form $x_{i}, x_{i+1}, \ldots, x_{j}$ will be denoted by

$$
x_{i}^{j}
$$

2. The notation ${ }^{(t)} x$ will denote the sequence x, x, \ldots, x (t times). So if G is a set and $f: G^{n} \rightarrow G$ is a function, we can denote the element $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ by $f\left(x_{1}^{n}\right)$.

A polyadic group is . . .

a non-empty set G together with an n-ary operation $f: G^{n} \rightarrow G$ such that

1. The operation f is associative, i.e.

$$
f\left(x_{1}^{i-1}, f\left(x_{i}^{n+i-1}\right), x_{n+i}^{2 n-1}\right)=f\left(x_{1}^{j-1}, f\left(x_{j}^{n+j-1}\right), x_{n+j}^{2 n-1}\right)
$$

where $1 \leq i, j \leq n$, and $x_{1}, \ldots, x_{2 n-1} \in G$.
2. For fixed $a_{1}, a_{2}, \ldots, a_{n}, b \in G$ and all $i \in\{1, \ldots, n\}$, the following equations have unique solutions for x;

$$
f\left(a_{1}^{i-1}, x, a_{i+1}^{n}\right)=b
$$

We denote the polyadic group by (G, f). More precisely, we call (G, f) an n-ary group.

Examples of polyadic groups

Suppose (G, \circ) is an ordinary group and define

$$
f\left(x_{1}^{n}\right)=x_{1} \circ x_{2} \circ \cdots \circ x_{n}
$$

Then (G, f) is polyadic group which is called of reduced type.
We write $(G, f)=\operatorname{der}^{n}(G, \circ)$.

Example ...

Suppose (G, \circ) is an ordinary group and $b \in Z(G)$. Define

$$
f\left(x_{1}^{n}\right)=x_{1} \circ x_{2} \cdots \circ x_{n} \circ b .
$$

Then (G, f) is polyadic group which is called b-derived polyadic group from G and it is denoted by $\operatorname{der}_{b}^{n}(G, \circ)$.

Example ...

Suppose $G=S_{m} \backslash A_{m}$, (the set of all odd permutations of degree m). Then by the ternary operation

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}
$$

the set G is a ternary group.

Example ...

Suppose ω is a primitive $n-1$-th root of unity in a field K. Let

$$
G=\left\{x \in G L_{m}(K): \operatorname{det} x=\omega\right\} .
$$

Then G is an n-ary group by the operation

$$
f\left(x_{1}^{n}\right)=x_{1} x_{2} \cdots x_{n}
$$

Identity in polyadic groups

An n-ary group (G, f) is of reduced type iff it contains an element e (called an n-ary identity) such that

$$
f(\stackrel{(i-1)}{e}, x, \stackrel{(n-i)}{e})=x
$$

holds for all $x \in G$ and $i=1, \ldots, n$.

Skew element

From the definition of an n-ary group (G, f), we can directly see that for every $x \in G$, there exists only one $z \in G$ satisfying the equation

$$
f(\stackrel{n-1)}{x}, z)=x .
$$

This element is called skew to x and is denoted by \bar{x}.

Retracts of polyadic groups

Let (G, f) be an n-ary group and $a \in G$ be a fixed element. Define a binary operation on G by

$$
x * y=f(x, \stackrel{(n-2)}{a}, y) .
$$

It is proved that $(G, *)$ is an ordinary group, which we call the retract of G over a.
The notation for retract: $\operatorname{Ret}_{a}(G, f)$, or simply by $\operatorname{Ret}_{a}(G)$. Retracts of a polyadic group are isomorphic.

The identity and inverse

The identity of the group $\operatorname{Ret}_{a}(G)$ is \bar{a}. The inverse element to x has the form

$$
x^{-1}=f(\bar{a}, \stackrel{(n-3)}{x}, \bar{x}, \bar{a}) .
$$

Recovering a polyadic group from its retracts

Any n-ary group can be uniquely described by its retract and some automorphism of this retract.

Theorem

Let (G, f) be an n-ary group. Then

1. on G one can define an operation - such that ($G, \cdot)$ is a group,
2. there exist an automorphism θ of (G, \cdot) and $b \in G$, such that $\theta(b)=b$,
3. $\theta^{n-1}(x)=b x b^{-1}$, for every $x \in G$,
4. $f\left(x_{1}^{n}\right)=x_{1} \theta\left(x_{2}\right) \theta^{2}\left(x_{3}\right) \cdots \theta^{n-1}\left(x_{n}\right) b$, for all $x_{1}, \ldots, x_{n} \in G$.

Remark

According to this theorem, we use the notation $\operatorname{der}_{\theta, b}(G, \cdot)$ for (G, f) and we say that (G, f) is (θ, b)-derived from the group (G, \cdot).
The binary group (G, \cdot) is in fact $\operatorname{Ret}_{a}(G, f)$.
We will assume that $(G, f)=\operatorname{der}_{\theta, b}(G, \cdot)$.

Normal subgroups

An n-ary subgroup H of a polyadic group (G, f) is called normal if

$$
f(\bar{x}, \stackrel{(n-3)}{x}, h, x) \in H
$$

for all $h \in H$ and $x \in G$.

GTS

If every normal subgroup of (G, f) is singleton or equal to G, then we say that (G, f) is group theoretically simple or it is $G T S$ for short. If $H=G$ is the only normal subgroup of (G, f), then we say it is strongly simple in the group theoretic sense or $G T S^{*}$ for short.

UAS

An equivalence relation R over G is said to be a congruence, if

1. $\forall i: x_{i} R y_{i} \Rightarrow f\left(x_{1}^{n}\right) R f\left(y_{1}^{n}\right)$,
2. $x R y \Rightarrow \bar{x} R \bar{y}$.

We say that (G, f) is universal algebraically simple or $U A S$ for short, if the only congruence is the equality and $G \times G$.

Quotients are reduced

Theorem

Suppose $H \unlhd(G, f)$ and define $R=\sim_{H}$ by

$$
x \sim_{H} y \Leftrightarrow \exists h_{1}, \ldots, h_{n-1} \in H: y=f\left(x, h_{1}^{n-1}\right) .
$$

Then R is a congruence and if we let $x H=[x]_{R}$, (the equivalence class of x), then the set $G / H=\{x H: x \in G\}$ is an n-ary group with the operation

$$
f_{H}\left(x_{1} H, \ldots, x_{n} H\right)=f\left(x_{1}^{n}\right) H
$$

Further we have

$$
\left(G / H, f_{H}\right)=\operatorname{der}\left(\operatorname{ret}_{H}\left(G / H, f_{H}\right)\right),
$$

UAS is also GTS

Theorem

Every $U A S$ is also GTS. But the converse is not true!

Facts about congruences

$\operatorname{Cong}(G, f)$ is the set of all congruences of (G, f). This set is a lattice under the operations of intersection and product (composition). We also denote by $E q(G)$ the set of all equivalence relations of G.

Theorem
$R \in \operatorname{Cong}(G, f)$ iff $R \in E q(G)$ and R is a θ-invariant subgroup of $G \times G$.

Corollary
We have Cong $(G, f)=\left\{R \leq_{\theta} G \times G: \Delta \subseteq R\right\}$.

UAS

Theorem
(G, f) is UAS iff the only normal θ-invariant subgroups of (G, \cdot) are trivial subgroups.

Structure of normals

For $u \in G$, define a new binary operation on G by $x * y=x u^{-1} y$. Then $(G, *)$ is an isomorphic copy of (G, \cdot)

Theorem

We have $H \unlhd(G, f)$ iff there exists an element $u \in H$ such that 1. H is a ψ_{u}-invariant normal subgroup of G_{u},
2. for all $x \in G$, we have $\theta^{-1}\left(x^{-1} u\right) x \in H$.

GTS

Theorem
A polyadic group (G, f) is $G T S^{*}$ iff whenever K is a θ-invariant normal subgroup of (G, \cdot) with θ_{K} inner, then $K=G$.

Example

Example

Let (G, \cdot) be a non-abelian simple group and θ be an automorphism of order $n-1$. Then $\operatorname{der}_{\theta}(G, \cdot)$ is a UAS n-ary group.

The number of non-isomorphic polyadic groups of the form $\operatorname{der}_{\theta}(G, \cdot)$ is the same as the number of conjugacy classes of $\operatorname{Out}(G)$, the group of outer automorphisms of ($G, \cdot)$

Example

Example

Suppose p is a prime and $G=\mathbb{Z}_{p} \times \mathbb{Z}_{p}$. Let $q(t)=t^{2}+a t+b$ be an irreducible polynomial over the field \mathbb{Z}_{p} and choose a matrix $A \in G L_{2}(p)$ with the characteristic polynomial $q(t)$. Let $A^{n-1}=I$ and define an automorphism $\theta: G \rightarrow G$ by $\theta(X)=A X$. Clearly, θ has no non-trivial invariant subgroup, since $q(t)$ is irreducible. So, $\operatorname{der}_{\theta}(G, \cdot)$ is a UAS n-ary group. Note that, we have

$$
f\left(X_{1}^{n}\right)=X_{1}+A X_{2}+\cdots+A^{n-2} X_{n-1}+X_{n} .
$$

Example

Example

Let H be a non-abelian simple group with an outer automorphism θ. Let $\theta^{n-1}=i d$ and $G=H \times H$. Then θ extends to G by $\theta(x, y)=(\theta(x), \theta(y))$. The subgroups $K_{1}=H \times 1$ and $K_{2}=1 \times H$ are the only θ-invariant normal subgroups of G. Clearly $\theta_{K_{i}}: G / K_{i} \rightarrow G / K_{i}$ is not inner as we supposed θ an outer automorphism. Therefore $\operatorname{der}_{\theta}(G, \cdot)$ is a GTS polyadic group but it is not UAS.

Thank Wou!

Thanks to

The Participants For Listening... and

The Organizers For Taking Care of Everything...

