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Let G be a group, we denote by CG the category of G -modules. That is,
the category of abelian groups A endowed with a G -action.
This is the same as considering the category Z[G ]-mod, hence CG is a
category like R-mod, for a particular kind of R.
It is somehow natural to consider the functor

( )G : CG −→ Ab
A 7−→ AG = {a ∈ A | ga = a, ∀g ∈ G}

The functor ( )G can also be viewed as HomG (Z, ).

Matteo Paganin Galois Cohomology, Spectral Sequences, and Class Field Theory



Example (Main - cheating)

Let (K ; +, ∗) be a field. We denote by GK the absolute Galois group of
K , that is the Galois group of the extension K s/K .
By definition,

(K s ,+) is a GK -module,
((K s)×, ∗) is a GK -module.

By construction, we have
(K s)GK = K ,
((K s)×)GK = K×.
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Let G be a group, we denote by CG the category of G -modules. That is,
the category of abelian groups A endowed with a G -action.
This is the same as considering the category Z[G ]-mod.
It is somehow natural to consider the functor

( )G : CG −→ Ab
A 7−→ AG = {a ∈ A | ga = a, ∀g ∈ G}

the category CG has enough injectives;
the functor ( )G is left-exact: for every exact sequence

0→ A f−→ B
g−→ C → 0, f inj., g surj., and Im(f ) = ker(g),

the sequence

0→ AG f−→ BG g−→ CG , f inj. and Im(f ) = ker(g)

is also exact.

Hence, we can define the right derived functors of ( )G , that are usually
denoted by

Hn(G , ).
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There is an explicit description for Hn(G ,A), given a G -module A, when
n is small:

for n = 0, we have H0(G ,A) = AG

for n = 1, we have the following:

H1(G ,A) =
Z 1(G ,A)

B1(G ,A)
=
{f : G → A | f (gh) = hf (g) + f (h),∀g , h ∈ G}
{f : G → A | ∃a ∈ A | f (g) = ga− a,∀g ∈ G}

Example

Assume A is a trivial G -module.Then
H0(G ,A) = AG = A,

H1(G ,A) =
Z 1(G ,A)

B1(G ,A)
=

HomZ(G ,A)

〈0〉
= HomZ(G ,A).
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Let G be again any group. Fix a subgroup H of G . A G -module is also a
H-module in natural way. Hence Hn(H,A) are computable.
If, moreover, H is normal, let us denote by π the quotient G/H. Then,
AH is also π-module.
The functors ( )G , ( )H , and ( )π are related by the following diagram:

CG
( )H //

( )G !!

Cπ

( )π}}
Ab

Likewise, Hn(H,A) has a natural structure of π-modules for every n.
This decomposition of the functor ( )G is useful also when computing its
cohomology.
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One of the main tool to deal with cohomology are spectral sequences.
The one we are interested in is the so called Lyndon-Hochschild-Serre
spectral sequence. We summarize the main results in the following:

Theorem
Let G be a group and H a normal subgroup. For any G-module A, there
exists a spectral sequence Epq

r such that the second level is

Epq
2 = Hp(π,Hq(H,A)).

Moreover, E pq
r converges to Hp+q(G ,A). The standard notation is:

Epq
2 = Hp(π,Hq(H,A))⇒ Hp+q(G ,A).
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Tate said: ”Number Theory is the study of GQ”.

From now on, we assume that G is a profinite group. If we regard a
G -module A as a discrete topological space, we can restrict our attention
to the G -modules with a continuous action.We obtain the followings:

the category CG of discrete G-modules is still an abelian category,
the category CG has still enough injectives,
the functor ( )G is still left exact,
the groups Hn(G ,A) are torsion groups for any discrete G -module A
and for every n > 0,
the Lyndon-Hochschild-Serre spectral sequence remains defined and
it keeps all the properties stated (adding the requirement for the
subgroup H to be closed).
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Example (Main)

Let (K ; +, ∗) be a field, GK = Gal(K s/K ) the absolute Galois group of
K .

((K s)x , ∗) is a GK -module.
H0(GK , (K s)x) = ((K s)x)GK = K x ,
H1(GK , (K s)x) = 0, by the so-called Hilbert 90 theorem,
H2(GK , (K s)x) = Br(K ), the Brauer group of K . It can be proved
that Br(K ) classifies the central simple algebras over K .
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Let G be group and H a closed normal subgroup. We also assume that H
is open, that is of finite index, hence, for the finite group π = G/H, the
Tate cohomology Ĥn(π, ), n ∈ Z is defined (but explicitly not in this
talk).

General term of level 2 for LHS: Epq
2 = Hp(π,Hq(H,A)).

Why p can’t be negative?
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Definition
Let G be a profinite group. We say that G has cohomological dimension
smaller than n if Hq(G ,A) = 0 for every torsion G -module A and for
every q > n.
We write cd(G ) ≤ n.

Definition
Let G be a profinite group. We say that G has strict cohomological
dimension smaller than n if Hq(G ,A) = 0 for every G -module A and for
every q > n.
We write scd(G ) ≤ n.

We have that scd(G )− cd(G ) is either 0 or 1.
Moreover, if H is an open subgroup of G , then cd(H) = cd(G ) and
scd(H) = scd(G ).
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Theorem

Let G be a profinite group and H an open normal subgroup of G. Denote
by π the quotient G/H. Then, for any discrete G-module A, there exists
a spectral sequence such that the second level has the form:

Epq
2 = Ĥp(π,Hq(H,A)).

We denote this spectral sequence by Êpq
r and we call it the Tate

cohomology spectral sequence. Moreover, if G has finite cohomological
dimension, we have that

Êpq
r ⇒ 0.
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Definition
A spectral sequence in an abelian category C is a family
{Epq

r , dpq
r }p,q,r∈Z,r>a, where the Epq

r are objects of C and
dpq

r : Epq
r → Ep+r ,q−r+1

r are morphisms with the following relations:

dpq
r ◦ dp−r ,q+r−1

r = 0 and Epq
r+1 = ker(dpq

r )/Im(dp−r ,q+r−1
r ).

Epq
0 :

n

OO
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Definition
A spectral sequence in an abelian category C is a family
{Epq

r , dpq
r }p,q,r∈Z,r>a, where the Epq

r are objects of C and
dpq

r : Epq
r → Ep+r ,q−r+1

r are morphisms with the following relations:

dpq
r ◦ dp−r ,q+r−1

r = 0 and Epq
r+1 = ker(dpq

r )/Im(dp−r ,q+r−1
r ).

Epq
3 :

Epq
2 :

Epq
1 :

Epq
0 :

n

OO
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· · · · · · · ·

· · · · · · · ·

· · · Epq
0 · · · ·

· · · · · · · ·

· · · · · · · ·

q OO

p //
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· · · · · · · ·

· · · · · · · ·

· · · Epq
0

dpq
0

OO

· · · ·

· · · ·

dp,q−1
0

OO

· · · ·

· · · · · · · ·

q OO

p //
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· · · · · · · ·

· · · · · · · ·

· · · Epq
1 · · · ·

· · · · · · · ·

· · · · · · · ·

q OO

p //
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· · · · · · · ·

· · · · · · · ·

· · ·
dp−1,q
1 // Epq

1
dp,q
1 // · · · ·

· · · · · · · ·

· · · · · · · ·

q OO

p //
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· · · · · · · ·

· ·
dp−2,q+1
2

''

· · · · · ·

· · · Epq
2

dp,q
2

''

· · · ·

· · · · · · · ·

· · · · · · · ·

q OO

p //
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·

dp−3,q+2
3

$$

· · · · · · ·

· · · · · · · ·

· · · Epq
3

dp,q
3

$$

· · · ·

· · · · · · · ·

· · · · · · · ·

q OO

p //
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·

dp−3,q+2
3

$$

· · · · · · ·

· · · · · · · ·

· · · Epq
3

dp,q
3

$$

· · · ·

· · · · · · · ·

· · · · · · · ·

q OO

p //
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Theorem
Let G be a profinite group and H an open normal subgroup of G. Denote
by π the quotient G/H. Then, for any discrete G-module A, there exists
a spectral sequence such that the second level has the form:

Epq
2 = Ĥp(π,Hq(H,A)).

We denote this spectral sequence by Êpq
r and we call it the Tate

cohomology spectral sequence. Moreover, if G has finite cohomological
dimension, we have that

Êpq
r ⇒ 0.

Note that cd(G ) ≤ n implies that cd(H) ≤ n,hence

Êpq
2 = Ĥp(π,Hq(H,A)) = Ĥp(π, 0) = 0 for q > n.

Moreover, Êpq
r = 0 for every r > 2 and for every q > n.
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0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

· · · · · · · · · · ·

· · · · · · · · · · ·

· · · · · · · · · · ·
p //· · · · · · · · · · ·

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

q OO
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0 0

##

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

· · · · · · · · · · ·

· · · · · ·

""

· · · · ·

level 4 · · · · · · · · · · ·
p //· · · · · · · · · · ·

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

q OO

We can say that Epq
n = Epq

4 for every p, q, and n > 4.
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Example (Main)

Let E/F be a finite extension of local fields.
G Denote the absolute Galois group Gal(F̄/F ) of F by GF ,
H denote the absolute Galois group of E by GE ,
π and the finite Galois group Gal(E/F ) by π.

For the module A, take the multiplicative group F̄×.
By Hilbert 90, we have H1(GE , F̄×) = 0.
It can be proved that both GF and its subgroup GE have
cohomological dimension and strict cohomological dimension equal
to 2, thus Hq(GE , F̄×) vanishes for q ≥ 3.

Hence:
Êpq
2 = Ĥp(π,Hq(GE , F̄×)) = 0 if q 6= 0, 2

for q = 0, we have Êp0
2 = Ĥp(π,H0(GE , F̄×)) = Ĥp(π,E×);

for q = 2, we have Êp2
2 = Ĥp(π,H2(GE , F̄×)) = Ĥp(π,Q/Z).
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Example (Main - cont.)

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

· · · · · · · · · · ·

· · · · · · · · · · ·
p //· · · · · · · · · · ·

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

q OO
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Example (Main - cont.)

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

· · · · · · · · · · ·

0 0 0 0 0 0 0 0 0 0 0
p //· · · · · · · · · · ·

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

q OO
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Example (Main - cont.)

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

2 · · · · · · · · · · ·

0 0 0 0 0 0 0 0 0 0 0

0 ·
p //· · · · · · · · · ·

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

q OO

Êp0
2 = Ĥp(π,E×) and Êp2

2 = Ĥp(π,Q/Z).
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Example (Main - cont.)

Remarks:
dpq
2 = 0 for every p and q, hence Êpq

3 = Êpq
2 ,

from the convergence to 0 of the spectral sequence, it follows that
dpq
3 : Êp−1,2

3 → Êp0
3 is an isomorphism for every p and q,

Ĥp−1(π,Q/Z) ' Ĥp(π,Z), for every p.
To sum up, we obtained a family of isomorphisms

Ĥp(π,Z) ' Ĥp−1(π,Q/Z)
dp−1,2
3−−−−→ Ĥp+2(π,E×).

taking p = −2, we obtain

πab ' Ĥ−2(π,Z) ' Ĥ0(π,E×) ' F×/N(E×),

taking p = 0, we obtain

Z/nZ ' Ĥ0(π,Z) ' Ĥ2(π,E×) ' Br(E/F ).
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Example (Main - cont.)

On the other hand, let cE/F be the fundamental class of the extension
E/F , which is a particular generator of the cyclic group H2(π,E×).A
well-known result of class field theory (see section XIII.4 of Corps Locaux,
J.P. Serre) states that the morphism

Ĥp(π,Z)
∪cE/F−−−−→ Ĥp+2(π,E×) (1)

is an isomorphism for every p.
With D. Vauclair of the "Université de Caen - Basse Normandie", we
proved that the isomorphisms constructed coincide with the ones induced
by the fundamental class cE/F .
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Thank you for your attention!
(and sorry for the headache)
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