The diameter of permutation groups

Ákos Seress

May 2012

Cayley graphs

Definition

$G=\langle S\rangle$ is a group. The Cayley graph $\Gamma(G, S)$ has vertex set G with g, h connected if and only if $g s=h$ or $h s=g$ for some $s \in S$.

By definition, $\Gamma(G, S)$ is undirected.

Definition

The diameter of $\Gamma(G, S)$ is

$$
\operatorname{diam} \Gamma(G, S)=\max _{g \in G} \min _{k} g=s_{1} \cdots s_{k}, s_{i} \in S \cup S^{-1}
$$

(Same as graph theoretic diameter.)

Computing the diameter is difficult

NP-hard even for elementary abelian 2-groups (Even, Goldreich 1981)

Definition (informal)

A decision problem is in the complexity class NP if the yes answer can be checked in polynomial time.

A decision problem is NP-complete if it is in NP and all problems in NP can be reduced to it in polynomial time.

A decision problem is NP-hard if all problems in NP can be reduced to it in polynomial time.

How large can be the diameter?

The diameter can be very small:

$$
\operatorname{diam} \Gamma(G, G)=1
$$

The diameter also can be very big:

$$
G=\langle x\rangle \cong Z_{n}, \quad \operatorname{diam} \Gamma(G,\{x\})=\lfloor n / 2\rfloor
$$

More generally, G with large abelian factor group may have Cayley graphs with diameter proportional to $|G|$.

Rubik's cube

$$
\begin{array}{r}
S=\{(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18) \\
(11,35,27,19),(9,11,16,14)(10,13,15,12)(1,17,41,40) \\
(4,20,44,37)(6,22,46,35),(17,19,24,22)(18,21,23,20) \\
(6,25,43,16)(7,28,42,13)(8,30,41,11),(25,27,32,30) \\
(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24), \\
(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29) \\
(1,14,48,27),(41,43,48,46)(42,45,47,44)(14,22,30,38) \\
(15,23,31,39)(16,24,32,40)\}
\end{array}
$$

Rubik : $=\langle S\rangle, \mid$ Rubik $\mid=43252003274489856000$.
$20 \leq \operatorname{diam} \Gamma($ Rubik, $S) \leq 29$ (Rokicki 2009)
diam $\Gamma\left(\right.$ Rubik, $\left.S \cup\left\{s^{2} \mid s \in S\right\}\right)=20$ (Rokicki 2009)

The diameter of groups

Definition

$$
\operatorname{diam}(G):=\max _{S} \operatorname{diam} \Gamma(G, S)
$$

Conjecture (Babai, in [Babai,Seress 1992])

There exists a positive constant c :
G simple, nonabelian $\Rightarrow \operatorname{diam}(G)=O\left(\log ^{c}|G|\right)$.
Conjecture true for

- $\operatorname{PSL}(2, p), \operatorname{PSL}(3, p)$ (Helfgott 2008, 2010)
- Lie-type groups of bounded rank (Pyber, E. Szabó 2011) and (Breuillard, Green, Tao 2011)

Alternating groups ???

Alternating groups: why is it difficult?

Attempt \# 1: Techniques for Lie-type groups Diameter results for Lie-type groups are proven by product theorems:

Theorem (Pyber, Szabó)

There exists a polynomial $c(x)$ such that if G is simple, Lie-type of rank $r, G=\langle A\rangle$ then $A^{3}=G$ or

$$
\left|A^{3}\right| \geq|A|^{1+1 / c(r)}
$$

In particular, for bounded r, we have $\left|A^{3}\right| \geq|A|^{1+\varepsilon}$ for some constant ε.

Given $G=\langle S\rangle, O(\log \log |G|)$ applications of the theorem gives all elements of G.
Tripling length $O(\log \log |G|)$ times gives diameter $3^{O(\log \log |G|)}=(\log |G|)^{c}$.

Product theorems are false in A_{n}.

Example

$$
\begin{aligned}
& G=A_{n}, H \cong A_{m} \leq G, g=(1,2, \ldots, n)(n \text { odd }) \\
& S=H \cup\{g\} \text { generates } G,\left|S^{3}\right| \leq 9(m+1)(m+2)|S|
\end{aligned}
$$

For example, if $m \approx \sqrt{n}$ then growth is too small.
Powerful techniques, developed for Lie-type groups, are not applicable.

Attempt \# 2: construction of a 3-cycle

Any $g \in A_{n}$ is the product of at most ($n / 2$) 3-cycles:
$(1,2,3,4,5,6,7)=(1,2,3)(1,4,5)(1,6,7)$
$(1,2,3,4,5,6)=(1,2,3)(1,4,5)(1,6)$
$(1,2)(3,4)=(1,2,3)(3,1,4)$
It is enough to construct one 3-cycle (then conjugate to all others).
Construction in stages, cutting down to smaller and smaller support.

Support of $g \in \operatorname{Sym}(\Omega): \operatorname{supp}(g)=\left\{\alpha \in \Omega \mid \alpha^{g} \neq \alpha\right\}$.

One generator has small support

Theorem (Babai, Beals, Seress 2004)

$G=\langle S\rangle \cong A_{n}$ and $|\operatorname{supp}(a)|<\left(\frac{1}{3}-\varepsilon\right) n$ for some $a \in S$. Then $\operatorname{diam} \Gamma(G, S)=O\left(n^{7+o(1)}\right)$.

Recent improvement:
Theorem (Bamberg, Gill, Hayes, Helfgott, Seress, Spiga 2012)
$G=\langle S\rangle \cong A_{n}$ and $|\operatorname{supp}(a)|<0.63 n$ for some $a \in S$.
Then $\operatorname{diam} \Gamma(G, S)=O\left(n^{C}\right)$.
The proof gives $c=78$ (with some further work, $c=66+o(1))$.

How to construct one element with moderate support?

Up to recently, only one result with no conditions on the generating set.

Theorem (Babai, Seress 1988)

Given $A_{n}=\langle S\rangle$, there exists a word of length $\exp (\sqrt{n \log n}(1+o(1)))$, defining $h \in A_{n}$ with $|\operatorname{supp}(h)| \leq n / 4$. Consequently

$$
\operatorname{diam}\left(A_{n}\right) \leq \exp (\sqrt{n \log n}(1+o(1)))
$$

A quasipolynomial bound

Theorem (Helfgott, Seress 2011)

$$
\operatorname{diam}\left(A_{n}\right) \leq \exp \left(O\left(\log ^{4} n \log \log n\right)\right) .
$$

Babai's conjecture would require $\operatorname{diam}\left(A_{n}\right) \leq n^{O(1)}=\exp (O(\log n))$.

Corollary

$G \leq S_{n}$ transitive $\Rightarrow \operatorname{diam}(G) \leq \exp \left(O\left(\log ^{4} n \log \log n\right)\right)$.
Corollary follows from

Theorem (Babai, Seress 1992)

$G \leq S_{n}$ transitive
$\Rightarrow \operatorname{diam}(G) \leq \exp \left(O\left(\log ^{3} n\right)\right) \cdot \operatorname{diam}\left(A_{k}\right)$ where A_{k} is the largest alternating composition factor of G.

The main idea of (Babai, Seress 1988)

Given $\operatorname{Alt}(\Omega) \cong A_{n}=\langle S\rangle$, construct $h \in A_{n}$ with $|\operatorname{supp}(h)| \leq n / 4$ as a short word in S.
$p_{1}=2, p_{2}=3, \ldots, p_{k}$ primes: $\prod_{i=1}^{k} p_{i}>n^{4}$
Construct $g \in G$ containing cycles of length $p_{1}, p_{1}, p_{2}, \ldots, p_{k}$.
For $\alpha \in \Omega$, let $\ell_{\alpha}:=$ length of g-cycle containing α.
For $1 \leq i \leq k$, let $\Omega_{i}:=\left\{\alpha \in \Omega: p_{i} \mid \ell_{\alpha}\right\}$.

Claim

There exists $i \leq k$ with $\left|\Omega_{i}\right| \leq n / 4$.
After claim is proven: take $h:=g^{|g| / p_{i}}$. Then $\operatorname{supp}(h) \subseteq \Omega_{i}$ and so $|\operatorname{supp}(h)| \leq n / 4$.

Proof of the claim

Claim

There exists $i \leq k$ with $\left|\Omega_{i}\right| \leq n / 4$.
Proof: On one hand,

$$
\sum_{\alpha \in \Omega} \sum_{p_{i} \mid \ell_{\alpha}} \log p_{i} \leq n \log n .
$$

On the other hand,

$$
\sum_{\alpha \in \Omega} \sum_{p_{i} \mid \ell_{\alpha}} \log p_{i}=\sum_{i=1}^{k}\left|\Omega_{i}\right| \log p_{i} .
$$

If all $\left|\Omega_{i}\right|>n / 4$ then

$$
\sum_{i=1}^{k}\left|\Omega_{i}\right| \log p_{i}>\frac{n}{4} \log \left(\prod_{i=1}^{k} p_{i}\right)>n \log n,
$$

a contradiction.

Cost analysis

We considered p_{1}, \ldots, p_{k} so that $\prod_{i=1}^{k} p_{i}>n^{4}$. How large is k ?
$\prod_{p<x} p \approx e^{x}=n^{4}$ so we have to take primes up to $x=\Theta(\log n)$, implying

$$
\sum_{p<x} p=\Theta\left(\frac{\log ^{2} n}{\log \log n}\right)
$$

(Order of magnitude can also be proven by elementary estimates on prime distribution.)

$$
\operatorname{length}_{S}(g)=O\left(n^{\frac{\log ^{2} n}{\log \log n}}\right)
$$

Theorem (Landau 1907)

$$
\max \left\{|g|: g \in S_{n}\right\}=e^{\sqrt{n \log n}(1+o(1))}
$$

Hence length ${ }_{S}(h)=e^{\sqrt{n \log n(1+o(1))}}$.
In the original proof, same procedure is iterated $O(\log n)$ times; faster finish by Babai, Beals, Seress (2004).

The main idea of (Helfgott, Seress 2011)

Use basic data structures for computations with permutation groups (Sims, 1970)

Definition

A base for $G \leq \operatorname{Sym}(\Omega)$ is a sequence of points $\left(\alpha_{1}, \ldots, \alpha_{k}\right): G_{\left(\alpha_{1}, \ldots, \alpha_{k}\right)}=1$.
A base defines a point stabilizer chain

$$
G^{[1]} \geq G^{[2]} \geq \cdots \geq G^{[k+1]}=1
$$

with $G^{[i]}=G_{\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)}$.
Fixing (right) transversals T_{i} for $G^{[i]} \bmod G^{[i+1]}$, every $g \in G$ can be written uniquely as $g=t_{k} \cdots t_{2} t_{1}, t_{i} \in T_{i}$.
(H,S 2011) works with partial transversals: Suppose $G=\operatorname{Alt}(\Omega)=\langle\boldsymbol{A}\rangle \cong \boldsymbol{A}_{n}$ and there are $\alpha_{1}, \ldots, \alpha_{m} \in \Omega$:

$$
\left|\alpha_{i}^{A_{\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)}}\right|>0.9 n
$$

Key proposition of (H,S 2011), substitution for product theorems:

Theorem

In $A^{\exp \left(O\left(\log ^{2} n\right)\right)}$ there is a significantly longer partial transversal system or $A^{\exp \left(O\left(\log ^{4} n\right)\right)}$ contains some permutation g with small support.

Proof techniques in (Helfgott,Seress 2011)

Subset versions of theorems of Babai, Pyber about 2-transitive groups and Bochert, Liebeck about large cardinality subgroups of A_{n}.

Combinatorial arguments, using random walks of quasipolynomial length on various domains to generate permutations that approximate properties of truly random elements of A_{n}.

Previous results on diam $\left(A_{n}\right)$: main idea of (BS 1988), results of (BS1992), (BBS 2004).

Arguments are mostly combinatorial: the full symmetric group is a combinatorial rather than a group theoretic object.

