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Cayley graphs

Definition
G = 〈S〉 is a group. The Cayley graph Γ(G,S) has vertex
set G with g,h connected if and only if gs = h or hs = g
for some s ∈ S.

By definition, Γ(G,S) is undirected.

Definition
The diameter of Γ(G,S) is

diam Γ(G,S) = max
g∈G

min
k

g = s1 · · · sk , si ∈ S ∪ S−1.

(Same as graph theoretic diameter.)
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Computing the diameter is difficult

NP-hard even for elementary abelian 2-groups (Even,
Goldreich 1981)

Definition (informal)
A decision problem is in the complexity class NP if the
yes answer can be checked in polynomial time.

A decision problem is NP-complete if it is in NP and all
problems in NP can be reduced to it in polynomial time.

A decision problem is NP-hard if all problems in NP can
be reduced to it in polynomial time.
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How large can be the diameter?

The diameter can be very small:

diam Γ(G,G) = 1

The diameter also can be very big:
G = 〈x〉 ∼= Zn, diam Γ(G, {x}) = bn/2c

More generally, G with large abelian factor group may
have Cayley graphs with diameter proportional to |G|.
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Rubik’s cube

S = {(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)

(11,35,27,19), (9,11,16,14)(10,13,15,12)(1,17,41,40)

(4,20,44,37)(6,22,46,35), (17,19,24,22)(18,21,23,20)

(6,25,43,16)(7,28,42,13)(8,30,41,11), (25,27,32,30)

(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24),

(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)

(1,14,48,27), (41,43,48,46)(42,45,47,44)(14,22,30,38)

(15,23,31,39)(16,24,32,40)}

Rubik := 〈S〉, |Rubik | = 43252003274489856000.

20 ≤ diam Γ(Rubik ,S) ≤ 29 (Rokicki 2009)
diam Γ(Rubik ,S ∪ {s2 | s ∈ S}) = 20 (Rokicki 2009)
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The diameter of groups

Definition

diam (G) := max
S

diam Γ(G,S)

Conjecture (Babai, in [Babai,Seress 1992])
There exists a positive constant c:
G simple, nonabelian⇒ diam (G) = O(logc |G|).

Conjecture true for

PSL(2,p), PSL(3,p) (Helfgott 2008, 2010)
Lie-type groups of bounded rank (Pyber, E. Szabó
2011) and (Breuillard, Green, Tao 2011)

Alternating groups ???
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Alternating groups: why is it difficult?

Attempt # 1: Techniques for Lie-type groups
Diameter results for Lie-type groups are proven by
product theorems:

Theorem (Pyber, Szabó)
There exists a polynomial c(x) such that if G is simple,
Lie-type of rank r , G = 〈A〉 then A3 = G or

|A3| ≥ |A|1+1/c(r).

In particular, for bounded r , we have |A3| ≥ |A|1+ε for
some constant ε.

Given G = 〈S〉, O(log log |G|) applications of the theorem
gives all elements of G.
Tripling length O(log log |G|) times gives diameter
3O(log log |G|) = (log |G|)c .
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Product theorems are false in An.

Example
G = An, H ∼= Am ≤ G, g = (1,2, . . . ,n) (n odd).
S = H ∪ {g} generates G, |S3| ≤ 9(m + 1)(m + 2)|S|.

For example, if m ≈
√

n then growth is too small.

Powerful techniques, developed for Lie-type groups, are
not applicable.
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Attempt # 2: construction of a 3-cycle

Any g ∈ An is the product of at most (n/2) 3-cycles:

(1,2,3,4,5,6,7) = (1,2,3)(1,4,5)(1,6,7)

(1,2,3,4,5,6) = (1,2,3)(1,4,5)(1,6)

(1,2)(3,4) = (1,2,3)(3,1,4)

It is enough to construct one 3-cycle (then conjugate to
all others).
Construction in stages, cutting down to smaller and
smaller support.

Support of g ∈ Sym(Ω): supp(g) = {α ∈ Ω | αg 6= α}.
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One generator has small support

Theorem (Babai, Beals, Seress 2004)

G = 〈S〉 ∼= An and |supp(a)| < (1
3 − ε)n for some a ∈ S.

Then diam Γ(G,S) = O(n7+o(1)).

Recent improvement:

Theorem (Bamberg, Gill, Hayes, Helfgott, Seress,
Spiga 2012)
G = 〈S〉 ∼= An and |supp(a)| < 0.63n for some a ∈ S.
Then diam Γ(G,S) = O(nc).
The proof gives c = 78 (with some further work,
c = 66 + o(1)).
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How to construct one element with moderate
support?

Up to recently, only one result with no conditions on the
generating set.

Theorem (Babai, Seress 1988)
Given An = 〈S〉, there exists a word of length
exp(

√
n log n(1 + o(1))), defining h ∈ An with

|supp(h)| ≤ n/4. Consequently

diam (An) ≤ exp(
√

n log n(1 + o(1))).
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A quasipolynomial bound

Theorem (Helfgott, Seress 2011)

diam (An) ≤ exp(O(log4 n log log n)).

Babai’s conjecture would require
diam (An) ≤ nO(1) = exp(O(log n)).

Corollary

G ≤ Sn transitive⇒ diam (G) ≤ exp(O(log4 n log log n)).

Corollary follows from

Theorem (Babai, Seress 1992)
G ≤ Sn transitive
⇒ diam (G) ≤ exp(O(log3 n)) · diam (Ak ) where Ak is the
largest alternating composition factor of G.
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The main idea of (Babai, Seress 1988)

Given Alt(Ω) ∼= An = 〈S〉, construct h ∈ An with
|supp(h)| ≤ n/4 as a short word in S.

p1 = 2,p2 = 3, . . . ,pk primes:
∏k

i=1 pi > n4

Construct g ∈ G containing cycles of length
p1,p1,p2, . . . ,pk .

For α ∈ Ω, let `α :=length of g-cycle containing α.

For 1 ≤ i ≤ k , let Ωi := {α ∈ Ω : pi | `α}.

Claim
There exists i ≤ k with |Ωi | ≤ n/4.

After claim is proven: take h := g|g|/pi . Then supp(h) ⊆ Ωi
and so |supp(h)| ≤ n/4.
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Proof of the claim
Claim
There exists i ≤ k with |Ωi | ≤ n/4.

Proof: On one hand,∑
α∈Ω

∑
pi |`α

log pi ≤ n log n.

On the other hand,

∑
α∈Ω

∑
pi |`α

log pi =
k∑

i=1

|Ωi | log pi .

If all |Ωi | > n/4 then

k∑
i=1

|Ωi | log pi >
n
4

log

(
k∏

i=1

pi

)
> n log n,

a contradiction.
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Cost analysis

We considered p1, . . . ,pk so that
∏k

i=1 pi > n4. How large
is k?∏

p<x p ≈ ex = n4 so we have to take primes up to
x = Θ(log n), implying

∑
p<x

p = Θ

(
log2 n

log log n

)
.

(Order of magnitude can also be proven by elementary
estimates on prime distribution.)

lengthS(g) = O
(

n
log2 n

log log n

)
.
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Theorem (Landau 1907)

max{|g| : g ∈ Sn} = e
√

n log n(1+o(1)).

Hence lengthS(h) = e
√

n log n(1+o(1)).

In the original proof, same procedure is iterated O(log n)
times; faster finish by Babai, Beals, Seress (2004).
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The main idea of (Helfgott, Seress 2011)

Use basic data structures for computations with
permutation groups (Sims, 1970)

Definition
A base for G ≤ Sym(Ω) is a sequence of points
(α1, . . . , αk ): G(α1,...,αk ) = 1.
A base defines a point stabilizer chain

G[1] ≥ G[2] ≥ · · · ≥ G[k+1] = 1

with G[i] = G(α1,...,αi−1).

Fixing (right) transversals Ti for G[i] mod G[i+1], every
g ∈ G can be written uniquely as g = tk · · · t2t1, ti ∈ Ti .
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(H,S 2011) works with partial transversals: Suppose
G = Alt(Ω) = 〈A〉 ∼= An and there are α1, . . . , αm ∈ Ω:

|α
A(α1,...,αi−1)

i | > 0.9n.

Key proposition of (H,S 2011), substitution for product
theorems:

Theorem

In Aexp(O(log2 n)) there is a significantly longer partial
transversal system or Aexp(O(log4 n)) contains some
permutation g with small support.
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Proof techniques in (Helfgott,Seress 2011)

Subset versions of theorems of Babai, Pyber about
2-transitive groups and Bochert, Liebeck about large
cardinality subgroups of An.

Combinatorial arguments, using random walks of
quasipolynomial length on various domains to generate
permutations that approximate properties of truly random
elements of An.

Previous results on diam (An): main idea of (BS 1988),
results of (BS1992), (BBS 2004).

Arguments are mostly combinatorial: the full symmetric
group is a combinatorial rather than a group theoretic
object.


