Valued Difference Fields

Gönenç Onay (joint with S.Durhan)

Mimar Sinan Güzel Sanatlar Üniversitesi Université Paris Diderot

14. Antalya Cebir Günleri 20.05.12 / Çeşme

イロン 不得 とくほ とくほ とうほ

A valued field is given by a field *K*, an ordered abelian group Γ , a surjective group homomorphism $v : K^{\times} \to \Gamma$, such that $v(x - y) \ge \min\{v(x), v(y)\}$ (ultrametric triangle inequality). We extend *v* on *K* by setting $v(0) = \infty$, and we extend Γ to $\Gamma \cup \{\infty\}$.

In this talk (K, v) will denote a valued field. **important properties:**

•
$$v(1) = v(-1) = 0$$

•
$$v(x) \neq v(y) \Rightarrow v(x - y) = \min\{v(x), v(y)\}.$$

 \Rightarrow for a polynomial $P = \sum_i X^i a_i$ and $x \in K$,
 $v(P(x)) = \min_i\{v(x^i a_i)\} = \min_i\{iv(x) + v(a_i)\}$ if for all $i \neq j$ we have $v(a_j x^i) \neq v(a_i x^j)$.

• $v(x-y) \neq \min\{v(x), v(y)\} \Leftrightarrow v(x-y) > v(x) = v(y)$

(日) (四) (三) (三) (三) (日)

A valued field is given by a field K, an ordered abelian group Γ ,

a surjective group homomorphism $v : K^{\times} \to \Gamma$, such that $v(x - y) \ge \min\{v(x), v(y)\}$ (ultrametric triangle inequality). We extend v on K by setting $v(0) = \infty$, and we extend Γ to $\Gamma \cup \{\infty\}$.

In this talk (K, v) will denote a valued field. **important properties:**

•
$$v(1) = v(-1) = 0$$

•
$$v(x) \neq v(y) \Rightarrow v(x - y) = \min\{v(x), v(y)\}.$$

 \Rightarrow for a polynomial $P = \sum_i X^i a_i$ and $x \in K$,
 $v(P(x)) = \min_i\{v(x^i a_i)\} = \min_i\{iv(x) + v(a_i)\}$ if for all $i \neq j$ we have $v(a_j x^i) \neq v(a_i x^j)$.

• $v(x-y) \neq \min\{v(x), v(y)\} \Leftrightarrow v(x-y) > v(x) = v(y)$

◆□ ◆ ▲ ◆ ▲ ◆ ▲ ◆ ● ◆ ● ◆ ● ◆ ● ◆

A valued field is given by a field *K*, an ordered abelian group Γ , a surjective group homomorphism $v : K^{\times} \to \Gamma$, such that $v(x - y) \ge \min\{v(x), v(y)\}$ (ultrametric triangle inequality). We extend *v* on *K* by setting $v(0) = \infty$, and we extend Γ to $\Gamma \cup \{\infty\}$.

In this talk (K, v) will denote a valued field. **important properties:**

•
$$v(1) = v(-1) = 0$$

•
$$v(x) \neq v(y) \Rightarrow v(x - y) = \min\{v(x), v(y)\}.$$

 \Rightarrow for a polynomial $P = \sum_i X^i a_i$ and $x \in K$,
 $v(P(x)) = \min_i\{v(x^i a_i)\} = \min_i\{iv(x) + v(a_i)\}$ if for all $i \neq j$ we have $v(a_j x^i) \neq v(a_i x^j)$.

• $v(x-y) \neq \min\{v(x), v(y)\} \Leftrightarrow v(x-y) > v(x) = v(y)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A valued field is given by a field *K*, an ordered abelian group Γ , a surjective group homomorphism $v : K^{\times} \to \Gamma$, such that $v(x - y) \ge \min\{v(x), v(y)\}$ (ultrametric triangle inequality). We extend *v* on *K* by setting $v(0) = \infty$, and we extend Γ to $\Gamma \cup \{\infty\}$.

In this talk (K, v) will denote a valued field. **important properties:**

•
$$v(1) = v(-1) = 0$$

•
$$v(x) \neq v(y) \Rightarrow v(x - y) = \min\{v(x), v(y)\}.$$

 \Rightarrow for a polynomial $P = \sum_i X^i a_i$ and $x \in K$,
 $v(P(x)) = \min_i\{v(x^i a_i)\} = \min_i\{iv(x) + v(a_i)\}$ if for all
 $i \neq j$ we have $v(a_j x^i) \neq v(a_i x^j)$.

• $v(x-y) \neq \min\{v(x), v(y)\} \Leftrightarrow v(x-y) > v(x) = v(y)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A valued field is given by a field *K*, an ordered abelian group Γ , a surjective group homomorphism $v : K^{\times} \to \Gamma$, such that $v(x - y) \ge \min\{v(x), v(y)\}$ (ultrametric triangle inequality). We extend *v* on *K* by setting $v(0) = \infty$, and we extend Γ to $\Gamma \cup \{\infty\}$.

In this talk (K, v) will denote a valued field. **important properties:**

•
$$v(1) = v(-1) = 0$$

•
$$v(x) \neq v(y) \Rightarrow v(x - y) = \min\{v(x), v(y)\}.$$

 \Rightarrow for a polynomial $P = \sum_i X^i a_i$ and $x \in K$,
 $v(P(x)) = \min_i\{v(x^i a_i)\} = \min_i\{iv(x) + v(a_i)\}$ if for all $i \neq j$ we have $v(a_j x^i) \neq v(a_i x^j)$.

• $v(x-y) \neq \min\{v(x), v(y)\} \Leftrightarrow v(x-y) > v(x) = v(y)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A valued field is given by a field *K*, an ordered abelian group Γ , a surjective group homomorphism $v : K^{\times} \to \Gamma$, such that $v(x - y) \ge \min\{v(x), v(y)\}$ (ultrametric triangle inequality). We extend *v* on *K* by setting $v(0) = \infty$, and we extend Γ to $\Gamma \cup \{\infty\}$.

In this talk (K, v) will denote a valued field.

important properties:

•
$$v(1) = v(-1) = 0$$

•
$$v(x) \neq v(y) \Rightarrow v(x - y) = \min\{v(x), v(y)\}.$$

 \Rightarrow for a polynomial $P = \sum_i X^i a_i$ and $x \in K$,
 $v(P(x)) = \min_i\{v(x^i a_i)\} = \min_i\{iv(x) + v(a_i)\}$ if for all
 $i \neq j$ we have $v(a_i x^i) \neq v(a_i x^j).$

• $v(x-y) \neq \min\{v(x), v(y)\} \Leftrightarrow v(x-y) > v(x) = v(y)$

A valued field is given by a field *K*, an ordered abelian group Γ , a surjective group homomorphism $v : K^{\times} \to \Gamma$, such that $v(x - y) \ge \min\{v(x), v(y)\}$ (ultrametric triangle inequality). We extend *v* on *K* by setting $v(0) = \infty$, and we extend Γ to $\Gamma \cup \{\infty\}$.

In this talk (K, v) will denote a valued field. important properties:

•
$$v(1) = v(-1) = 0$$

•
$$v(x) \neq v(y) \Rightarrow v(x - y) = \min\{v(x), v(y)\}.$$

 \Rightarrow for a polynomial $P = \sum_i X^i a_i$ and $x \in K$,
 $v(P(x)) = \min_i\{v(x^i a_i)\} = \min_i\{iv(x) + v(a_i)\}$ if for all $i \neq j$ we have $v(a_j x^i) \neq v(a_i x^j).$

• $v(x-y) \neq \min\{v(x), v(y)\} \Leftrightarrow v(x-y) > v(x) = v(y)$

・ロト・(型ト・(ヨト・(ヨト・)の())

A valued field is given by a field *K*, an ordered abelian group Γ , a surjective group homomorphism $v : K^{\times} \to \Gamma$, such that $v(x - y) \ge \min\{v(x), v(y)\}$ (ultrametric triangle inequality). We extend *v* on *K* by setting $v(0) = \infty$, and we extend Γ to $\Gamma \cup \{\infty\}$.

In this talk (K, v) will denote a valued field. important properties:

•
$$v(1) = v(-1) = 0$$

•
$$v(x) \neq v(y) \Rightarrow v(x - y) = \min\{v(x), v(y)\}.$$

 \Rightarrow for a polynomial $P = \sum_i X^i a_i$ and $x \in K$,
 $v(P(x)) = \min_i\{v(x^i a_i)\} = \min_i\{iv(x) + v(a_i)\}$ if for all $i \neq j$ we have $v(a_j x^i) \neq v(a_i x^j).$

• $v(x-y) \neq \min\{v(x), v(y)\} \Leftrightarrow v(x-y) > v(x) = v(y)$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへの

A valued field is given by a field *K*, an ordered abelian group Γ , a surjective group homomorphism $v : K^{\times} \to \Gamma$, such that $v(x - y) \ge \min\{v(x), v(y)\}$ (ultrametric triangle inequality). We extend *v* on *K* by setting $v(0) = \infty$, and we extend Γ to $\Gamma \cup \{\infty\}$.

In this talk (K, v) will denote a valued field. important properties:

•
$$v(1) = v(-1) = 0$$

•
$$v(x) \neq v(y) \Rightarrow v(x - y) = \min\{v(x), v(y)\}.$$

 \Rightarrow for a polynomial $P = \sum_i X^i a_i$ and $x \in K$,
 $v(P(x)) = \min_i\{v(x^i a_i)\} = \min_i\{iv(x) + v(a_i)\}$ if for all $i \neq j$ we have $v(a_j x^i) \neq v(a_i x^j).$

• $v(x-y) \neq \min\{v(x), v(y)\} \Leftrightarrow v(x-y) > v(x) = v(y)$

A valued field is given by a field *K*, an ordered abelian group Γ , a surjective group homomorphism $v : K^{\times} \to \Gamma$, such that $v(x - y) \ge \min\{v(x), v(y)\}$ (ultrametric triangle inequality). We extend *v* on *K* by setting $v(0) = \infty$, and we extend Γ to $\Gamma \cup \{\infty\}$.

In this talk (K, v) will denote a valued field. important properties:

•
$$v(1) = v(-1) = 0$$

•
$$v(x) \neq v(y) \Rightarrow v(x - y) = \min\{v(x), v(y)\}.$$

 \Rightarrow for a polynomial $P = \sum_i X^i a_i$ and $x \in K$,
 $v(P(x)) = \min_i\{v(x^i a_i)\} = \min_i\{iv(x) + v(a_i)\}$ if for all
 $i \neq j$ we have $v(a_j x^i) \neq v(a_i x^j).$

• $v(x-y) \neq \min\{v(x), v(y)\} \Leftrightarrow v(x-y) > v(x) = v(y)$

A valued field is given by a field *K*, an ordered abelian group Γ , a surjective group homomorphism $v : K^{\times} \to \Gamma$, such that $v(x - y) \ge \min\{v(x), v(y)\}$ (ultrametric triangle inequality). We extend *v* on *K* by setting $v(0) = \infty$, and we extend Γ to $\Gamma \cup \{\infty\}$.

In this talk (K, v) will denote a valued field. important properties:

•
$$v(1) = v(-1) = 0$$

•
$$v(x) \neq v(y) \Rightarrow v(x - y) = \min\{v(x), v(y)\}.$$

 \Rightarrow for a polynomial $P = \sum_i X^i a_i$ and $x \in K$,
 $v(P(x)) = \min_i\{v(x^i a_i)\} = \min_i\{iv(x) + v(a_i)\}$ if for all
 $i \neq j$ we have $v(a_j x^i) \neq v(a_i x^j).$

• $v(x-y) \neq \min\{v(x), v(y)\} \Leftrightarrow v(x-y) > v(x) = v(y)$

• $v(x - y) > v(x) = v(y) \Leftrightarrow x = y \text{ modulo (with } \gamma = v(x))$ $K_{>\gamma} := \{z \in K \mid v(z) > \gamma\}$, that means by setting $K_{\geq \gamma} := \{z \in K, v(z) \ge \gamma\} x \text{ and } y \text{ have same residues in } K_{\geq \gamma}/K_{\geq \gamma}$

This information can be given by $k := K_{\geq 0}/K_{>0}$ which is a field, the **residue field of** *K*. In fact $K_{\geq 0}$ is a local ring denoted by \mathcal{O}_{v} , the **valuation ring** of (K, v), and $K_{>0}$ is its maximal ideal.

Characteristic of (K, v) := (char(K), char(k)). In this talk we are interested in equal characteristic (p, p) where $p \in \mathbb{P} \cup \{0\}$.

・ロン ・四 と ・ ヨ と ・ ヨ

• $v(x - y) > v(x) = v(y) \Leftrightarrow x = y \text{ modulo (with } \gamma = v(x))$ $K_{>\gamma} := \{z \in K \mid v(z) > \gamma\}$, that means by setting $K_{>\gamma} := \{z \in K, v(z) \ge \gamma\} x \text{ and } y \text{ have same residues in } K_{>\gamma}/K_{>\gamma}$

This information can be given by $k := K_{\geq 0}/K_{>0}$ which is a field, the **residue field of** *K*. In fact $K_{\geq 0}$ is a local ring denoted by \mathcal{O}_{v} , the **valuation ring** of (K, v), and $K_{>0}$ is its maximal ideal.

Characteristic of (K, v) := (char(K), char(k)). In this talk we are interested in equal characteristic (p, p) where $p \in \mathbb{P} \cup \{0\}$.

イロン 不得 とくほ とくほ とうほ

• $v(x - y) > v(x) = v(y) \Leftrightarrow x = y \text{ modulo (with } \gamma = v(x))$ $K_{>\gamma} := \{z \in K \mid v(z) > \gamma\}$, that means by setting $K_{>\gamma} := \{z \in K, v(z) \ge \gamma\} x \text{ and } y \text{ have same residues in } K_{>\gamma}/K_{>\gamma}$

This information can be given by $k := K_{\ge 0}/K_{>0}$ which is a field, the **residue field of** *K*. In fact $K_{\ge 0}$ is a local ring denoted by \mathcal{O}_v , the **valuation ring** of (K, v), and $K_{>0}$ is its maximal ideal.

Characteristic of (K, v) := (char(K), char(k)). In this talk we are interested in equal characteristic (p, p) where $p \in \mathbb{P} \cup \{0\}$.

イロン 不得 とくほ とくほ とうほ

•
$$v(x - y) > v(x) = v(y) \Leftrightarrow x = y$$
 modulo (with $\gamma = v(x)$)
 $K_{>\gamma} := \{z \in K \mid v(z) > \gamma\}$, that means by setting
 $K_{\geq \gamma} := \{z \in K, v(z) \ge \gamma\} x$ and y have same residues in
 $K_{\geq \gamma}/K_{\geq \gamma}$

This information can be given by $k := K_{\ge 0}/K_{>0}$ which is a field, the **residue field of** *K*. In fact $K_{\ge 0}$ is a local ring denoted by \mathcal{O}_v , the **valuation ring** of (K, v), and $K_{>0}$ is its maximal ideal.

Characteristic of (K, v) := (char(K), char(k)). In this talk we are interested in equal characteristic (p, p) where $p \in \mathbb{P} \cup \{0\}$.

イロト 不得 とくほ とくほ とうほ

•
$$v(x - y) > v(x) = v(y) \Leftrightarrow x = y \text{ modulo (with } \gamma = v(x))$$

 $K_{>\gamma} := \{z \in K \mid v(z) > \gamma\}$, that means by setting
 $K_{\ge \gamma} := \{z \in K, v(z) \ge \gamma\} x \text{ and } y \text{ have same residues in } K_{\ge \gamma}/K_{\ge \gamma}$

This information can be given by $k := K_{\ge 0}/K_{>0}$ which is a field, the **residue field of** *K*. In fact $K_{\ge 0}$ is a local ring denoted by \mathcal{O}_v , the **valuation ring** of (K, v), and $K_{>0}$ is its maximal ideal.

Characteristic of (K, v) := (char(K), char(k)). In this talk we are interested in equal characteristic (p, p) where $p \in \mathbb{P} \cup \{0\}$.

イロト 不得 とくほ とくほ とうほ

• $v(x - y) > v(x) = v(y) \Leftrightarrow x = y \text{ modulo (with } \gamma = v(x))$ $K_{>\gamma} := \{z \in K \mid v(z) > \gamma\}$, that means by setting $K_{\ge \gamma} := \{z \in K, v(z) \ge \gamma\} x \text{ and } y \text{ have same residues in } K_{\ge \gamma}/K_{\ge \gamma}$

This information can be given by $k := K_{\ge 0}/K_{>0}$ which is a field, the residue field of K. In fact $K_{\ge 0}$ is a local ring denoted by \mathcal{O}_{v} , the valuation ring of (K, v), and $K_{>0}$ is its maximal ideal.

Characteristic of (K, v) := (char(K), char(k)). In this talk we are interested in equal characteristic (p, p) where $p \in \mathbb{P} \cup \{0\}$.

イロン 不得 とくほ とくほ とうほう

• $v(x - y) > v(x) = v(y) \Leftrightarrow x = y \text{ modulo (with } \gamma = v(x))$ $K_{>\gamma} := \{z \in K \mid v(z) > \gamma\}$, that means by setting $K_{\ge \gamma} := \{z \in K, v(z) \ge \gamma\} x \text{ and } y \text{ have same residues in } K_{\ge \gamma}/K_{\ge \gamma}$

This information can be given by $k := K_{\ge 0}/K_{>0}$ which is a field, the residue field of K. In fact $K_{\ge 0}$ is a local ring denoted by \mathcal{O}_{v} , the valuation ring of (K, v), and $K_{>0}$ is its maximal ideal.

Characteristic of (K, v) := (char(K), char(k)). In this talk we are interested in equal characteristic (p, p) where $p \in \mathbb{P} \cup \{0\}$.

イロン 不得 とくほ とくほ とうほう

• $v(x - y) > v(x) = v(y) \Leftrightarrow x = y \text{ modulo (with } \gamma = v(x))$ $K_{>\gamma} := \{z \in K \mid v(z) > \gamma\}$, that means by setting $K_{\ge \gamma} := \{z \in K, v(z) \ge \gamma\} x \text{ and } y \text{ have same residues in } K_{\ge \gamma}/K_{\ge \gamma}$

This information can be given by $k := K_{\geq 0}/K_{>0}$ which is a field, the **residue field of** K. In fact $K_{\geq 0}$ is a local ring denoted by \mathcal{O}_{v} , the **valuation ring** of (K, v), and $K_{>0}$ is its maximal ideal.

Characteristic of (K, v) := (char(K), char(k)). In this talk we are interested in equal characteristic (p, p) where $p \in \mathbb{P} \cup \{0\}$.

• $v(x - y) > v(x) = v(y) \Leftrightarrow x = y \text{ modulo (with } \gamma = v(x))$ $K_{>\gamma} := \{z \in K \mid v(z) > \gamma\}$, that means by setting $K_{\ge \gamma} := \{z \in K, v(z) \ge \gamma\} x \text{ and } y \text{ have same residues in } K_{\ge \gamma}/K_{\ge \gamma}$

This information can be given by $k := K_{\geq 0}/K_{>0}$ which is a field, the **residue field of** K. In fact $K_{\geq 0}$ is a local ring denoted by \mathcal{O}_{v} , the **valuation ring** of (K, v), and $K_{>0}$ is its maximal ideal.

Characteristic of (K, v) := (char(K), char(k)). In this talk we are interested in equal characteristic (p, p) where $p \in \mathbb{P} \cup \{0\}$.

•
$$v(x - y) > v(x) = v(y) \Leftrightarrow x = y \text{ modulo (with } \gamma = v(x))$$

 $K_{>\gamma} := \{z \in K \mid v(z) > \gamma\}$, that means by setting
 $K_{\ge \gamma} := \{z \in K, v(z) \ge \gamma\} x \text{ and } y \text{ have same residues in } K_{\ge \gamma}/K_{\ge \gamma}$

This information can be given by $k := K_{\geq 0}/K_{>0}$ which is a field, the **residue field of** K. In fact $K_{\geq 0}$ is a local ring denoted by \mathcal{O}_{ν} , the **valuation ring** of (K, ν) , and $K_{>0}$ is its maximal ideal.

Characteristic of (K, v) := (char(K), char(k)). In this talk we are interested in equal characteristic (p, p) where $p \in \mathbb{P} \cup \{0\}$.

•
$$v(x - y) > v(x) = v(y) \Leftrightarrow x = y \text{ modulo (with } \gamma = v(x))$$

 $K_{>\gamma} := \{z \in K \mid v(z) > \gamma\}$, that means by setting
 $K_{\ge \gamma} := \{z \in K, v(z) \ge \gamma\} x \text{ and } y \text{ have same residues in } K_{\ge \gamma}/K_{\ge \gamma}$

This information can be given by $k := K_{\geq 0}/K_{>0}$ which is a field, the **residue field of** K. In fact $K_{\geq 0}$ is a local ring denoted by \mathcal{O}_{v} , the **valuation ring** of (K, v), and $K_{>0}$ is its maximal ideal.

Characteristic of (K, v) := (char(K), char(k)). In this talk we are interested in equal characteristic (p, p) where $p \in \mathbb{P} \cup \{0\}$.

(日)((国))(日)(日)(日)

•
$$v(x - y) > v(x) = v(y) \Leftrightarrow x = y \text{ modulo (with } \gamma = v(x))$$

 $K_{>\gamma} := \{z \in K \mid v(z) > \gamma\}$, that means by setting
 $K_{\ge \gamma} := \{z \in K, v(z) \ge \gamma\} x \text{ and } y \text{ have same residues in } K_{\ge \gamma}/K_{\ge \gamma}$

This information can be given by $k := K_{\geq 0}/K_{>0}$ which is a field, the **residue field of** K. In fact $K_{\geq 0}$ is a local ring denoted by \mathcal{O}_{v} , the **valuation ring** of (K, v), and $K_{>0}$ is its maximal ideal.

Characteristic of (K, v) := (char(K), char(k)). In this talk we are interested in equal characteristic (p, p) where $p \in \mathbb{P} \cup \{0\}$.

(日)((国))(日)(日)(日)

•
$$v(x - y) > v(x) = v(y) \Leftrightarrow x = y \text{ modulo (with } \gamma = v(x))$$

 $K_{>\gamma} := \{z \in K \mid v(z) > \gamma\}$, that means by setting
 $K_{\ge \gamma} := \{z \in K, v(z) \ge \gamma\} x \text{ and } y \text{ have same residues in } K_{\ge \gamma}/K_{\ge \gamma}$

This information can be given by $k := K_{\geq 0}/K_{>0}$ which is a field, the **residue field of** K. In fact $K_{\geq 0}$ is a local ring denoted by \mathcal{O}_{v} , the **valuation ring** of (K, v), and $K_{>0}$ is its maximal ideal.

Characteristic of (K, v) := (char(K), char(k)). In this talk we are interested in equal characteristic (p, p) where $p \in \mathbb{P} \cup \{0\}$.

(日)((国))(日)(日)(日)

Let *k* be a field, k(t) is valued by setting v(t) = 1, $v_{|k^{\times}} = 0$. Hahn Fields: for a field *k* and ordered abelian group Γ , we set: $k((\Gamma)) := \{\sum_{\gamma} a_{\gamma} t^{\gamma} \mid a_{\gamma} \in k, \{\gamma \mid a_{\gamma} \neq 0\} \text{ is well ordered}\}$ $v(\sum_{\gamma} a_{\gamma} t^{\gamma}) :=$ the first γ such that $a_{\gamma} \neq 0$: For example: Laurent Series $k((\mathbb{Z})) = \{\sum_{i=i_0}^{\infty} a_i t^i\}$, Puiseux series $\bigcup_{n>0} k((\frac{1}{n}\mathbb{Z}))$

イロン 不得 とくほ とくほ とうほ

Let *k* be a field, k(t) is valued by setting v(t) = 1, $v_{|k^{\times}} = 0$. Hahn Fields: for a field *k* and ordered abelian group Γ , we set: $k((\Gamma)) := \{\sum_{\gamma} a_{\gamma} t^{\gamma} \mid a_{\gamma} \in k, \{\gamma \mid a_{\gamma} \neq 0\}$ is well ordered} $v(\sum_{\gamma} a_{\gamma} t^{\gamma}) :=$ the first γ such that $a_{\gamma} \neq 0$: For example: Laurent Series $k((\mathbb{Z})) = \{\sum_{i=i_0}^{\infty} a_i t^i\}$, Puiseux series $\bigcup_{n>0} k((\frac{1}{n}\mathbb{Z}))$

イロン 不得 とくほ とくほ とうほ

Let *k* be a field, k(t) is valued by setting v(t) = 1, $v_{|k^{\times}} = 0$. Hahn Fields: for a field *k* and ordered abelian group Γ , we set: $k((\Gamma)) := \{\sum_{\gamma} a_{\gamma} t^{\gamma} \mid a_{\gamma} \in k, \{\gamma \mid a_{\gamma} \neq 0\} \text{ is well ordered}\}$ $v(\sum_{\gamma} a_{\gamma} t^{\gamma}) := \text{the first } \gamma \text{ such that } a_{\gamma} \neq 0 \text{ :}$ For example: *Laurent Series* $k((\mathbb{Z})) = \{\sum_{i=i_0}^{\infty} a_i t^i\}$, *Puiseux series* $\bigcup_{n>0} k((\frac{1}{n}\mathbb{Z}))$

<ロ> (四) (四) (三) (三) (三) (三)

Let *k* be a field, k(t) is valued by setting v(t) = 1, $v_{|k^{\times}} = 0$. Hahn Fields: for a field *k* and ordered abelian group Γ , we set: $k((\Gamma)) := \{\sum_{\gamma} a_{\gamma} t^{\gamma} \mid a_{\gamma} \in k, \{\gamma \mid a_{\gamma} \neq 0\}$ is well ordered} $v(\sum_{\gamma} a_{\gamma} t^{\gamma}) :=$ the first γ such that $a_{\gamma} \neq 0$: For example: Laurent Series $k((\mathbb{Z})) = \{\sum_{i=i_0}^{\infty} a_i t^i\}$, Puiseux series $\bigcup_{n>0} k((\frac{1}{n}\mathbb{Z}))$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ つへの

Let *k* be a field, k(t) is valued by setting v(t) = 1, $v_{|k^{\times}} = 0$. Hahn Fields: for a field *k* and ordered abelian group Γ , we set: $k((\Gamma)) := \{\sum_{\gamma} a_{\gamma} t^{\gamma} \mid a_{\gamma} \in k, \{\gamma \mid a_{\gamma} \neq 0\} \text{ is well ordered}\}$ $v(\sum_{\gamma} a_{\gamma} t^{\gamma}) :=$ the first γ such that $a_{\gamma} \neq 0$: For example: Laurent Series $k((\mathbb{Z})) = \{\sum_{i=i_0}^{\infty} a_i t^i\}$, Puiseux series $\bigcup_{n>0} k((\frac{1}{n}\mathbb{Z}))$

(日) (四) (モ) (モ) (モ)

Let *k* be a field, k(t) is valued by setting v(t) = 1, $v_{|k^{\times}} = 0$. Hahn Fields: for a field *k* and ordered abelian group Γ , we set: $k((\Gamma)) := \{\sum_{\gamma} a_{\gamma} t^{\gamma} \mid a_{\gamma} \in k, \{\gamma \mid a_{\gamma} \neq 0\} \text{ is well ordered}\}$ $v(\sum_{\gamma} a_{\gamma} t^{\gamma}) :=$ the first γ such that $a_{\gamma} \neq 0$: For example: *Laurent Series* $k((\mathbb{Z})) = \{\sum_{i=i_0}^{\infty} a_i t^i\}$, *Puiseux series* $\bigcup_{n>0} k((\frac{1}{n}\mathbb{Z}))$

イロン 不得 とくほ とくほ とうほ

Let *k* be a field, k(t) is valued by setting v(t) = 1, $v_{|k^{\times}} = 0$. Hahn Fields: for a field *k* and ordered abelian group Γ , we set: $k((\Gamma)) := \{\sum_{\gamma} a_{\gamma} t^{\gamma} \mid a_{\gamma} \in k, \{\gamma \mid a_{\gamma} \neq 0\}$ is well ordered} $v(\sum_{\gamma} a_{\gamma} t^{\gamma}) :=$ the first γ such that $a_{\gamma} \neq 0$: For example: *Laurent Series* $k((\mathbb{Z})) = \{\sum_{i=i_0}^{\infty} a_i t^i\}$, *Puiseux series* $\bigcup_{n>0} k((\frac{1}{n}\mathbb{Z}))$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let (K, v) be a valued field. A couple of functions (f, f_v) where $f : K \to K$ and $f_v : v(K) \to v(K)$ is said to be **compatible** if $v \circ f = f_v \circ v$.

Example Monomials: $(M : x \mapsto ax^k, M : \gamma \mapsto v(a) + k\gamma)$

<ロ> <四> <四> <四> <三</td>

Let (K, v) be a valued field. A couple of functions (f, f_v) where $f: K \to K$ and $f_v: v(K) \to v(K)$ is said to be **compatible** if $v \circ f = f_v \circ v$.

Example Monomials: $(M : x \mapsto ax^k, M : \gamma \mapsto v(a) + k\gamma)$

<ロ> <四> <四> <四> <三</td>

Let (K, v) be a valued field. A couple of functions (f, f_v) where $f : K \to K$ and $f_v : v(K) \to v(K)$ is said to be **compatible** if $v \circ f = f_v \circ v$.

Example Monomials: $(M : x \mapsto ax^k, M : \gamma \mapsto v(a) + k\gamma)$

<ロン <回と < 注入 < 注入 < 注入 = 注

Let (K, v) be a valued field. A couple of functions (f, f_v) where $f : K \to K$ and $f_v : v(K) \to v(K)$ is said to be **compatible** if $v \circ f = f_v \circ v$.

Example Monomials: $(M : x \mapsto ax^k, M : \gamma \mapsto v(a) + k\gamma)$

イロト 不得 とくほ とくほ とうほ

- If σ ∈ Aut(K) with σ(O_v) = O_v then σ induces automorphisms: σ_v on v(K) and σ̄ on k; (σ, σ_v) is compatible and σ_v strickly increasing
- $(k, \bar{\sigma})$ is a difference field

In this case we say that (K, v, σ) is a valued difference field. Several people studied valued difference fields, Bélair-Machintyre-Scanlon, Bélair-Point, Point, Durhan, Pal ...

- If σ ∈ Aut(K) with σ(O_v) = O_v then σ induces automorphisms: σ_v on v(K) and σ̄ on k; (σ, σ_v) is compatible and σ_v strickly increasing
- $(k, \bar{\sigma})$ is a difference field

In this case we say that (K, v, σ) is a valued difference field. Several people studied valued difference fields, Bélair-Machintyre-Scanlon, Bélair-Point, Point, Durhan, Pal ...

- If σ ∈ Aut(K) with σ(O_v) = O_v then σ induces automorphisms: σ_v on v(K) and σ̄ on k; (σ, σ_v) is compatible and σ_v strickly increasing
- $(k, \bar{\sigma})$ is a difference field

In this case we say that (K, v, σ) is a valued difference field. Several people studied valued difference fields, Bélair-Machintyre-Scanlon, Bélair-Point, Point, Durhan, Pal ...

- If σ ∈ Aut(K) with σ(O_v) = O_v then σ induces automorphisms: σ_v on v(K) and σ̄ on k; (σ, σ_v) is compatible and σ_v strickly increasing
- $(k, \bar{\sigma})$ is a difference field

In this case we say that (K, v, σ) is a **valued difference field**. Several people studied valued difference fields, Bélair-Machintyre-Scanlon, Bélair-Point, Point, Durhan, Pal...

- If σ ∈ Aut(K) with σ(O_v) = O_v then σ induces automorphisms: σ_v on v(K) and σ̄ on k; (σ, σ_v) is compatible and σ_v strickly increasing
- $(k, \bar{\sigma})$ is a difference field

In this case we say that (K, v, σ) is a **valued difference field**. Several people studied valued difference fields, Bélair-Machintyre-Scanlon, Bélair-Point, Point, Durhan, Pal ...

 σ **-polynomials:** A finite sum of σ -monomials which are of the form

$$M: x \mapsto ax^{i_0}(\sigma(x))^{i_1}\dots(\sigma^n(x))^{i_n},$$

where *a* is said to be the **coefficient** of *M* and the n + 1-tuple $(i_0, i_1, ..., i_n)$ be the **index** of *M*, denoted by ind(M). We consider n + 1 tuples of integers under the partial ordering induced by \mathbb{N} .

Remark

For $\gamma \in v(K)$, and $x \in K$ with $v(x) = \gamma$, by setting $\gamma \cdot M_j = v(a_j x^{i_0}(\sigma(x))^{i_1} \dots (\sigma^n(x))^{i_n}) = v(a_j) + \sum_{j=0}^n i_j \sigma_v^j(\gamma)$, each $(M_j, \cdot M_j)$ is compatible, $\cdot M_j$ is increasing.

With the action of $\{\cdot M \mid M \text{ a } \sigma$ -monomial with coefficient 1}, $v(K^{\times})$ is a $\mathbb{Z}[\sigma]$ -module.

イロト イポト イヨト イヨト 三日

 σ -polynomials: A finite sum of σ -monomials which are of the form

$$M: x \mapsto ax^{i_0}(\sigma(x))^{i_1}\dots(\sigma^n(x))^{i_n},$$

where *a* is said to be the **coefficient** of *M* and the n + 1-tuple $(i_0, i_1, ..., i_n)$ be the **index** of *M*, denoted by ind(M). We consider n + 1 tuples of integers under the partial ordering induced by \mathbb{N} .

Remark

For $\gamma \in v(K)$, and $x \in K$ with $v(x) = \gamma$, by setting $\gamma \cdot M_j = v(a_j x^{i_0}(\sigma(x))^{i_1} \dots (\sigma^n(x))^{i_n}) = v(a_j) + \sum_{j=0}^n i_j \sigma_v^j(\gamma)$, each $(M_j, \cdot M_j)$ is compatible, $\cdot M_j$ is increasing.

With the action of $\{\cdot M \mid M \text{ a } \sigma$ -monomial with coefficient 1}, $v(K^{\times})$ is a $\mathbb{Z}[\sigma]$ -module.

イロト イポト イヨト イヨト 三日

 σ -polynomials: A finite sum of σ -monomials which are of the form

$$M: x \mapsto ax^{i_0}(\sigma(x))^{i_1} \dots (\sigma^n(x))^{i_n},$$

where *a* is said to be the **coefficient** of *M* and the n + 1-tuple (i_0, i_1, \ldots, i_n) be the **index** of *M*, denoted by ind(M). We consider n + 1 tuples of integers under the partial ordering induced by \mathbb{N} .

Remark

For $\gamma \in v(K)$, and $x \in K$ with $v(x) = \gamma$, by setting $\gamma \cdot M_j = v(a_j x^{i_0}(\sigma(x))^{i_1} \dots (\sigma^n(x))^{i_n}) = v(a_j) + \sum_{j=0}^n i_j \sigma_v^j(\gamma)$, each $(M_j, \cdot M_j)$ is compatible, $\cdot M_j$ is increasing.

With the action of $\{\cdot M \mid M \text{ a } \sigma$ -monomial with coefficient 1}, $v(K^{\times})$ is a $\mathbb{Z}[\sigma]$ -module.

 σ -polynomials: A finite sum of σ -monomials which are of the form

$$M: x \mapsto ax^{i_0}(\sigma(x))^{i_1} \dots (\sigma^n(x))^{i_n},$$

where *a* is said to be the **coefficient** of *M* and the n + 1-tuple (i_0, i_1, \ldots, i_n) be the **index** of *M*, denoted by ind(M). We consider n + 1 tuples of integers under the partial ordering induced by \mathbb{N} .

Remark

For $\gamma \in v(K)$, and $x \in K$ with $v(x) = \gamma$, by setting $\gamma \cdot M_j = v(a_j x^{i_0}(\sigma(x))^{i_1} \dots (\sigma^n(x))^{i_n}) = v(a_j) + \sum_{j=0}^n i_j \sigma_v^j(\gamma)$, each $(M_j, \cdot M_j)$ is compatible, $\cdot M_j$ is increasing.

With the action of $\{\cdot M \mid M \text{ a } \sigma$ -monomial with coefficient 1}, $v(K^{\times})$ is a $\mathbb{Z}[\sigma]$ -module.

 σ -polynomials: A finite sum of σ -monomials which are of the form

$$M: x \mapsto ax^{i_0}(\sigma(x))^{i_1}\dots(\sigma^n(x))^{i_n},$$

where *a* is said to be the **coefficient** of *M* and the n + 1-tuple (i_0, i_1, \ldots, i_n) be the **index** of *M*, denoted by ind(M). We consider n + 1 tuples of integers under the partial ordering induced by \mathbb{N} .

Remark

For $\gamma \in v(K)$, and $x \in K$ with $v(x) = \gamma$, by setting $\gamma \cdot M_j = v(a_j x^{i_0}(\sigma(x))^{i_1} \dots (\sigma^n(x))^{i_n}) = v(a_j) + \sum_{j=0}^n i_j \sigma_v^j(\gamma)$, each $(M_j, \cdot M_j)$ is compatible, $\cdot M_j$ is increasing.

With the action of $\{\cdot M \mid M \text{ a } \sigma$ -monomial with coefficient 1}, $v(K^{\times})$ is a $\mathbb{Z}[\sigma]$ -module.

- $(k, \bar{\sigma}) \equiv (k', \bar{\sigma'})$ as difference fields and
- $v(K) \equiv v(K')$ as $\mathbb{Z}[\sigma]$ -modules

then $(K, v, \sigma) \equiv (K', v', \sigma')$ as valued difference fields.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

- $(k, \bar{\sigma}) \equiv (k', \bar{\sigma'})$ as difference fields and
- $v(K) \equiv v(K')$ as $\mathbb{Z}[\sigma]$ -modules

then $(K, v, \sigma) \equiv (K', v', \sigma')$ as valued difference fields.

(日)

- $(k, \bar{\sigma}) \equiv (k', \bar{\sigma'})$ as difference fields and
- $v(K) \equiv v(K')$ as $\mathbb{Z}[\sigma]$ -modules

then $(K, v, \sigma) \equiv (K', v', \sigma')$ as valued difference fields.

(日)

•
$$(k, \bar{\sigma}) \equiv (k', \bar{\sigma'})$$
 as difference fields and

•
$$v(K) \equiv v(K')$$
 as $\mathbb{Z}[\sigma]$ -modules

then $(K, v, \sigma) \equiv (K', v', \sigma')$ as valued difference fields.

(日)

For $P = \sum_{j} M_{j}$ a σ -polynomial and for $\gamma \in \Gamma$ we set $\gamma \cdot P := \min_{j} \{\gamma \cdot M_{j}\}$!: $(P, \cdot P)$ is in general not a compatible couple: if x a non-zero root of P, $v(P(x)) = \infty > v(x) \cdot P$.

For $P = \sum_{j} M_{j}$ a σ -polynomial and for $\gamma \in \Gamma$ we set $\gamma \cdot P := \min_{j} \{\gamma \cdot M_{j}\}$ **!:** $(P, \cdot P)$ is in general not a compatible couple: if *x* a non-zero root of *P*, $v(P(x)) = \infty > v(x) \cdot P$.

(ロ) (四) (ヨ) (ヨ) (ヨ)

For
$$P = \sum_{j} M_{j}$$
 a σ -polynomial and for $\gamma \in \Gamma$ we set
 $\gamma \cdot P := \min_{j} \{\gamma \cdot M_{j}\}$
!: $(P, \cdot P)$ is in general not a compatible couple: if x a non-zero
root of P , $v(P(x)) = \infty > v(x) \cdot P$.

<ロ> (四) (四) (注) (三) (三)

For
$$P = \sum_{j} M_{j}$$
 a σ -polynomial and for $\gamma \in \Gamma$ we set
 $\gamma \cdot P := \min_{j} \{\gamma \cdot M_{j}\}$
!: $(P, \cdot P)$ is in general not a compatible couple: if x a non-zero
root of P , $v(P(x)) = \infty > v(x) \cdot P$.

<ロ> (四) (四) (注) (三) (三)

An element $a \in K$ is said to be **regular** for a (σ -) polynomial P, if $v(P(a)) = v(a) \cdot P$, otherwise we say that it is irregular.

Remark

A "regular non-zero root" does not make sense and 0 is always a regular root of any polynomial without constant term.

We will consider polynomials without constant term and equations of type P(x) = b ($b \neq 0$) and say that "*a* is a regular solution" if P(a) = b with *a* regular for *P*.

An element $a \in K$ is said to be **regular** for a (σ -) polynomial P, if $v(P(a)) = v(a) \cdot P$, otherwise we say that it is irregular.

Remark

A "regular non-zero root" does not make sense and 0 is always a regular root of any polynomial without constant term.

We will consider polynomials without constant term and equations of type P(x) = b ($b \neq 0$) and say that "*a* is a regular solution" if P(a) = b with *a* regular for *P*.

(日本)(四本)(日本)(日本)

A linear σ -polynomial is one of the form:

 $a_n\sigma^n(x)+\cdots+a_1x.$

If (K, v) is of characteristic (p, p) (p > 0), and perfect, then (K, v) is already a difference valued field with *Frob* : $x \mapsto x^p$ An **additive polynomial** is an linear Frob-polynomial, i.e. is of the form:

 $a_n p^n(x) + \cdots + a_1 x$

Definition

A valued field (K, v) is said to be **Kaplansky** if v(K) is *p*-divisible and if every equation of the form P(x) = b where $P \in k[X]$, is additive, has solutions in *k*; it is said to be algebraically maximal if it has no proper algebraic extension with same residue field and same value group (that is it has no *immediate* algebraic extension).

A linear σ -polynomial is one of the form: $a_n \sigma^n(x) + \cdots + a_1 x$.

If (K, v) is of characteristic (p, p) (p > 0), and perfect, then (K, v) is already a difference valued field with *Frob* : $x \mapsto x^p$ An **additive polynomial** is an linear Frob-polynomial, i.e. is of the form:

 $a_n p^n(x) + \cdots + a_1 x$

Definition

A valued field (K, v) is said to be **Kaplansky** if v(K) is *p*-divisible and if every equation of the form P(x) = b where $P \in k[X]$, is additive, has solutions in *k*; it is said to be algebraically maximal if it has no proper algebraic extension with same residue field and same value group (that is it has no *immediate* algebraic extension).

A linear σ -polynomial is one of the form: $a_n \sigma^n(x) + \cdots + a_1 x$.

If (K, v) is of characteristic (p, p) (p > 0), and perfect, then (K, v) is already a difference valued field with $Frob : x \mapsto x^p$ An **additive polynomial** is an linear Frob-polynomial, i.e. is of the form: $a_n p^n(x) + \cdots + a_1 x$

Definition

A valued field (K, v) is said to be **Kaplansky** if v(K) is *p*-divisible and if every equation of the form P(x) = b where $P \in k[X]$, is additive, has solutions in *k*; it is said to be algebraically maximal if it has no proper algebraic extension with same residue field and same value group (that is it has no *immediate* algebraic extension).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

A linear σ -polynomial is one of the form: $a_n \sigma^n(x) + \cdots + a_1 x$.

If (K, v) is of characteristic (p, p) (p > 0), and perfect, then (K, v) is already a difference valued field with *Frob* : $x \mapsto x^p$ An **additive polynomial** is an linear Frob-polynomial, i.e. is of the form:

 $a_n p^n(x) + \cdots + a_1 x$

Definition

A valued field (K, v) is said to be **Kaplansky** if v(K) is *p*-divisible and if every equation of the form P(x) = b where $P \in k[X]$, is additive, has solutions in *k*; it is said to be algebraically maximal if it has no proper algebraic extension with same residue field and same value group (that is it has no *immediate* algebraic extension).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

A linear σ -polynomial is one of the form: $a_n \sigma^n(x) + \cdots + a_1 x$.

If (K, v) is of characteristic (p, p) (p > 0), and perfect, then (K, v) is already a difference valued field with $Frob : x \mapsto x^p$ An **additive polynomial** is an linear Frob-polynomial, i.e. is of the form:

 $a_n p^n(x) + \cdots + a_1 x$

Definition

A valued field (K, v) is said to be **Kaplansky** if v(K) is *p*-divisible and if every equation of the form P(x) = b where $P \in k[X]$, is additive, has solutions in *k*; it is said to be algebraically maximal if it has no proper algebraic extension with same residue field and same value group (that is it has no *immediate* algebraic extension).

ъ

ヘロン ヘアン ヘビン ヘビン

A linear σ -polynomial is one of the form: $a_n \sigma^n(x) + \cdots + a_1 x$.

If (K, v) is of characteristic (p, p) (p > 0), and perfect, then (K, v) is already a difference valued field with $Frob : x \mapsto x^p$ An **additive polynomial** is an linear Frob-polynomial, i.e. is of the form:

 $a_n p^n(x) + \cdots + a_1 x$

Definition

A valued field (K, v) is said to be **Kaplansky** if v(K) is *p*-divisible and if every equation of the form P(x) = b where $P \in k[X]$, is additive, has solutions in *k*; it is said to be algebraically maximal if it has no proper algebraic extension with same residue field and same value group (that is it has no *immediate* algebraic extension).

ъ

ヘロン ヘアン ヘビン ヘビン

Algebraically maximal Kaplansky fields are nice: We have (A-K,E) principle for algebraically maximal Kaplansky fields.

Algebraically maximal Kaplansky fields are nice: We have (A-K,E) principle for algebraically maximal Kaplansky fields.

Two very similar caracterization of algebraically maximal Kaplasky fields

Theorem (O.)

A Kaplansky field is algebraically maximal if and only if every equation of the form P(x) = b ($b \neq 0$), where $P \in K[X]$ is additive, has a regular solution.

Theorem (Durhan)

A Kaplansky field is algebraically maximal if and only if it is phenselian.

Two very similar caracterization of algebraically maximal Kaplasky fields

Theorem (O.)

A Kaplansky field is algebraically maximal if and only if every equation of the form P(x) = b ($b \neq 0$), where $P \in K[X]$ is additive, has a regular solution.

Theorem (Durhan)

A Kaplansky field is algebraically maximal if and only if it is *p*-henselian.

Two very similar caracterization of algebraically maximal Kaplasky fields

Theorem (O.)

A Kaplansky field is algebraically maximal if and only if every equation of the form P(x) = b ($b \neq 0$), where $P \in K[X]$ is additive, has a regular solution.

Theorem (Durhan)

A Kaplansky field is algebraically maximal if and only if it is *p*-henselian.

Problem : Jump values $Jump(P) := \{v(x) \mid x \text{ irregular for } P\}$ **example:** Take $P(X) := X^p - X$, $K := \mathbb{F}_p(t)$. $Jump(P) = \{0\}$ and every $x \in K$ with v(x) = 0 is irregular. Jump(P) is finite $\Rightarrow P$ is "continious" :

for every pseudo-Cauchy (p.c.) sequence $(a_{\rho})_{\rho}$ in *K*, with a limit $a, (P(a_{\rho}))_{\rho}$ has limit P(a).

If $P \in K[X]$ or if P is any σ -polynomial with σ contractive $(:\sigma_v(\gamma) > n\gamma \text{ for all } \gamma > 0 \text{ and } n \in \mathbb{N})$ then Jump(P) is finite.

if σ is not contractive this can be drastically false: beacause $a_{\rho+1} - a_{\rho}$ can be always irregular for *P*.

Problem : Jump values $Jump(P) := \{v(x) \mid x \text{ irregular for } P\}$ **example:** Take $P(X) := X^p - X$, $K := \mathbb{F}_p(t)$. $Jump(P) = \{0\}$ and every $x \in K$ with v(x) = 0 is irregular. Jump(P) is finite $\Rightarrow P$ is "continious" :

for every pseudo-Cauchy (p.c.) sequence $(a_{\rho})_{\rho}$ in K, with a limit a, $(P(a_{\rho}))_{\rho}$ has limit P(a).

If $P \in K[X]$ or if P is any σ -polynomial with σ contractive $(:\sigma_v(\gamma) > n\gamma \text{ for all } \gamma > 0 \text{ and } n \in \mathbb{N})$ then Jump(P) is finite.

if σ is not contractive this can be drastically false: beacause $a_{\rho+1} - a_{\rho}$ can be always irregular for *P*.

Problem : Jump values $Jump(P) := \{v(x) \mid x \text{ irregular for } P\}$ **example:** Take $P(X) := X^p - X$, $K := \mathbb{F}_p(t)$. $Jump(P) = \{0\}$ and every $x \in K$ with v(x) = 0 is irregular.

for every pseudo-Cauchy (p.c.) sequence $(a_{\rho})_{\rho}$ in *K*, with a limit a, $(P(a_{\rho}))_{\rho}$ has limit P(a).

If $P \in K[X]$ or if P is any σ -polynomial with σ contractive $(:\sigma_v(\gamma) > n\gamma \text{ for all } \gamma > 0 \text{ and } n \in \mathbb{N})$ then Jump(P) is finite.

if σ is not contractive this can be drastically false: beacause $a_{\rho+1} - a_{\rho}$ can be always irregular for *P*.

Problem : Jump values $Jump(P) := \{v(x) \mid x \text{ irregular for } P\}$ **example:** Take $P(X) := X^p - X$, $K := \mathbb{F}_p(t)$. $Jump(P) = \{0\}$ and every $x \in K$ with v(x) = 0 is irregular. Jump(P) is finite $\Rightarrow P$ is "continious" :

for every pseudo-Cauchy (p.c.) sequence $(a_{\rho})_{\rho}$ in K, with a limit a, $(P(a_{\rho}))_{\rho}$ has limit P(a).

If $P \in K[X]$ or if P is any σ -polynomial with σ contractive $(:\sigma_v(\gamma) > n\gamma \text{ for all } \gamma > 0 \text{ and } n \in \mathbb{N})$ then Jump(P) is finite.

if σ is not contractive this can be drastically false: beacause $a_{\rho+1} - a_{\rho}$ can be always irregular for *P*.

Problem : Jump values $Jump(P) := \{v(x) \mid x \text{ irregular for } P\}$ **example:** Take $P(X) := X^p - X$, $K := \mathbb{F}_p(t)$. $Jump(P) = \{0\}$ and every $x \in K$ with v(x) = 0 is irregular. Jump(P) is finite $\Rightarrow P$ is "continious" :

for every pseudo-Cauchy (p.c.) sequence $(a_{\rho})_{\rho}$ in *K*, with a limit *a*, $(P(a_{\rho}))_{\rho}$ has limit P(a).

If $P \in K[X]$ or if *P* is any σ -polynomial with σ contractive $(:\sigma_v(\gamma) > n\gamma \text{ for all } \gamma > 0 \text{ and } n \in \mathbb{N})$ then Jump(P) is finite.

if σ is not contractive this can be drastically false: beacause $a_{\rho+1} - a_{\rho}$ can be always irregular for *P*.

Problem : Jump values $Jump(P) := \{v(x) \mid x \text{ irregular for } P\}$ **example:** Take $P(X) := X^p - X$, $K := \mathbb{F}_p(t)$. $Jump(P) = \{0\}$ and every $x \in K$ with v(x) = 0 is irregular. Jump(P) is finite $\Rightarrow P$ is "continious" :

for every pseudo-Cauchy (p.c.) sequence $(a_{\rho})_{\rho}$ in *K*, with a limit *a*, $(P(a_{\rho}))_{\rho}$ has limit P(a).

If $P \in K[X]$ or if P is any σ -polynomial with σ contractive $(:\sigma_v(\gamma) > n\gamma \text{ for all } \gamma > 0 \text{ and } n \in \mathbb{N})$ then Jump(P) is finite.

if σ is not contractive this can be drastically false: beacause $a_{\rho+1} - a_{\rho}$ can be always irregular for *P*.

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへの

Problem : Jump values $Jump(P) := \{v(x) \mid x \text{ irregular for } P\}$ **example:** Take $P(X) := X^p - X$, $K := \mathbb{F}_p(t)$. $Jump(P) = \{0\}$ and every $x \in K$ with v(x) = 0 is irregular. Jump(P) is finite $\Rightarrow P$ is "continious" :

for every pseudo-Cauchy (p.c.) sequence $(a_{\rho})_{\rho}$ in *K*, with a limit *a*, $(P(a_{\rho}))_{\rho}$ has limit P(a).

If $P \in K[X]$ or if P is any σ -polynomial with σ contractive $(:\sigma_v(\gamma) > n\gamma \text{ for all } \gamma > 0 \text{ and } n \in \mathbb{N})$ then Jump(P) is finite.

if σ is not contractive this can be drastically false: beacause $a_{\rho+1} - a_{\rho}$ can be always irregular for *P*.

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへの

Problem : Jump values $Jump(P) := \{v(x) \mid x \text{ irregular for } P\}$ **example:** Take $P(X) := X^p - X$, $K := \mathbb{F}_p(t)$. $Jump(P) = \{0\}$ and every $x \in K$ with v(x) = 0 is irregular. Jump(P) is finite $\Rightarrow P$ is "continious" :

for every pseudo-Cauchy (p.c.) sequence $(a_{\rho})_{\rho}$ in *K*, with a limit *a*, $(P(a_{\rho}))_{\rho}$ has limit P(a).

If $P \in K[X]$ or if P is any σ -polynomial with σ contractive $(:\sigma_v(\gamma) > n\gamma \text{ for all } \gamma > 0 \text{ and } n \in \mathbb{N})$ then Jump(P) is finite.

if σ is not contractive this can be drastically false: beacause $a_{\rho+1} - a_{\rho}$ can be always irregular for *P*.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

We suppose $\overline{\sigma}^n \neq Id$ on k, for all $n \in \mathbb{N} \setminus \{0\}$.

_emma

Given a p.c. sequence $(a_{\rho})_{\rho}$ in K, $a \in K$, such that $(a_{\rho})_{\rho}$ converges to a and a σ -polynomial P, we can find a p.c. sequence $(b_{\lambda})_{\lambda}$ such that $(a_{\rho})_{\rho}$ and $(b_{\lambda})_{\lambda}$ have same limits , $(P(b_{\rho}))_{\rho}$ converges to P(a).

Proof.

(Main trick) Using above assumption we can find $(b_{\lambda})_{\lambda}$ such that $b_{\lambda+1} - b_{\lambda}$ is eventually regular for *P*.

Solution

We suppose $\overline{\sigma}^n \neq Id$ on k, for all $n \in \mathbb{N} \setminus \{0\}$.

Lemma

Given a p.c. sequence $(a_{\rho})_{\rho}$ in K, $a \in K$, such that $(a_{\rho})_{\rho}$ converges to a and a σ -polynomial P, we can find a p.c. sequence $(b_{\lambda})_{\lambda}$ such that $(a_{\rho})_{\rho}$ and $(b_{\lambda})_{\lambda}$ have same limits, $(P(b_{\rho}))_{\rho}$ converges to P(a).

Proof.

(Main trick) Using above assumption we can find $(b_{\lambda})_{\lambda}$ such that $b_{\lambda+1} - b_{\lambda}$ is eventually regular for *P*.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

We need more...

From now on we consider the case of equal characteristic (0,0).

Definition

Given a σ -polynomial *P* we denote Lin(P) the σ -linear part of *P*. Let $a \in K$, we say that (P, a) is in σ -hensel configuration if there exists $\gamma \in \Gamma$ such that

$$v(P(a)) = \gamma \cdot Lin(P)$$

2 $\gamma \cdot M < \gamma \cdot M'$ whenever M, M' are monomials of P such that $(0, ..., 0) \neq ind(M) < ind(M')$.

Definition

We say that an valued difference field extension of (K, v, σ) is σ -algebraic if all its elements are given by roots of σ -polynomials. (K, v, σ) is said to be σ -algebraically maximal if it has no proper valued difference σ -algebraic extension with same residue field and same value group.

Suppose that (K, v, σ) is σ -algebraically maximal and $(k, \overline{\sigma})$ is linearly difference closed, that is: for every $\overline{\sigma}$ -linear Q, and $c \in k$ the equation Q(x) = c has solution in k. Conclusion: For every σ -polynomial P and $b \in K^{\times}$ if for some $a \in K$ such that v(P(a)) = b, (P, a) is in σ -hensel configuration then there is a regular solution of the equation P(x) = b.

Definition

 (K, v, σ) is said to be σ -henselian if the conclusion of the above lemma holds.

ヘロン ヘアン ヘビン ヘビン

Suppose that (K, v, σ) is σ -algebraically maximal and $(k, \overline{\sigma})$ is linearly difference closed, that is: for every $\overline{\sigma}$ -linear Q, and $c \in k$ the equation Q(x) = c has solution in k. Conclusion: For every σ -polynomial P and $b \in K^{\times}$ if for some $a \in K$ such that v(P(a)) = b, (P, a) is in σ -hensel configuration then there is a regular solution of the equation P(x) = b.

Definition

 (K, v, σ) is said to be σ -henselian if the conclusion of the above lemma holds.

Suppose that (K, v, σ) is σ -algebraically maximal and $(k, \overline{\sigma})$ is **linearly difference closed**, that is: for every $\overline{\sigma}$ -linear Q, and $c \in k$ the equation Q(x) = c has solution in k. Conclusion: For every σ -polynomial P and $b \in K^{\times}$ if for some

 $a \in K$ such that v(P(a)) = b, (P, a) is in σ -hensel configuratio then there is a regular solution of the equation P(x) = b.

Definition

 (K, v, σ) is said to be σ -henselian if the conclusion of the above lemma holds.

Suppose that (K, v, σ) is σ -algebraically maximal and $(k, \bar{\sigma})$ is **linearly difference closed**, that is: for every $\bar{\sigma}$ -linear Q, and $c \in k$ the equation Q(x) = c has solution in k. **Conclusion:** For every σ -polynomial P and $b \in K^{\times}$ if for some $a \in K$ such that v(P(a)) = b, (P, a) is in σ -hensel configuration then there is a regular solution of the equation P(x) = b.

Definition

 (K, v, σ) is said to be σ -henselian if the conclusion of the above lemma holds.

- All σ-algebraically maximal extensions of a valued difference field with a linearly difference closed residue field are isomorphic.
- (A-K,E) principle for holds for the class of *σ*-henselian valued difference fields of characteristic (0,0) with linearly difference closed residue field.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- All σ-algebraically maximal extensions of a valued difference field with a linearly difference closed residue field are isomorphic.
- (A-K,E) principle for holds for the class of *σ*-henselian valued difference fields of characteristic (0,0) with linearly difference closed residue field.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ