Ákos Seress

The diameter of permutation groups

Ákos Seress

May 2012

Ákos Seress

Cayley graphs

Definition

 $G = \langle S \rangle$ is a group. The Cayley graph $\Gamma(G, S)$ has vertex set *G* with *g*, *h* connected if and only if gs = h or hs = g for some $s \in S$.

By definition, $\Gamma(G, S)$ is undirected.

Definition

The diameter of $\Gamma(G, S)$ is

diam $\Gamma(G, S) = \max_{g \in G} \min_{k} g = s_1 \cdots s_k, \ s_i \in S \cup S^{-1}.$

(Same as graph theoretic diameter.)

Ákos Seress

Computing the diameter is difficult

NP-hard even for elementary abelian 2-groups (Even, Goldreich 1981)

Definition (informal)

A decision problem is in the complexity class NP if the yes answer can be checked in polynomial time.

A decision problem is NP-complete if it is in NP and all problems in NP can be reduced to it in polynomial time.

A decision problem is NP-hard if all problems in NP can be reduced to it in polynomial time.

Ákos Seress

How large can be the diameter?

The diameter can be very small:

diam $\Gamma(G, G) = 1$

The diameter also can be very big: $G = \langle x \rangle \cong Z_n$, diam $\Gamma(G, \{x\}) = \lfloor n/2 \rfloor$

More generally, G with large abelian factor group may have Cayley graphs with diameter proportional to |G|.

Ákos Seress

Rubik's cube

 $S = \{(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18) \\ (11,35,27,19), (9,11,16,14)(10,13,15,12)(1,17,41,40) \\ (4,20,44,37)(6,22,46,35), (17,19,24,22)(18,21,23,20) \\ (6,25,43,16)(7,28,42,13)(8,30,41,11), (25,27,32,30) \\ (26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24), \\ (33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29) \\ (1,14,48,27), (41,43,48,46)(42,45,47,44)(14,22,30,38) \\ (15,23,31,39)(16,24,32,40)\}$

 $Rubik := \langle S \rangle$, |Rubik| = 43252003274489856000. $20 \le \text{diam } \Gamma(Rubik, S) \le 29$ (Rokicki 2009) $\text{diam } \Gamma(Rubik, S \cup \{s^2 \mid s \in S\}) = 20$ (Rokicki 2009)

Ákos Seress

The diameter of groups

Definition

diam
$$(G) := \max_{S} \operatorname{diam} \Gamma(G, S)$$

Conjecture (Babai, in [Babai, Seress 1992])

There exists a positive constant *c*: *G* simple, nonabelian \Rightarrow diam (*G*) = $O(\log^c |G|)$.

Conjecture true for

- PSL(2, *p*), PSL(3, *p*) (Helfgott 2008, 2010)
- Lie-type groups of bounded rank (Pyber, E. Szabó 2011) and (Breuillard, Green, Tao 2011)

Alternating groups ???

Ákos Seress

Alternating groups: why is it difficult?

Attempt # 1: Techniques for Lie-type groups Diameter results for Lie-type groups are proven by product theorems:

Theorem (Pyber, Szabó)

There exists a polynomial c(x) such that if G is simple, Lie-type of rank r, $G = \langle A \rangle$ then $A^3 = G$ or

 $|A^3| \ge |A|^{1+1/c(r)}.$

In particular, for bounded *r*, we have $|A^3| \ge |A|^{1+\varepsilon}$ for some constant ε .

Given $G = \langle S \rangle$, $O(\log \log |G|)$ applications of the theorem gives all elements of *G*. Tripling length $O(\log \log |G|)$ times gives diameter $3^{O(\log \log |G|)} = (\log |G|)^c$.

Ákos Seress

Product theorems are false in A_n .

Example

$$G = A_n, H \cong A_m \le G, g = (1, 2, ..., n) (n \text{ odd}).$$

 $S = H \cup \{g\}$ generates $G, |S^3| \le 9(m+1)(m+2)|S|.$

For example, if $m \approx \sqrt{n}$ then growth is too small.

Powerful techniques, developed for Lie-type groups, are not applicable.

Ákos Seress

Attempt # 2: construction of a 3-cycle

Any $g \in A_n$ is the product of at most (n/2) 3-cycles: (1,2,3,4,5,6,7) = (1,2,3)(1,4,5)(1,6,7) (1,2,3,4,5,6) = (1,2,3)(1,4,5)(1,6) (1,2)(3,4) = (1,2,3)(3,1,4)

It is enough to construct one 3-cycle (then conjugate to all others).

Construction in stages, cutting down to smaller and smaller support.

Support of $g \in \text{Sym}(\Omega)$: supp $(g) = \{ \alpha \in \Omega \mid \alpha^g \neq \alpha \}$.

Ákos Seress

One generator has small support

Theorem (Babai, Beals, Seress 2004)

 $G = \langle S \rangle \cong A_n$ and $|\operatorname{supp}(a)| < (\frac{1}{3} - \varepsilon)n$ for some $a \in S$. Then diam $\Gamma(G, S) = O(n^{7+o(1)})$.

Recent improvement:

Theorem (Bamberg, Gill, Hayes, Helfgott, Seress, Spiga 2012)

 $G = \langle S \rangle \cong A_n$ and $|\operatorname{supp}(a)| < 0.63n$ for some $a \in S$. Then diam $\Gamma(G, S) = O(n^c)$. The proof gives c = 78 (with some further work, c = 66 + o(1)).

Ákos Seress

How to construct one element with moderate support?

Up to recently, only one result with no conditions on the generating set.

Theorem (Babai, Seress 1988)

Given $A_n = \langle S \rangle$, there exists a word of length $\exp(\sqrt{n \log n}(1 + o(1)))$, defining $h \in A_n$ with $|\operatorname{supp}(h)| \le n/4$. Consequently

diam $(A_n) \leq \exp(\sqrt{n \log n}(1 + o(1))).$

Ákos Seress

A quasipolynomial bound

Theorem (Helfgott, Seress 2011)

diam $(A_n) \leq \exp(O(\log^4 n \log \log n)).$

Babai's conjecture would require diam $(A_n) \le n^{O(1)} = \exp(O(\log n)).$

Corollary

 $G \leq S_n$ transitive $\Rightarrow \operatorname{diam} (G) \leq \exp(O(\log^4 n \log \log n)).$

Corollary follows from

Theorem (Babai, Seress 1992)

 $G \leq S_n$ transitive $\Rightarrow \operatorname{diam} (G) \leq \exp(O(\log^3 n)) \cdot \operatorname{diam} (A_k)$ where A_k is the largest alternating composition factor of G.

Ákos Seress

The main idea of (Babai, Seress 1988)

Given $Alt(\Omega) \cong A_n = \langle S \rangle$, construct $h \in A_n$ with $|supp(h)| \le n/4$ as a short word in *S*.

 $p_1 = 2, p_2 = 3, \dots, p_k$ primes: $\prod_{i=1}^k p_i > n^4$

Construct $g \in G$ containing cycles of length $p_1, p_1, p_2, \dots, p_k$.

For $\alpha \in \Omega$, let ℓ_{α} :=length of *g*-cycle containing α .

For $1 \leq i \leq k$, let $\Omega_i := \{ \alpha \in \Omega : p_i \mid \ell_{\alpha} \}$.

Claim

There exists $i \leq k$ with $|\Omega_i| \leq n/4$.

After claim is proven: take $h := g^{|g|/p_i}$. Then $\operatorname{supp}(h) \subseteq \Omega_i$ and so $|\operatorname{supp}(h)| \le n/4$.

Ákos Seress

Proof of the claim

Claim

There exists $i \leq k$ with $|\Omega_i| \leq n/4$.

Proof: On one hand,

$$\sum_{lpha\in\Omega}\sum_{p_i|\ell_lpha}\log p_i\leq n\log n.$$

On the other hand,

$$\sum_{\alpha \in \Omega} \sum_{p_i \mid \ell_{\alpha}} \log p_i = \sum_{i=1}^k |\Omega_i| \log p_i.$$

If all $|\Omega_i| > n/4$ then

$$\sum_{i=1}^{k} |\Omega_i| \log p_i > \frac{n}{4} \log \left(\prod_{i=1}^{k} p_i\right) > n \log n,$$

a contradiction.

Ákos Seress

Cost analysis

We considered p_1, \ldots, p_k so that $\prod_{i=1}^k p_i > n^4$. How large is k?

 $\prod_{p < x} p \approx e^x = n^4$ so we have to take primes up to $x = \Theta(\log n)$, implying

$$\sum_{p < x} p = \Theta\left(\frac{\log^2 n}{\log\log n}\right).$$

(Order of magnitude can also be proven by elementary estimates on prime distribution.)

$$\operatorname{length}_{\mathcal{S}}(g) = O\left(n^{\frac{\log^2 n}{\log\log n}}\right).$$

Ákos Seress

Theorem (Landau 1907)

$$\max\{|\boldsymbol{g}|:\boldsymbol{g}\in\boldsymbol{S}_n\}=\boldsymbol{e}^{\sqrt{n\log n}(1+o(1))}$$

Hence length_S(h) = $e^{\sqrt{n \log n}(1+o(1))}$.

In the original proof, same procedure is iterated $O(\log n)$ times; faster finish by Babai, Beals, Seress (2004).

Ákos Seress

The main idea of (Helfgott, Seress 2011)

Use basic data structures for computations with permutation groups (Sims, 1970)

Definition

A base for $G \leq \text{Sym}(\Omega)$ is a sequence of points $(\alpha_1, \dots, \alpha_k)$: $G_{(\alpha_1, \dots, \alpha_k)} = 1$. A base defines a point stabilizer chain

$$G^{[1]} \geq G^{[2]} \geq \cdots \geq G^{[k+1]} = 1$$

with $G^{[i]} = G_{(\alpha_1,...,\alpha_{i-1})}$.

Fixing (right) transversals T_i for $G^{[i]} \mod G^{[i+1]}$, every $g \in G$ can be written uniquely as $g = t_k \cdots t_2 t_1$, $t_i \in T_i$.

Ákos Seress

(H,S 2011) works with partial transversals: Suppose $G = Alt(\Omega) = \langle A \rangle \cong A_n$ and there are $\alpha_1, \ldots, \alpha_m \in \Omega$:

$$\alpha_i^{\mathbf{A}_{(\alpha_1,\ldots,\alpha_{i-1})}}| > 0.9n.$$

Key proposition of (H,S 2011), substitution for product theorems:

Theorem

In $A^{\exp(O(\log^2 n))}$ there is a significantly longer partial transversal system or $A^{\exp(O(\log^4 n))}$ contains some permutation g with small support.

Ákos Seress

Proof techniques in (Helfgott, Seress 2011)

Subset versions of theorems of Babai, Pyber about 2-transitive groups and Bochert, Liebeck about large cardinality subgroups of A_n .

Combinatorial arguments, using random walks of quasipolynomial length on various domains to generate permutations that approximate properties of truly random elements of A_n .

Previous results on diam (A_n) : main idea of (BS 1988), results of (BS1992), (BBS 2004).

Arguments are mostly combinatorial: the full symmetric group is a combinatorial rather than a group theoretic object.