Valued Difference Fields

Gönenç Onay (joint with S.Durhan)

Mimar Sinan Güzel Sanatlar Üniversitesi
Université Paris Diderot
14. Antalya Cebir Günleri 20.05.12 / Çeşme

Valued Fields

A valued field is given by a field K, an ordered abelian group Γ, a surjective group homomorphism $v: K^{\times} \rightarrow \Gamma$, such that $v(x-y) \geqslant \min \{v(x), v(y)\}$ (ultrametric triangle inequality). We extend v on K by setting $v(0)=\infty$, and we extend Γ to $\Gamma \cup\{\infty\}$

In this talk (K, v) will denote a valued field. important properties:

- $v(1)=v(-1)=0$
- $v(x) \neq v(y) \Rightarrow v(x-y)=\min \{v(x), v(y)\}$.
\Rightarrow for a polynomial $P=\sum_{i} X^{i} a_{i}$ and $x \in K$,
$v(P(x))=\min _{i}\left\{v\left(x^{i} a_{i}\right)\right\}=\min _{i}\left\{i v(x)+v\left(a_{i}\right)\right\}$ if for all $i \neq j$ we have $v\left(a_{j} x^{i}\right) \neq v\left(a_{i} x^{j}\right)$.
- $v(x-y) \neq \min \{v(x), v(y)\} \Leftrightarrow v(x-y)>v(x)=v(y)$

Valued Fields

A valued field is given by a field K, an ordered abelian group Γ, a surjective group homomorphism $v: K^{\times} \rightarrow \Gamma$, such that $v(x-y) \geqslant \min \{v(x), v(y)\}$ (ultrametric triangle inequality). We extend v on K by setting $v(0)=\infty$, and we extend Γ to $\Gamma \cup\{\infty\}$

In this talk (K, v) will denote a valued field. important properties:

```
- v(1)=v(-1)=0
- v(x) fv(y) =>v(x-y)= min{v(x),v(y)}
    for a polynomial }P=\mp@subsup{\sum}{i}{}\mp@subsup{X}{}{i}\mp@subsup{a}{i}{}\mathrm{ and }x\inK\mathrm{ ,
    v(P(x))=\mp@subsup{\operatorname{min}}{i}{}{v(\mp@subsup{x}{}{i}\mp@subsup{a}{i}{})}=\mp@subsup{m}{in}{i}{}{iv(x)+v(\mp@subsup{a}{i}{})}\mathrm{ if for all
    i\not=j we have v( }\mp@subsup{a}{j}{}\mp@subsup{x}{}{i})\not=v(\mp@subsup{a}{i}{}\mp@subsup{x}{}{j})
    - v(x-y)\not=\operatorname{min}{v(x),v(v)}\Leftrightarrowv(x-y)>v(x)=v(y)
```


Valued Fields

A valued field is given by a field K, an ordered abelian group Γ, a surjective group homomorphism $v: K^{\times} \rightarrow \Gamma$, such that $v(x-y) \geqslant \min \{v(x), v(y)\}$ We extend v on K by setting $v(0)=\infty$, and we extend Γ to $\Gamma \cup\{\infty\}$

In this talk (K, v) will denote a valued field. important properties:

$$
\text { e } v(1)=v(-1)=0
$$

$v(P(x))=\min _{i}\left\{v\left(x^{i} a_{i}\right)\right\}=\min _{i}\left\{i v(x)+v\left(a_{i}\right)\right\}$ if for all $i \neq j$ we have $v\left(a_{j} x^{i}\right) \neq v\left(a_{i} x^{j}\right)$.

Valued Fields

A valued field is given by a field K, an ordered abelian group Γ, a surjective group homomorphism $v: K^{\times} \rightarrow \Gamma$, such that $v(x-y) \geqslant \min \{v(x), v(y)\}$ (ultrametric triangle inequality). We extend v on K by setting $v(0)=\infty$, and we extend Γ to

In this talk (K, v) will denote a valued field. important properties:

$$
\text { - } v(1)=v(-1)=0
$$

$v(P(x))=\min _{i}\left\{v\left(x^{i} a_{i}\right)\right\}=\min _{i}\left\{i v(x)+v\left(a_{i}\right)\right\}$ if for all $i \neq j$ we have $v\left(a_{j} x^{i}\right) \neq v\left(a_{i} x^{j}\right)$.

Valued Fields

A valued field is given by a field K, an ordered abelian group Γ, a surjective group homomorphism $v: K^{\times} \rightarrow \Gamma$, such that $v(x-y) \geqslant \min \{v(x), v(y)\}$ (ultrametric triangle inequality). We extend v on K by setting $v(0)=\infty$, and we extend Γ to $\Gamma \cup\{\infty\}$.

In this talk (K, v) will denote a valued field. important properties:

\square

Valued Fields

A valued field is given by a field K, an ordered abelian group Γ, a surjective group homomorphism $v: K^{\times} \rightarrow \Gamma$, such that $v(x-y) \geqslant \min \{v(x), v(y)\}$ (ultrametric triangle inequality). We extend v on K by setting $v(0)=\infty$, and we extend Γ to $\Gamma \cup\{\infty\}$.

In this talk (K, v) will denote a valued field.
important properties:

Valued Fields

A valued field is given by a field K, an ordered abelian group Γ, a surjective group homomorphism $v: K^{\times} \rightarrow \Gamma$, such that $v(x-y) \geqslant \min \{v(x), v(y)\}$ (ultrametric triangle inequality). We extend v on K by setting $v(0)=\infty$, and we extend Γ to $\Gamma \cup\{\infty\}$.

In this talk (K, v) will denote a valued field. important properties:

- $v(1)=v(-1)=0$
- $v(x) \neq v(y) \Rightarrow v(x-y)=\min \{v(x), v(y)\}$.

Valued Fields

A valued field is given by a field K, an ordered abelian group Γ, a surjective group homomorphism $v: K^{\times} \rightarrow \Gamma$, such that $v(x-y) \geqslant \min \{v(x), v(y)\}$ (ultrametric triangle inequality). We extend v on K by setting $v(0)=\infty$, and we extend Γ to $\Gamma \cup\{\infty\}$.

In this talk (K, v) will denote a valued field. important properties:

- $v(1)=v(-1)=0$
- $v(x) \neq v(y) \Rightarrow v(x-y)=\min \{v(x), v(y)\}$. \Rightarrow for a polynomial $P=\sum_{i} X^{i} a_{i}$ and $x \in K$,
$i \neq j$ we have $v\left(a_{j} x^{i}\right) \neq v\left(a_{i} x^{j}\right)$

Valued Fields

A valued field is given by a field K, an ordered abelian group Γ, a surjective group homomorphism $v: K^{\times} \rightarrow \Gamma$, such that $v(x-y) \geqslant \min \{v(x), v(y)\}$ (ultrametric triangle inequality). We extend v on K by setting $v(0)=\infty$, and we extend Γ to $\Gamma \cup\{\infty\}$.

In this talk (K, v) will denote a valued field. important properties:

- $v(1)=v(-1)=0$
- $v(x) \neq v(y) \Rightarrow v(x-y)=\min \{v(x), v(y)\}$. \Rightarrow for a polynomial $P=\sum_{i} X^{i} a_{i}$ and $x \in K$, $v(P(x))=\min _{i}\left\{v\left(x^{i} a_{i}\right)\right\}=\min _{i}\left\{i v(x)+v\left(a_{i}\right)\right\}$

Valued Fields

A valued field is given by a field K, an ordered abelian group Γ, a surjective group homomorphism $v: K^{\times} \rightarrow \Gamma$, such that $v(x-y) \geqslant \min \{v(x), v(y)\}$ (ultrametric triangle inequality). We extend v on K by setting $v(0)=\infty$, and we extend Γ to $\Gamma \cup\{\infty\}$.

In this talk (K, v) will denote a valued field. important properties:

- $v(1)=v(-1)=0$
- $v(x) \neq v(y) \Rightarrow v(x-y)=\min \{v(x), v(y)\}$.
\Rightarrow for a polynomial $P=\sum_{i} X^{i} a_{i}$ and $x \in K$,
$v(P(x))=\min _{i}\left\{v\left(x^{i} a_{i}\right)\right\}=\min _{i}\left\{i v(x)+v\left(a_{i}\right)\right\}$ if for all $i \neq j$ we have $v\left(a_{j} x^{i}\right) \neq v\left(a_{i} x^{j}\right)$.

Valued Fields

A valued field is given by a field K, an ordered abelian group Γ, a surjective group homomorphism $v: K^{\times} \rightarrow \Gamma$, such that $v(x-y) \geqslant \min \{v(x), v(y)\}$ (ultrametric triangle inequality). We extend v on K by setting $v(0)=\infty$, and we extend Γ to $\Gamma \cup\{\infty\}$.

In this talk (K, v) will denote a valued field. important properties:

- $v(1)=v(-1)=0$
- $v(x) \neq v(y) \Rightarrow v(x-y)=\min \{v(x), v(y)\}$.
\Rightarrow for a polynomial $P=\sum_{i} X^{i} a_{i}$ and $x \in K$,
$v(P(x))=\min _{i}\left\{v\left(x^{i} a_{i}\right)\right\}=\min _{i}\left\{i v(x)+v\left(a_{i}\right)\right\}$ if for all $i \neq j$ we have $v\left(a_{j} x^{i}\right) \neq v\left(a_{i} x^{j}\right)$.
- $v(x-y) \neq \min \{v(x), v(y)\} \Leftrightarrow v(x-y)>v(x)=v(y)$

Valuation Ring and Residue Field

- $v(x-y)>v(x)=v(y) \Leftrightarrow x=y$ modulo (with $\gamma=v(x))$

$$
\begin{aligned}
& K_{>\gamma}:=\{z \in K \mid v(z)>\gamma\}, \text { that means by setting } \\
& K_{\geqslant \gamma}:=\{z \in K, v(z) \geqslant \gamma\} x \text { and } y \text { have same residues in } \\
& K_{\geqslant \gamma} / K_{\geqslant \gamma}
\end{aligned}
$$

This information can be given by $k:=K_{\geqslant 0} / K_{>0}$ which is a field the residue field of K. In fact $K_{\geqslant 0}$ is a local ring denoted by \mathcal{O}_{v}, the valuation ring of (K, v), and $K_{>0}$ is its maximal ideal.

Characteristic of $(K, v):=(\operatorname{char}(K), \operatorname{char}(k))$.
In this talk we are interested in equal characteristic (p, p) where $p \in \mathbb{P} \cup\{0\}$.

Valuation Ring and Residue Field

- $v(x-y)>v(x)=v(y) \Leftrightarrow x=y$ modulo (with $\gamma=v(x)$)

$$
\begin{aligned}
& K_{>\gamma}:=\{z \in K, v(z) \geqslant \gamma\} x \text { and } y \text { have same residues in }
\end{aligned}
$$

$$
K_{\geqslant \gamma} / K_{\geqslant \gamma}
$$

This information can be given by $k:=K_{\geqslant 0} / K_{>0}$ which is a field the residue field of K. In fact $K_{>0}$ is a local ring denoted by \mathcal{O}_{v}, the valuation ring of (K, v), and $K_{>0}$ is its maximal ideal.

Characteristic of $(K, v):=(\operatorname{char}(K), \operatorname{char}(k))$.
In this talk we are interested in equal characteristic (p, p) where $p \in \mathbb{P} \cup\{0\}$.

Valuation Ring and Residue Field

- $v(x-y)>v(x)=v(y) \Leftrightarrow x=y$ modulo (with $\gamma=v(x)$) $K_{>\gamma}:=\{z \in K \mid v(z)>\gamma\}$, that means by setting
$K_{\geqslant v}:=\{z \in K, v(z) \geqslant \gamma\} x$ and y have same residues in $K_{>r} / K_{\gg}$

This information can be given by $k:=K_{\geqslant 0} / K_{>0}$ which is a field the residue field of K. In fact $K_{\geqslant 0}$ is a local ring denoted by \mathcal{O}_{v}, the valuation ring of (K, v), and $K_{>0}$ is its maximal ideal.

Characteristic of $(K, v):=(\operatorname{char}(K), \operatorname{char}(k))$.
In this talk we are interested in equal characteristic (p, p) where $p \in \mathbb{P} \cup\{0\}$.

Valuation Ring and Residue Field

- $v(x-y)>v(x)=v(y) \Leftrightarrow x=y$ modulo (with $\gamma=v(x)$)
$K_{>\gamma}:=\{z \in K \mid v(z)>\gamma\}$, that means by setting $K_{\geqslant \gamma}:=\{z \in K, v(z) \geqslant \gamma\} \times$ and y have same residues in

This information can be given by $k:=K_{\geqslant 0} / K_{>0}$ which is a field the residue field of K. In fact $K_{\geqslant 0}$ is a local ring denoted by \mathcal{O}_{v}, the valuation ring of (K, v), and $K_{>0}$ is its maximal ideal.

Characteristic of $(K, v):=(\operatorname{char}(K), \operatorname{char}(k))$.
In this talk we are interested in equal characteristic (p, p) where $p \in \mathbb{P} \cup\{0\}$.

Valuation Ring and Residue Field

- $v(x-y)>v(x)=v(y) \Leftrightarrow x=y$ modulo (with $\gamma=v(x)$)
$K_{>\gamma}:=\{z \in K \mid v(z)>\gamma\}$, that means by setting
$K_{\geqslant \gamma}:=\{z \in K, v(z) \geqslant \gamma\} x$ and y have same residues in $K_{\geqslant \gamma} / K_{\geqslant \gamma}$

This information can be given by $k:=K_{\geqslant 0} / K_{>0}$ which is a field the residue field of K. In fact $K_{\geqslant 0}$ is a local ring denoted by \mathcal{O}_{v}, the valuation ring of (K, v), and $K_{>0}$ is its maximal ideal.

Characteristic of $(K, v):=(\operatorname{char}(K), \operatorname{char}(k))$.
In this talk we are interested in equal characteristic (p, p) where $p \in \mathbb{P} \cup\{0\}$

Valuation Ring and Residue Field

- $v(x-y)>v(x)=v(y) \Leftrightarrow x=y$ modulo (with $\gamma=v(x)$)
$K_{>\gamma}:=\{z \in K \mid v(z)>\gamma\}$, that means by setting $K_{\geqslant \gamma}:=\{z \in K, v(z) \geqslant \gamma\} x$ and y have same residues in $K_{\geqslant \gamma} / K_{\geqslant \gamma}$

This information can be given by $k:=K_{\geqslant 0} / K_{>0}$
the residue field of K. In fact $K \geqslant 0$ is a local ring denoted by
\mathcal{O}_{v}, the valuation ring of (K, v), and $K_{>0}$ is its maximal ideal.

Characteristic of $(K, v):=(\operatorname{char}(K), \operatorname{char}(k))$.
In this talk we are interested in equal characteristic (p, p) where $p \in \mathbb{P} \cup\{0\}$

Valuation Ring and Residue Field

- $v(x-y)>v(x)=v(y) \Leftrightarrow x=y$ modulo (with $\gamma=v(x)$) $K_{>\gamma}:=\{z \in K \mid v(z)>\gamma\}$, that means by setting $K_{\geqslant \gamma}:=\{z \in K, v(z) \geqslant \gamma\} x$ and y have same residues in $K_{\geqslant \gamma} / K_{\geqslant \gamma}$

This information can be given by $k:=K_{\geqslant 0} / K_{>0}$ which is a field the residue field of K. In fact $K_{\geqslant 0}$ is a local ring denoted by \mathcal{O}_{v}, the valuation ring of (K, v), and $K_{>0}$ is its maximal ideal.

Characteristic of $(K, v):=(\operatorname{char}(K), \operatorname{char}(k))$.
In this talk we are interested in equal characteristic (p, p) where $p \in \mathbb{P} \cup\{0\}$

Valuation Ring and Residue Field

- $v(x-y)>v(x)=v(y) \Leftrightarrow x=y$ modulo (with $\gamma=v(x)$)
$K_{>\gamma}:=\{z \in K \mid v(z)>\gamma\}$, that means by setting
$K_{\geqslant \gamma}:=\{z \in K, v(z) \geqslant \gamma\} x$ and y have same residues in $K_{\geqslant \gamma} / K_{\geqslant \gamma}$

This information can be given by $k:=K_{\geqslant 0} / K_{>0}$ which is a field, the residue field of K.

Characteristic of $(K, v):=(\operatorname{char}(K), \operatorname{char}(k))$.
In this talk we are interested in equal characteristic (p, p) where $p \in \mathbb{P} \cup\{0\}$

Valuation Ring and Residue Field

- $v(x-y)>v(x)=v(y) \Leftrightarrow x=y$ modulo (with $\gamma=v(x)$)
$K_{>\gamma}:=\{z \in K \mid v(z)>\gamma\}$, that means by setting
$K_{\geqslant \gamma}:=\{z \in K, v(z) \geqslant \gamma\} x$ and y have same residues in $K_{\geqslant \gamma} / K_{\geqslant \gamma}$

This information can be given by $k:=K_{\geqslant 0} / K_{>0}$ which is a field, the residue field of K. In fact

Characteristic of $(K, v):=(\operatorname{char}(K)$, char($k)$).
In this talk we are interested in equal characteristic (p, p) where $p \in \mathbb{P} \cup\{0\}$

Valuation Ring and Residue Field

- $v(x-y)>v(x)=v(y) \Leftrightarrow x=y$ modulo (with $\gamma=v(x)$)
$K_{>\gamma}:=\{z \in K \mid v(z)>\gamma\}$, that means by setting
$K_{\geqslant \gamma}:=\{z \in K, v(z) \geqslant \gamma\} x$ and y have same residues in $K_{\geqslant \gamma} / K_{\geqslant \gamma}$

This information can be given by $k:=K_{\geqslant 0} / K_{>0}$ which is a field, the residue field of K. In fact $K_{\geqslant 0}$ is a local ring denoted by \mathcal{O}_{v}, the valuation ring of (K, v),

Characteristic of $(K, v):=(\operatorname{char}(K), \operatorname{char}(k))$.
In this talk we are interested in equal characteristic (p, p) where $p \in \mathbb{P} \cup\{0\}$

Valuation Ring and Residue Field

- $v(x-y)>v(x)=v(y) \Leftrightarrow x=y$ modulo (with $\gamma=v(x)$)
$K_{>\gamma}:=\{z \in K \mid v(z)>\gamma\}$, that means by setting
$K_{\geqslant \gamma}:=\{z \in K, v(z) \geqslant \gamma\} x$ and y have same residues in $K_{\geqslant \gamma} / K_{\geqslant \gamma}$

This information can be given by $k:=K_{\geqslant 0} / K_{>0}$ which is a field, the residue field of K. In fact $K_{\geqslant 0}$ is a local ring denoted by \mathcal{O}_{v}, the valuation ring of (K, v), and $K_{>0}$ is its maximal ideal.

Characteristic of $(K, v):=(\operatorname{char}(K), \operatorname{char}(k))$. In this talk we are interested in equal characteristic (p, p) where $p \in \mathbb{P} \cup\{0\}$

Valuation Ring and Residue Field

- $v(x-y)>v(x)=v(y) \Leftrightarrow x=y$ modulo (with $\gamma=v(x)$)
$K_{>\gamma}:=\{z \in K \mid v(z)>\gamma\}$, that means by setting
$K_{\geqslant \gamma}:=\{z \in K, v(z) \geqslant \gamma\} x$ and y have same residues in $K_{\geqslant \gamma} / K_{\geqslant \gamma}$

This information can be given by $k:=K_{\geqslant 0} / K_{>0}$ which is a field, the residue field of K. In fact $K_{\geqslant 0}$ is a local ring denoted by \mathcal{O}_{v}, the valuation ring of (K, v), and $K_{>0}$ is its maximal ideal.

Characteristic of $(K, v):=(\operatorname{char}(K), \operatorname{char}(k))$.
in this talk we are interested in equal characteristic (p, p) where $p \in \mathbb{P} \cup\{0\}$

Valuation Ring and Residue Field

- $v(x-y)>v(x)=v(y) \Leftrightarrow x=y$ modulo (with $\gamma=v(x)$)
$K_{>\gamma}:=\{z \in K \mid v(z)>\gamma\}$, that means by setting $K_{\geqslant \gamma}:=\{z \in K, v(z) \geqslant \gamma\} x$ and y have same residues in $K_{\geqslant \gamma} / K_{\geqslant \gamma}$

This information can be given by $k:=K_{\geqslant 0} / K_{>0}$ which is a field, the residue field of K. In fact $K_{\geqslant 0}$ is a local ring denoted by \mathcal{O}_{v}, the valuation ring of (K, v), and $K_{>0}$ is its maximal ideal.

Characteristic of $(K, v):=(\operatorname{char}(K), \operatorname{char}(k))$. In this talk we are interested in equal characteristic (p, p) where $p \in \mathbb{P} \cup\{0\}$.

Examples

Let k be a field, $k(t)$ is valued by setting $v(t)=1, v_{k x}=0$.
Hahn Fields: for a field k and ordered abelian group Γ, we set:
$k((\Gamma)):=\left\{\sum_{\gamma} a_{\gamma} t^{\gamma} \mid a_{\gamma} \in k,\left\{\gamma \mid a_{\gamma} \neq 0\right\}\right.$ is well ordered $\}$
$v\left(\sum_{\gamma} a_{\gamma} t^{\gamma}\right):=$ the first γ such that $a_{\gamma} \neq 0$:
For example: Laurent Series $k((\mathbb{Z}))=\left\{\sum_{i=i_{0}}^{\infty} a_{i} t^{i}\right\}$, Puiseux series $\bigcup_{n>0} k\left(\left(\frac{1}{n} \mathbb{Z}\right)\right)$

Examples

Let k be a field, $k(t)$ is valued by setting $v(t)=1, v_{\mid k \times}=0$.
Hahn Fields: for a field k and ordered abelian group Γ, we set:
$k((\Gamma)):=\left\{\sum_{\gamma} a_{\gamma}{ }^{\gamma} \mid a_{\gamma} \in k,\left\{\gamma \mid a_{\gamma} \neq 0\right\}\right.$ is well ordered $\}$
$v\left(\sum_{\gamma}\right.$ art $\left.{ }^{\gamma}\right):=$ the first γ such that $a_{\gamma} \neq 0$:
For example: Laurent Series $k((\mathbb{Z}))=\left\{\sum_{i=i_{0}}^{\infty} a_{i} t^{\prime}\right\}$, Puiseux series $\cup_{n>0} k\left(\left(\frac{1}{n} \mathbb{Z}\right)\right)$

Examples

Let k be a field, $k(t)$ is valued by setting $v(t)=1, v_{\mid k \times}=0$. Hahn Fields: for a field k and ordered abelian group Γ, we set: $v\left(\sum_{\gamma}\right.$ art $\left.{ }^{\gamma}\right):=$ the first γ such that $a_{\gamma} \neq 0$ For example: Laurent Series $k((\mathbb{Z}))=\left\{\sum_{i=i_{0}}^{\infty} a_{i} t^{\prime}\right\}$, Puiseux series $\bigcup_{n>0} k\left(\left(\frac{1}{n} \mathbb{Z}\right)\right)$

Examples

Let k be a field, $k(t)$ is valued by setting $v(t)=1, v_{\mid k \times}=0$. Hahn Fields: for a field k and ordered abelian group Γ, we set: $k((\Gamma)):=\left\{\sum_{\gamma} a_{\gamma} t^{\gamma} \mid a_{\gamma} \in k,\left\{\gamma \mid a_{\gamma} \neq 0\right\}\right.$ is well ordered $\}$
$v\left(\sum_{\gamma}\right.$ art $\left.^{\gamma}\right):=$ the first γ such that $a_{\gamma} \neq 0$:
For example: Laurent Series $k((\mathbb{Z}))=\left\{\sum_{i=i_{0}}^{\infty} a_{i} t^{i}\right\}$, Puiseux series $\bigcup_{n>0} k\left(\left(\frac{1}{n} \mathbb{Z}\right)\right)$

Examples

Let k be a field, $k(t)$ is valued by setting $v(t)=1, v_{\mid k \times}=0$. Hahn Fields: for a field k and ordered abelian group Γ, we set: $k((\Gamma)):=\left\{\sum_{\gamma} a_{\gamma} t^{\gamma} \mid a_{\gamma} \in k,\left\{\gamma \mid a_{\gamma} \neq 0\right\}\right.$ is well ordered $\}$ $v\left(\sum_{\gamma} a \gamma t^{\gamma}\right):=$ the first γ such that $a_{\gamma} \neq 0$:
For example: Laurent Series $k((\mathbb{Z}))=$ $\left\{\sum_{i=i_{0}}^{\infty} a_{i} t^{t}\right\}$, Puiseux
series $\cup_{n>0} k\left(\left(\frac{1}{n} \mathbb{Z}\right)\right)$

Examples

Let k be a field, $k(t)$ is valued by setting $v(t)=1, v_{\mid k \times}=0$. Hahn Fields: for a field k and ordered abelian group Γ, we set: $k((\Gamma)):=\left\{\sum_{\gamma} a_{\gamma} t^{\gamma} \mid a_{\gamma} \in k,\left\{\gamma \mid a_{\gamma} \neq 0\right\}\right.$ is well ordered $\}$ $v\left(\sum_{\gamma}\right.$ a $\left.t^{\gamma}\right):=$ the first γ such that $a_{\gamma} \neq 0$:
For example: Laurent Series $k((\mathbb{Z}))=\left\{\sum_{i=i_{0}}^{\infty} a_{i} t^{i}\right\}$, Puiseux

Examples

Let k be a field, $k(t)$ is valued by setting $v(t)=1, v_{\mid k \times}=0$. Hahn Fields: for a field k and ordered abelian group Γ, we set: $k((\Gamma)):=\left\{\sum_{\gamma} a_{\gamma} t^{\gamma} \mid a_{\gamma} \in k,\left\{\gamma \mid a_{\gamma} \neq 0\right\}\right.$ is well ordered $\}$ $v\left(\sum_{\gamma}\right.$ a $\left.t^{\gamma}\right):=$ the first γ such that $a_{\gamma} \neq 0$:
For example: Laurent Series $k((\mathbb{Z}))=\left\{\sum_{i=i_{0}}^{\infty} a_{i} t^{i}\right\}$, Puiseux series $\bigcup_{n>0} k\left(\left(\frac{1}{n} \mathbb{Z}\right)\right)$

Compatible couples of functions

Definition
Let (K, v) be a valued field. A couple of functions $\left(f, f_{v}\right)$ where $f: K \rightarrow K$ and $f_{v}: v(K) \rightarrow v(K)$ is said to be compatible if $v \circ f=f_{v} \circ v$.

Example Monomials: (M

Compatible couples of functions

Definition

Let (K, v) be a valued field. A couple of functions $\left(f, f_{v}\right)$ where $f: K \rightarrow K$ and $f_{v}: v(K) \rightarrow v(K)$ is said to be compatible if

Compatible couples of functions

Definition

Let (K, v) be a valued field. A couple of functions $\left(f, f_{v}\right)$ where $f: K \rightarrow K$ and $f_{v}: v(K) \rightarrow v(K)$ is said to be compatible if $v \circ f=f_{v} \circ v$.

Example Monomials: (M

Compatible couples of functions

Definition

Let (K, v) be a valued field. A couple of functions $\left(f, f_{v}\right)$ where $f: K \rightarrow K$ and $f_{v}: v(K) \rightarrow v(K)$ is said to be compatible if $v \circ f=f_{v} \circ v$.

Example Monomials: $\left(M: x \mapsto a x^{k}, \cdot M: \gamma \mapsto v(a)+k \gamma\right)$

Valued difference fields

- If $\sigma \in \operatorname{Aut}(K)$ with $\sigma\left(\mathcal{O}_{v}\right)=\mathcal{O}_{v}$ then σ induces automorphisms: σ_{v} on $v(K)$ and $\bar{\sigma}$ on \boldsymbol{k}; $\left(\sigma, \sigma_{v}\right)$ is compatible and σ_{v} strickly increasing
- $(k, \bar{\sigma})$ is a difference field

In this case we say that (K, v, σ) is a valued difference field.
Several people studied valued difference fields,
Bélair-Machintyre-Scanlon, Bélair-Point, Point, Durhan, Pal

Valued difference fields

- If $\sigma \in \operatorname{Aut}(K)$ with $\sigma\left(\mathcal{O}_{v}\right)=\mathcal{O}_{v}$ then σ induces automorphisms:
σ_{v} on $v(K)$ and $\bar{\sigma}$ on $k ;\left(\sigma, \sigma_{v}\right)$ is compatible and σ_{v} strickly increasing
- $(k, \bar{\sigma})$ is a difference field

In this case we say that (K, v, σ) is a valued difference field.
Several people studied valued difference fields,
Bélair-Machintyre-Scanlon, Bélair-Point, Point, Durhan, Pal

Valued difference fields

- If $\sigma \in \operatorname{Aut}(K)$ with $\sigma\left(\mathcal{O}_{v}\right)=\mathcal{O}_{v}$ then σ induces automorphisms:
σ_{v} on $v(K)$ and $\bar{\sigma}$ on $k ;\left(\sigma, \sigma_{v}\right)$ is compatible and σ_{v} strickly increasing
- $(k, \bar{\sigma})$ is a difference field

In this case we say that (K, v, σ) is a valued difference field.
Several people studied valued difference fields,
Bélair-Machintyre-Scanlon, Bélair-Point, Point, Durhan, Pal

Valued difference fields

- If $\sigma \in \operatorname{Aut}(K)$ with $\sigma\left(\mathcal{O}_{v}\right)=\mathcal{O}_{v}$ then σ induces automorphisms:
σ_{v} on $v(K)$ and $\bar{\sigma}$ on $k ;\left(\sigma, \sigma_{v}\right)$ is compatible and σ_{v} strickly increasing
- $(k, \bar{\sigma})$ is a difference field

In this case we say that (K, v, σ) is a valued difference field. Several people studied valued difference fields,
Bélair-Machintyre-Scanlon, Bélair-Point, Point, Durhan, Pal

Valued difference fields

- If $\sigma \in \operatorname{Aut}(K)$ with $\sigma\left(\mathcal{O}_{v}\right)=\mathcal{O}_{v}$ then σ induces automorphisms:
σ_{v} on $v(K)$ and $\bar{\sigma}$ on $k ;\left(\sigma, \sigma_{v}\right)$ is compatible and σ_{v} strickly increasing
- $(k, \bar{\sigma})$ is a difference field

In this case we say that (K, v, σ) is a valued difference field. Several people studied valued difference fields, Bélair-Machintyre-Scanlon, Bélair-Point, Point, Durhan, Pal ...

σ-polynomials and $\mathbb{Z}[\sigma]$-module $v(K)$

σ-polynomials: A finite sum of σ-monomials which are of the form

$$
M: x \mapsto a x^{i_{0}}(\sigma(x))^{i_{1}} \ldots\left(\sigma^{n}(x)\right)^{i_{n}},
$$

where a is said to be the coefficient of M and the $n+1$-tuple $\left(i_{0}, i_{1}, \ldots, i_{n}\right)$ be the index of M, denoted by ind (M). We consider $n+1$ tuples of integers under the partial ordering induced by \mathbb{N}.

Pemark

For $\gamma \in v(K)$, and $x \in K$ with $v(x)=\gamma$, by setting
$\gamma \cdot M_{j}=v\left(a_{j} x^{i_{0}}(\sigma(x))^{i_{1}} \ldots\left(\sigma^{n}(x)\right)^{i_{n}}\right)=v\left(a_{j}\right)+\sum_{j=0}^{n} i_{j} \sigma_{v}^{j}(\gamma)$,
each $\left(M_{j}, \cdot M_{j}\right)$ is compatible, $\cdot M_{j}$ is increasing.
With the action of $\{\cdot M \mid M$ a σ-monomial with coefficient 1\}, $v\left(K^{\times}\right)$is a $\mathbb{Z}[\sigma]$-module.

σ-polynomials and $\mathbb{Z}[\sigma]$-module $v(K)$

σ-polynomials: A finite sum of σ-monomials which are of the form

$$
M: x \mapsto a x^{i_{0}}(\sigma(x))^{i_{1}} \ldots\left(\sigma^{n}(x)\right)^{i_{n}}
$$

where a is said to be the coefficient of M and the $n+1$-tuple $\left(i_{0}, i_{1}, \ldots, i_{n}\right)$ be the index of M, denoted by ind (M). We consider $n+1$ tuples of integers under the partial ordering induced by \mathbb{N}.

Remark

For $\gamma \in v(K)$, and $x \in K$ with $v(x)=\gamma$, by setting

$$
M_{j}=v\left(a_{i} x^{i_{0}}(\sigma(x))^{i_{1}} \ldots\left(\sigma^{n}(x)\right)^{i_{n}}\right)=v\left(a_{i}\right)+\sum_{i=0}^{n} j_{j}(\gamma)
$$

each $\left(M_{j}, \cdot M_{j}\right)$ is compatible, $\cdot M_{j}$ is increasing.
With the action of $\{\cdot M \mid M$ a σ-monomial with coefficient 1$\}$, $v\left(K^{\times}\right)$is a $\mathbb{Z}[\sigma]$-module.

σ-polynomials and $\mathbb{Z}[\sigma]$-module $v(K)$

σ-polynomials: A finite sum of σ-monomials which are of the form

$$
M: x \mapsto a x^{i_{0}}(\sigma(x))^{i_{1}} \ldots\left(\sigma^{n}(x)\right)^{i_{n}},
$$

where a is said to be the coefficient of M and the $n+1$-tuple ($i_{0}, i_{1}, \ldots, i_{n}$) be the index of M, denoted by ind (M). We consider $n+1$ tuples of integers under the partial ordering induced by \mathbb{N}.

With the action of $\{\cdot M \mid M$ a σ-monomial with coefficient 1$\}$ $v\left(K^{\times}\right)$is a $\mathbb{Z}[\sigma]$-module.

σ-polynomials and $\mathbb{Z}[\sigma]$-module $v(K)$

σ-polynomials: A finite sum of σ-monomials which are of the form

$$
M: x \mapsto a x^{i_{0}}(\sigma(x))^{i_{1}} \ldots\left(\sigma^{n}(x)\right)^{i_{n}}
$$

where a is said to be the coefficient of M and the $n+1$-tuple $\left(i_{0}, i_{1}, \ldots, i_{n}\right)$ be the index of M, denoted by ind (M). We consider $n+1$ tuples of integers under the partial ordering induced by \mathbb{N}.

Remark

For $\gamma \in v(K)$, and $x \in K$ with $v(x)=\gamma$, by setting
$\gamma \cdot M_{j}=v\left(a_{j} x^{i_{0}}(\sigma(x))^{i_{1}} \ldots\left(\sigma^{n}(x)\right)^{i_{n}}\right)=v\left(a_{j}\right)+\sum_{j=0}^{n} i_{j} \sigma_{v}^{j}(\gamma)$, each $\left(M_{j}, \cdot M_{j}\right)$ is compatible, $\cdot M_{j}$ is increasing.

With the action of $\{\cdot M \mid M$ a σ-monomial with coefficient 1$\}$ $v\left(K^{\times}\right)$is a $\mathbb{Z}[\sigma]$-module.

σ-polynomials and $\mathbb{Z}[\sigma]$-module $v(K)$

σ-polynomials: A finite sum of σ-monomials which are of the form

$$
M: x \mapsto a x^{i_{0}}(\sigma(x))^{i_{1}} \ldots\left(\sigma^{n}(x)\right)^{i_{n}}
$$

where a is said to be the coefficient of M and the $n+1$-tuple ($i_{0}, i_{1}, \ldots, i_{n}$) be the index of M, denoted by ind (M). We consider $n+1$ tuples of integers under the partial ordering induced by \mathbb{N}.

Remark

For $\gamma \in v(K)$, and $x \in K$ with $v(x)=\gamma$, by setting
$\gamma \cdot M_{j}=v\left(a_{j} x^{i_{0}}(\sigma(x))^{i_{1}} \ldots\left(\sigma^{n}(x)\right)^{i_{n}}\right)=v\left(a_{j}\right)+\sum_{j=0}^{n} i_{j} \sigma_{v}^{j}(\gamma)$, each $\left(M_{j}, \cdot M_{j}\right)$ is compatible, $\cdot M_{j}$ is increasing.

With the action of $\{\cdot M \mid M$ a σ-monomial with coefficient 1$\}$, $v\left(K^{\times}\right)$is a $\mathbb{Z}[\sigma]$-module.

Ax-Kochen and Ershov Principle

We want to have that: Given two valued difference fields (K, v, σ) and ($K^{\prime}, v^{\prime}, \sigma^{\prime}$) such that

- $(k, \bar{\sigma}) \equiv\left(k^{\prime}, \bar{\sigma}^{\prime}\right)$ as difference fields and
- $v(K) \equiv v\left(K^{\prime}\right)$ as $\mathbb{Z}[\sigma]$-modules
then $(K, v, \sigma) \equiv\left(K^{\prime}, v^{\prime}, \sigma^{\prime}\right)$ as valued cifference fields.

Ax-Kochen and Ershov Principle

We want to have that: Given two valued difference fields (K, v, σ) and ($K^{\prime}, v^{\prime}, \sigma^{\prime}$) such that

- $(k, \bar{\sigma}) \equiv\left(k^{\prime}, \overline{\sigma^{\prime}}\right)$ as difference fields
- $v(K) \equiv v\left(K^{\prime}\right)$ as $\mathbb{Z}[\sigma]$-modules
then $(K, v, \sigma) \equiv\left(K^{\prime}, v^{\prime}, \sigma^{\prime}\right)$ as valued difference fields.

Ax-Kochen and Ershov Principle

We want to have that: Given two valued difference fields (K, v, σ) and ($K^{\prime}, v^{\prime}, \sigma^{\prime}$) such that

- $(k, \bar{\sigma}) \equiv\left(k^{\prime}, \bar{\sigma}^{\prime}\right)$ as difference fields and
- $v(K) \equiv v\left(K^{\prime}\right)$ as $\mathbb{Z}[\sigma]$-modules
then $(K, v, \sigma) \equiv\left(K^{\prime}, v^{\prime}, \sigma^{\prime}\right)$ as valued difference fields.

Ax-Kochen and Ershov Principle

We want to have that: Given two valued difference fields (K, v, σ) and ($K^{\prime}, v^{\prime}, \sigma^{\prime}$) such that

- $(k, \bar{\sigma}) \equiv\left(k^{\prime}, \overline{\sigma^{\prime}}\right)$ as difference fields and
- $v(K) \equiv v\left(K^{\prime}\right)$ as $\mathbb{Z}[\sigma]$-modules
then $(K, v, \sigma) \equiv\left(K^{\prime}, v^{\prime}, \sigma^{\prime}\right)$ as valued difference fields.

Polynomial couples $(P, \cdot P)$

For $P=\sum_{j} M_{j}$ a σ-polynomial and for $\gamma \in \Gamma$ we set $\gamma \cdot P:=\min _{j}\left\{\gamma \cdot M_{j}\right\}$
!: $(P, \cdot P)$ is in general not a compatible couple: if x a non-zero root of $P, v(P(x))=\infty>v(x) \cdot P$.

Polynomial couples $(P, \cdot P)$

For $P=\sum_{j} M_{j}$ a σ-polynomial and for $\gamma \in \Gamma$ we set
$\gamma \cdot P:=\min _{j}\left\{\gamma \cdot M_{j}\right\}$
!: $(P, \cdot P)$ is in general not a compatible couple:

Polynomial couples $(P, \cdot P)$

For $P=\sum_{j} M_{j}$ a σ-polynomial and for $\gamma \in \Gamma$ we set
$\gamma \cdot P:=\min _{j}\left\{\gamma \cdot M_{j}\right\}$
!: $(P, \cdot P)$ is in general not a compatible couple: if x a non-zero root of $P, v(P(x))=\infty>v(x) \cdot P$.

Polynomial couples $(P, \cdot P)$

For $P=\sum_{j} M_{j}$ a σ-polynomial and for $\gamma \in \Gamma$ we set
$\gamma \cdot P:=\min _{j}\left\{\gamma \cdot M_{j}\right\}$
!: $(P, \cdot P)$ is in general not a compatible couple: if x a non-zero root of $P, v(P(x))=\infty>v(x) \cdot P$.

Regularity

An element $\boldsymbol{a} \in K$ is said to be regular for a (σ-) polynomial P, if $v(P(a))=v(a) \cdot P$, otherwise we say that it is irregular.

> Remark
> A "regular non-zero root" does not make sense and 0 is always a regular root of any polynomial without constant term.

We will consider polynomials without constant term and equations of type $P(x)=b(b \neq 0)$ and say that " a is a regular solution" if $P(a)=b$ with a regular for P.

Regularity

An element $\boldsymbol{a} \in K$ is said to be regular for a (σ-) polynomial P, if $v(P(a))=v(a) \cdot P$, otherwise we say that it is irregular.

Remark

A "regular non-zero root" does not make sense and 0 is always a regular root of any polynomial without constant term.

We will consider polynomials without constant term and equations of type $P(x)=b(b \neq 0)$ and say that " a is a regular solution" if $P(a)=b$ with a regular for P.

σ-linear polynomials and Kaplansky fields

A linear σ-polynomial is one of the form:
$a_{n} \sigma^{n}(x)+\cdots+a_{1} x$.
If (K, v) is of characteristic $(p, p)(p>0)$, and perfect, then
(K, v) is already a difference valued field with Frob : $x \mapsto x^{p}$
An additive polynomial is an linear Frob-polynomial, i.e. is of
the form:
$a_{n} p^{n}(x)+\cdots+a_{1} x$
Definition
A valued field (K, v) is said to be Kaplansky if $v(K)$ is p-divisible and if every equation of the form $P(x)=b$ where $P \in k[X]$, is additive, has solutions in k; it is said to be algebraically maximal if it has no proper algebraic extension with same residue field and same value group (that is it has no immediate algebraic extension).

σ-linear polynomials and Kaplansky fields

A linear σ-polynomial is one of the form: $a_{n} \sigma^{n}(x)+\cdots+a_{1} x$.

If (K, v) is of characteristic $(p, p)(p>0)$, and perfect, then
(K, v) is already a difference valued field with Frob : $x \mapsto x^{p}$
An additive polynomial is an linear Frob-polynomial, i.e. is of
the form:
$a_{n} p^{n}(x)+\cdots+a_{1} x$
Definition
A valued field (K, v) is said to be Kaplansky if $v(K)$ is
p-divisible and if every equation of the form $P(x)=b$ where
$P \in k[X]$, is additive, has solutions in k; it is said to be
algebraically maximal if it has no proper algebraic extension
with same residue field and same value group (that is it has no immediate algebraic extension).

σ-linear polynomials and Kaplansky fields

A linear σ-polynomial is one of the form:
$a_{n} \sigma^{n}(x)+\cdots+a_{1} x$.
If (K, v) is of characteristic $(p, p)(p>0)$, and perfect, then (K, v) is already a difference valued field with Frob : $x \mapsto x^{p}$ An additive polynomial is an linear Frob-polynomial, i.e. is of
the form:
$a_{n} p^{n}(x)+\cdots+a_{1} x$

Definition

A valued field (K, v) is said to be Kaplansky if $v(K)$ is
p-divisible and if every equation of the form $P(x)=b$ where
$P \in k[X]$, is additive, has solutions in k; it is said to be
algebraically maximal if it has no proper algebraic extension
with same residue field and same value group (that is it has no immediate algebraic extension)

σ-linear polynomials and Kaplansky fields

A linear σ-polynomial is one of the form:
$a_{n} \sigma^{n}(x)+\cdots+a_{1} x$.
If (K, v) is of characteristic $(p, p)(p>0)$, and perfect, then (K, v) is already a difference valued field with Frob : $x \mapsto x^{p}$ An additive polynomial is an linear Frob-polynomial, i.e. is of the form:

> Definition
> A valued field (K, v) is said to be Kaplansky if $v(K)$ is p-divisible and if every equation of the form $P(x)=b$ where $P \in k[X]$, is additive, has solutions in k; it is said to be algebraically maximal if it has no proper algebraic extension with same residue field and same value group (that is it has no immediate algebraic extension)

σ-linear polynomials and Kaplansky fields

A linear σ-polynomial is one of the form:
$a_{n} \sigma^{n}(x)+\cdots+a_{1} x$.
If (K, v) is of characteristic $(p, p)(p>0)$, and perfect, then (K, v) is already a difference valued field with Frob : $x \mapsto x^{p}$ An additive polynomial is an linear Frob-polynomial, i.e. is of the form:
$a_{n} p^{n}(x)+\cdots+a_{1} x$

Definition

A valued field (K, v) is said to be Kaplansky if $v(K)$ is p-divisible and if every equation of the form $P(x)=b$ where $P \in k[X]$, is additive, has solutions in k; it is said to be algebraically maximal if it has no proper algebraic extension with same residue field and same value group (that is it has no immediate algebraic extension).

σ-linear polynomials and Kaplansky fields

A linear σ-polynomial is one of the form:
$a_{n} \sigma^{n}(x)+\cdots+a_{1} x$.
If (K, v) is of characteristic $(p, p)(p>0)$, and perfect, then (K, v) is already a difference valued field with Frob : $x \mapsto x^{p}$ An additive polynomial is an linear Frob-polynomial, i.e. is of the form:
$a_{n} p^{n}(x)+\cdots+a_{1} x$

Definition

A valued field (K, v) is said to be Kaplansky if $v(K)$ is p-divisible and if every equation of the form $P(x)=b$ where $P \in k[X]$, is additive, has solutions in k; it is said to be algebraically maximal if it has no proper algebraic extension with same residue field and same value group (that is it has no immediate algebraic extension).

Algebraically maximal Kaplansky fields are nice: We have (A-K,E) principle for algebraically maximal Kaplansky fields.

Algebraically maximal Kaplansky fields are nice: We have (A-K,E) principle for algebraically maximal Kaplansky fields.

Two very similar caracterization of algebraically maximal Kaplasky fields

Theorem (O.)

A Kaplansky field is algebraically maximal if and only if every equation of the form $P(x)=b(b \neq 0)$, where $P \in K[X]$ is additive, has a regular solution.

```
Theorem (Durhan)
A Kaplansky field is algebraically maximal if and only if it is
p-henselian.
```


Two very similar caracterization of algebraically maximal Kaplasky fields

Theorem (O.)

A Kaplansky field is algebraically maximal if and only if every equation of the form $P(x)=b(b \neq 0)$, where $P \in K[X]$ is additive, has a regular solution.

Theorem (Durhan)

A Kaplansky field is algebraically maximal if and only if it is p-henselian.

Two very similar caracterization of algebraically maximal Kaplasky fields

Theorem (O.)

A Kaplansky field is algebraically maximal if and only if every equation of the form $P(x)=b(b \neq 0)$, where $P \in K[X]$ is additive, has a regular solution.

Theorem (Durhan)

A Kaplansky field is algebraically maximal if and only if it is p-henselian.

Finding regular elements

Problem : Jump values
$\operatorname{Jump}(P):=\{v(x) \mid \mathrm{x}$ irregular for P$\}$
example: Take $P(X):=X P-X, K:=\mathbb{F}_{p}(t) . \operatorname{Jump}(P)=\{0\}$
and every $x \in K$ with $v(x)=0$ is irregular.
$\operatorname{Jump}(P)$ is finite $\Rightarrow P$ is "continious" :
for every pseudo-Cauchy (p.c.) sequence $\left(a_{\rho}\right)_{\rho}$ in K, with a limit a, $\left(P\left(a_{\rho}\right)\right)_{\rho}$ has limit $P(a)$.

If $P \in K[X]$ or if P is any σ-polynomial with σ contractive
(: $\sigma_{v}(\gamma)>n \gamma$ for all $\gamma>0$ and $n \in \mathbb{N}$) then $\operatorname{Jump}(P)$ is finite.
if σ is not contractive this can be drastically false:
beacause $a_{\rho+1}-a_{\rho}$ can be always irregular for P.

Finding regular elements

Problem : Jump values
$\operatorname{Jump}(P):=\{v(x) \mid \mathrm{x}$ irregular for P$\}$
example: Take $P(X):=X^{p}-X, K:=\mathbb{F}_{p}(t)$. $\operatorname{Jump}(P)=\{0\}$
and every $x \in K$ with $v(x)=0$ is irregular.
$\operatorname{Jump}(P)$ is finite $\Rightarrow P$ is "continious" :
for every pseudo-Cauchy (n.c.) sequence $\left(a_{\rho}\right)_{\rho}$ in K, with a limit a, $\left(P\left(a_{\rho}\right)\right)_{\rho}$ has limit $P(a)$.

If $P \in K[X]$ or if P is any σ-polynomial with σ contractive
(: $\sigma_{v}(\gamma)>n \gamma$ for all $\gamma>0$ and $n \in \mathbb{N}$) then $\operatorname{Jump}(P)$ is finite.
if σ is not contractive this can be drastically false:
beacause $a_{\rho+1}-a_{\rho}$ can be always irregular for P.

Finding regular elements

Problem : Jump values
$\operatorname{Jump}(P):=\{v(x) \mid \mathrm{x}$ irregular for P$\}$
example: Take $P(X):=X^{p}-X, K:=\mathbb{F}_{p}(t) . \operatorname{Jump}(P)=\{0\}$ and every $x \in K$ with $v(x)=0$ is irregular.
for every pseudo-Cauchy (p.c.) sequence $\left(a_{\rho}\right)_{\rho}$ in K, with a limit a, $\left(P\left(a_{\rho}\right)\right)_{\rho}$ has limit $P(a)$.

If $P \in K[X]$ or if P is any σ-polynomial with σ contractive $\left(: \sigma_{v}(\gamma)>n \gamma\right.$ for all $\gamma>0$ and $\left.n \in \mathbb{N}\right)$ then $\operatorname{Jump}(P)$ is finite.
if σ is not contractive this can be drastically false:
beacause $a_{\rho+1}-a_{\rho}$ can be always irregular for P.

Finding regular elements

Problem : Jump values
$\operatorname{Jump}(P):=\{v(x) \mid \mathrm{x}$ irregular for P$\}$
example: Take $P(X):=X^{p}-X, K:=\mathbb{F}_{p}(t) . \operatorname{Jump}(P)=\{0\}$ and every $x \in K$ with $v(x)=0$ is irregular. $\operatorname{Jump}(P)$ is finite $\Rightarrow P$ is "continious" :
> for every pseudo-Cauchy (p.c.) sequence $\left(a_{\rho}\right)_{\rho}$ in K, with a limit a, $\left(P\left(a_{\rho}\right)\right)_{\rho}$ has limit $P(a)$.

> If $P \in K[X]$ or if P is any σ-polynomial with σ contractive $\left(: \sigma_{v}(\gamma)>n \gamma\right.$ for all $\gamma>0$ and $\left.n \in \mathbb{N}\right)$ then $\operatorname{Jump}(P)$ is finite.
> if σ is not contractive this can be drastically false:
> beacause $a_{\rho+1}-a_{\rho}$ can be always irregular for P.

Finding regular elements

Problem : Jump values
$\operatorname{Jump}(P):=\{v(x) \mid \mathrm{x}$ irregular for P$\}$
example: Take $P(X):=X^{p}-X, K:=\mathbb{F}_{p}(t) . \operatorname{Jump}(P)=\{0\}$ and every $x \in K$ with $v(x)=0$ is irregular. $\operatorname{Jump}(P)$ is finite $\Rightarrow P$ is "continious":
for every pseudo-Cauchy (p.c.) sequence $\left(a_{\rho}\right)_{\rho}$ in K, with a limit $a,\left(P\left(a_{\rho}\right)\right)_{\rho}$ has limit $P(a)$.

If $P \in K[X]$ or if P is any σ-polynomial with σ contractive
$\left(: \sigma_{v}(\gamma)>n \gamma\right.$ for all $\gamma>0$ and $\left.n \in \mathbb{N}\right)$ then $\operatorname{Jump}(P)$ is finite.
if σ is not contractive this can be drastically false:
beacause $a_{\rho+1}-a_{\rho}$ can be always irregular for P.

Finding regular elements

Problem : Jump values
$\operatorname{Jump}(P):=\{v(x) \mid \mathrm{x}$ irregular for P$\}$
example: Take $P(X):=X^{p}-X, K:=\mathbb{F}_{p}(t) . \operatorname{Jump}(P)=\{0\}$ and every $x \in K$ with $v(x)=0$ is irregular. $\operatorname{Jump}(P)$ is finite $\Rightarrow P$ is "continious":
for every pseudo-Cauchy (p.c.) sequence $\left(a_{\rho}\right)_{\rho}$ in K, with a limit $a,\left(P\left(a_{\rho}\right)\right)_{\rho}$ has limit $P(a)$.

If $P \in K[X]$ or if P is any σ-polynomial with σ contractive (: $\sigma_{v}(\gamma)>n \gamma$ for all $\gamma>0$ and $n \in \mathbb{N}$)
if σ is not contractive this can be drastically false: beacause $a_{\rho+1}-a_{\rho}$ can be always irregular for P.

Problem : Jump values
$\operatorname{Jump}(P):=\{v(x) \mid \mathrm{x}$ irregular for P$\}$
example: Take $P(X):=X^{p}-X, K:=\mathbb{F}_{p}(t) . \operatorname{Jump}(P)=\{0\}$
and every $x \in K$ with $v(x)=0$ is irregular.
$\operatorname{Jump}(P)$ is finite $\Rightarrow P$ is "continious":
for every pseudo-Cauchy (p.c.) sequence $\left(a_{\rho}\right)_{\rho}$ in K, with a limit $a,\left(P\left(a_{\rho}\right)\right)_{\rho}$ has limit $P(a)$.

If $P \in K[X]$ or if P is any σ-polynomial with σ contractive (: $\sigma_{v}(\gamma)>n \gamma$ for all $\gamma>0$ and $n \in \mathbb{N}$) then $\operatorname{Jump}(P)$ is finite.
if σ is not contractive this can be drastically false:

Problem : Jump values
$\operatorname{Jump}(P):=\{v(x) \mid \mathrm{x}$ irregular for P$\}$
example: Take $P(X):=X^{p}-X, K:=\mathbb{F}_{p}(t) . \operatorname{Jump}(P)=\{0\}$
and every $x \in K$ with $v(x)=0$ is irregular.
$\operatorname{Jump}(P)$ is finite $\Rightarrow P$ is "continious":
for every pseudo-Cauchy (p.c.) sequence $\left(a_{\rho}\right)_{\rho}$ in K, with a limit $a,\left(P\left(a_{\rho}\right)\right)_{\rho}$ has limit $P(a)$.

If $P \in K[X]$ or if P is any σ-polynomial with σ contractive (: $\sigma_{v}(\gamma)>n \gamma$ for all $\gamma>0$ and $n \in \mathbb{N}$) then $\operatorname{Jump}(P)$ is finite.
if σ is not contractive this can be drastically false: beacause $a_{\rho+1}-a_{\rho}$ can be always irregular for P.

Solution

We suppose $\bar{\sigma}^{n} \neq I d$ on k, for all $n \in \mathbb{N} \backslash\{0\}$.

Lemma

Given a p.c. sequence $\left(a_{\rho}\right)_{\rho}$ in $K, a \in K$, such that $\left(a_{\rho}\right)_{\rho}$ converges to a and a σ-polynomial P, we can find a p.c. sequence $\left(b_{\lambda}\right)_{\lambda}$ such that $\left(a_{\rho}\right)_{\rho}$ and $\left(b_{\lambda}\right)_{\lambda}$ have same limits, $\left(P\left(b_{\rho}\right)\right)_{\rho}$ converges to $P(a)$.

Proof.

(Main trick) Using above assumption we can find $\left(b_{\lambda}\right)_{\lambda}$ such that $b_{\lambda+1}-b_{\lambda}$ is eventually regular for P.

Solution

We suppose $\bar{\sigma}^{n} \neq I d$ on k, for all $n \in \mathbb{N} \backslash\{0\}$.

Lemma

Given a p.c. sequence $\left(a_{\rho}\right)_{\rho}$ in $K, a \in K$, such that $\left(a_{\rho}\right)_{\rho}$ converges to a and $a \sigma$-polynomial P, we can find a p.c. sequence $\left(b_{\lambda}\right)_{\lambda}$ such that $\left(a_{\rho}\right)_{\rho}$ and $\left(b_{\lambda}\right)_{\lambda}$ have same limits , $\left(P\left(b_{\rho}\right)\right)_{\rho}$ converges to $P(a)$.

Proof.

(Main trick) Using above assumption we can find $\left(b_{\lambda}\right)_{\lambda}$ such that $b_{\lambda+1}-b_{\lambda}$ is eventually regular for P.

We need more...

From now on we consider the case of equal characteristic (0, 0).

Definition

Given a σ-polynomial P we denote $\operatorname{Lin}(P)$ the σ-linear part of P. Let $a \in K$, we say that (P, a) is in σ-hensel configuration if there exists $\gamma \in \Gamma$ such that
(1) $v(P(a))=\gamma \cdot \operatorname{Lin}(P)$
(2) $\gamma \cdot M<\gamma \cdot M^{\prime}$ whenever M, M^{\prime} are monomials of P such that $(0, \ldots, 0) \neq \operatorname{ind}(M)<\operatorname{ind}\left(M^{\prime}\right)$.

Definition

We say that an valued difference field extension of (K, v, σ) is σ-algebraic if all its elements are given by roots of σ-polynomials. (K, v, σ) is said to be σ-algebraically maximal if it has no proper valued difference σ-algebraic extension with same residue field and same value group.

Finding regular solutions: σ-hensenlianty

Lemma

Suppose that (K, v, σ) is σ-algebraically maximal and linearly difference closed, that is: for every $\bar{\sigma}$-linear Q, and $c \in k$ the equation $Q(x)=c$ has solution in k.
Conclusion: For every σ-polynomial P and $b \in K \times$ if for some $a \in K$ such that $v(P(a))=b,(P, a)$ is in σ-hensel configuration then there is a regular solution of the equation $P(x)=b$.

Definition

(K, v, σ) is said to be σ-henselian if the conclusion of the above lemma holds.

Finding regular solutions: σ-hensenlianty

Lemma

Suppose that (K, v, σ) is σ-algebraically maximal and $(k, \bar{\sigma})$ is linearly difference closed, that is: for
> $c \in k$ the equation $Q(x)=c$ has solution in k.
> Conclusion: For every σ-polynomial P and $b \in K^{\times}$if for some $a \in K$ such that $v(P(a))=b,(P, a)$ is in σ-hensel configuration then there is a regular solution of the equation $P(x)=b$.

Definition

(K, v, σ) is said to be σ-henselian if the conclusion of the above lemma holds.

Lemma

Suppose that (K, v, σ) is σ-algebraically maximal and $(k, \bar{\sigma})$ is linearly difference closed, that is: for every $\bar{\sigma}$-linear Q, and $c \in k$ the equation $Q(x)=c$ has solution in k.
Conclusion: For every σ-polynomial P and $b \in K^{\times}$if for some $a \in K$ such that $v(P(a))=b,(P, a)$ is in σ-hensel configuration then there is a regular solution of the equation $P(x)=b$.

Definition
 (K, v, σ) is said to be σ-henselian if the conclusion of the above lemma holds.

Lemma

Suppose that (K, v, σ) is σ-algebraically maximal and $(k, \bar{\sigma})$ is linearly difference closed, that is: for every $\bar{\sigma}$-linear Q, and $c \in k$ the equation $Q(x)=c$ has solution in k.
Conclusion: For every σ-polynomial P and $b \in K^{\times}$if for some $a \in K$ such that $v(P(a))=b,(P, a)$ is in σ-hensel configuration then there is a regular solution of the equation $P(x)=b$.

Definition

(K, v, σ) is said to be σ-henselian if the conclusion of the above lemma holds.

Draft Results

- All σ-algebraically maximal extensions of a valued difference field with a linearly difference closed residue field are isomorphic.
- (A-K,E) principle for holds for the class of σ-henselian valued difference fields of characteristic $(0,0)$ with linearly difference closed residue field.
- All σ-algebraically maximal extensions of a valued difference field with a linearly difference closed residue field are isomorphic.
- (A-K,E) principle for holds for the class of σ-henselian valued difference fields of characteristic $(0,0)$ with linearly difference closed residue field.

