## The Hrushovski Programme

### Alexandre Borovik (Unfinished) joint projects with Omaima Alshanqiti, Pınar Uğurlu, and Şükrü Yalçınkaya

Antalya Algebra Days XIV

16 May 2012

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

## Outline

The Steinberg Endomorphisms

Black Box Groups

Some model theory

The Hrushovski Programme

The Larsen-Pink Theorem

Groups with count function

The Hrushovski Programme

- The Steinberg Endomorphisms

Simple algebraic groups

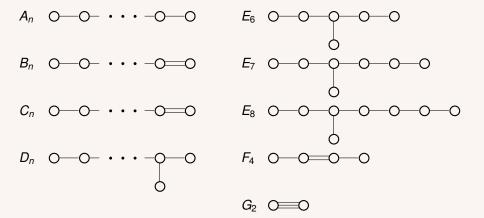
#### Chevalley:

A simple algebraic group is one of the following types:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $A_n$ ,  $B_n$ ,  $C_n$ ,  $D_n$  (classical groups)  $E_6$ ,  $E_7$ ,  $E_8$ ,  $F_4$ ,  $G_2$  (exceptional groups)

## Dynkin diagrams of simple algebraic groups Classical Groups Exceptional Groups



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ���

## The Steinberg Endomorphisms

- G simple algebraic group defined over  $\mathbb{F}_p$
- $\sigma$  rational endomorphism of *G* with finite group of fixed points

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $G_{\sigma}$  group of fixed points of  $\sigma$ 

**Example**: Frobenius map induced by  $x \mapsto x^q$ ,  $q = p^k$ .

# **Classification of Finite Simple Groups**

Every non-abelian finite simple group is one of:

- 26 sporadic groups;
- alternating groups;
- *O*<sup>p'</sup>(*G*<sub>σ</sub>) (generated in *G*<sub>σ</sub> by *p*-elements): groups of Lie type.

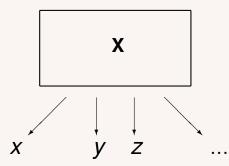
## Uniform description of finite groups of Lie type

- ▶ for  $T \sigma$ -invariant torus (Borel) in G form  $T_{\sigma}$ ,
- for  $B \sigma$ -invariant Borel subgroup in G form  $B_{\sigma}$ , etc.

**Lang-Steinberg**:  $\sigma$ -invariant Borel subgroups do exist, etc.

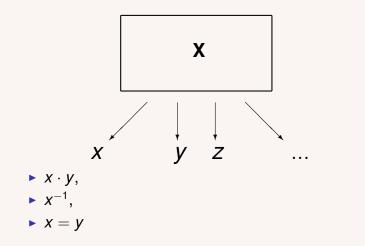
This is **THE** correct way to look at finite simple groups.

## Black box groups



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

## Black box groups



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●



## Matrix groups over finite fields

S a small set of invertible matrices over a finite field

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- $X = \langle S \rangle \leq \operatorname{GL}_n(q)$
- Input length: |S|n<sup>2</sup> log q

## Matrix Groups

Let  $X = \langle x_1, \ldots, x_n \rangle \leq GL_n(q)$  be a **big** matrix group so that |X| is astronomical.

Statistical study of random products of x<sub>1</sub>,..., x<sub>n</sub> is the only known approach to identification of X.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ つ へ つ ・

- Determination of orders involves either
  - Factorization of integers into primes, or
  - Discrete logarithm problem over finite fields.

 Statistical study of 'random' products (Leedham-Green et al.) of

 $x_1,\ldots,x_k$ 

is the only known approach to identification of X.

- Basically, we are looking for a "short" and "easy to check by random testing" first order formula which identifies X.
- Existence /non-existence of elements of particular orders is an example.

## Limits of crude statistical approach "Order of elements" approach fails for recognising

$$B_n(q) = \Omega_{2n+1}(q),$$

$$C_n(q) = PSp_{2n}(q),$$

q odd:

they have virtually the same statistics of orders of elements.

Here,

 $\Omega_{2n+1}(q)$  is the subgroup of index 2 in the orthogonal group  $SO_{2n+1}(q)$ ,

NACH A E A E A A A

 $PSp_{2n}(q)$  is the projective symplectic group.

## Why does statistics fail?

For large q, unipotent and non-semisimple elements occur with probability ~ 1/q and are "invisible": a random element is semisimple.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

## Why does statistics fail?

Let  $G = G(\overline{\mathbb{F}}_q)$  be a simple algebraic group.

- regular semisimple elements form an open subset of G
- statistics of orders of regular semisimple elements is determined by the **Dynkin diagram** of *G*, which is the same in the case of groups *B<sub>n</sub>* and *C<sub>n</sub>*, *n* ≥ 3:

$$BC_n, n \geq 2$$
  $\longrightarrow$ 

## How one can fix the failure of statistics?

But the conjugacy classes and the structure of centralisers of *involutions* (elements of order 2) are determined by the **extended Dynkin diagrams** which are different:

$$\widetilde{B}_n, n \ge 3$$
  $\widetilde{C}_n, n \ge 3$   $\widetilde{C}_n, n \ge 3$ 

(日) (日) (日) (日) (日) (日) (日)

## How one can fix the failure of statistics?

(Extended) Dynkin diagrams are first order properties in the language of groups!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

# Black-Box Curtis–Tits Theorem (Yalçinkaya)

#### Theorem

Let G be a (quasi)-simple black box group of (unknown) Lie type over a field of odd characteristic and known "global exponent" N:  $g^N = 1$  for all  $g \in G$ .

There is a polynomial in log N algorithm which constructs the extended Dynkin diagram of G ...

... which also allows to construct "subgiagram" subgroups, etc.—in sort, to do a lot of fascinating stuff.

## The moral of the story so far

Black box theory works much better ...

... if groups are studied up to elementary equivalence—rather than up to isomorphism

Some model theory

## Elementary theory and elementary equiavalence

# Let *G* be a group Th(G) the set of first order formulae true in *G*

Elementary equivalence:

$$G \equiv H \iff Th(G) = Th(H)$$

## Pseudofinite groups

## G is pseudofinite if

 every formula which is true on G is true on some finite group.

One may think of pseudofinite groups as ultraproducts of finite groups

$$G\simeq\prod_{i\in I}G_i/\mathcal{F}.$$

(日) (日) (日) (日) (日) (日) (日)

Measure on G is the ultraproduct of canonical finite measures on  $G_i$ .

## This is not a 0-1 measure!

# There are sets of probability different from 0 and 1:

In PSL<sub>2</sub> over a field of odd order, formula

" $Z(C_G(x))$  contains an involution "

holds with probability  $\approx 1/2$  (or 1/2 + infinitesimal).

Formulae like that make a decent approximation to the property

(日) (日) (日) (日) (日) (日) (日)

"x has even order".

Some model theory

## Uncountable categoricity

## *G* is $\aleph_1$ -categorical $\iff \exists ! \ \widetilde{G} \equiv G$ of cardinality $\aleph_1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Some model theory

## Definable set

## Definable set: defined by a first order formula

$$C_G(a) = \{ x : ax = xa \},$$
  
 $a^G = \{ x : \exists y \, x = a^y \}.$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

## Groups of finite Morley rank:

have a rank function

{ Definable sets in  $G^n$  }  $\xrightarrow{rk} \mathbb{N} \cup \{0\}$ 

(日) (日) (日) (日) (日) (日) (日)

- behaves like dimension of Zariski closed sets
- axiomatised by natural axioms

In the case of simple groups:

 $\aleph_1$ -categorical  $\iff$  of finite Morley rank

Some model theory

## The Cherlin-Zilber Conjecture (c. 1980):

A simple infinite group of finite Morley rank is isomorphic as an abstract group to an algebraic group over an algebraically closed field.

The Hrushovski Programme

## The Hrushovski Programme

## The Hrushovski Programme *G* simple group of finite Morley rank $\psi$ a generic automorphism Then $G_0 = C_G(\psi)$ is pseudofinite or at least behaves like pseudofinite.

In "real life", due to a theorem by Hrushovski: If *G* is algebraic over an a.c. field then

- $\phi$  is generalised Frobenius, and
- ► G<sub>0</sub> = C<sub>G</sub>(φ) is the group of points of G over a pseudofinite field.

# Pınar Uğurlu:

G simple group of finite Morley rank

 $\alpha$  automorphism of  ${\it G}$ 

 $d(C_H(\alpha^{km})) = H$  for every connected  $\alpha^k$ -invariant  $H \leq G$  and every  $k, m \in \mathbb{N}$ .

 $C_G(\alpha^k)$  is pseudofinite for all  $k \in \mathbb{N}$ .

Then G is algebraic.

**Proof** does not use CFSG (the Classification of Finite Simple Groups).

- The Hrushovski Programme

## Why CFSG has to be eliminated?

There is a good algebraic characterisation of pseudofinite fields:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- perfect
- exactly one extension of every degree
- pseudo algebraically closed

but nothing of this kind is known for groups.

## Larsen and Pink, 1998

For every *n* there exists a constant *J* depending only on *n* such that for any finite simple group *X* possessing a faithful linear or projective representation of dimension *n* over a field k we have either

(a) 
$$|X| < J(n)$$
, or

(b) p := char(k) is positive and X is a group of Lie type in characteristic p.

- The Larsen-Pink Theorem

## Larsen and Pink, equivalent statement:

A definably simple infinite pseudofinite subgroup  $G \leq GL_n$  is a Chevalley group over a pseudofinite field.

- The Larsen-Pink Theorem

## Proof in odd characteristic

• Work in the pair  $G < \overline{G}$ , where G is pseudofinite and  $\overline{G}$  is its Zariski closure (in  $GL_n$ ).

- No use of CFSG.
- Use of large "definable" fragments of CFSG, for example:
  - Component analysis in groups of odd type.
  - Signalizer functor theory.

## Count functions: motivation

- An attempt to replace both "finite" and "pseudofinite" by an unifying algebraic concept.
- We need to balance:
  - feasibility: the property needs to be verifiable in the context of the Hrushovski Programme
  - power: has to be strong enough to allow classification of definably simple groups with this property.

What follows is just a first try to achieve *power*; the feasibility was not even considered.

# Count functions, after Krajíček and Scanlon

Let *A* be an algebraic structure and D the set of definable subsets in all  $A^n$ , n = 1, 2, ...

Let *R* be a linearly ordered unital commutative ring. A function

$$\mu: \mathcal{D} \to \boldsymbol{R}$$

is *a count function* on *A* over *R* if and only if it satisfies the following conditions.

Groups with count function

## Count functions, continued

1. 
$$\mu(\{a\}) = 1$$
 for any  $a \in A^k$ .

- 2.  $\mu(X \cup Y) = \mu(X) + \mu(Y)$ , whenever  $X, Y \in D$  and X, Y are disjoint.
- 3.  $\mu(X \times Y) = \mu(X) \times \mu(Y)$ , whenever  $X, Y, X \times Y \in \mathcal{D}$ .
- 4.  $\mu(X) = \mu(Y)$ , whenever  $X, Y \in \mathcal{D}$  and there is a definable bijection between X, Y.
- 5.  $\mu(X) = c \cdot \mu(Y)$ , whenever  $c \in R, X, Y \in D$ , and there is a definable map  $f : X \longrightarrow Y$  such that each of its fibers  $f^{(-1)}(y)$ , where  $y \in Y$ , has count  $\mu(f^{(-1)}(y)) = c$ .

6. 
$$\mu(X) \ge 0$$
 for all  $X \in \mathcal{D}$ .

A count function is *nontrivial* if 0 < 1 and the image of  $\mu$  is not just  $\{0\}$ .

## **Tallied structures**

For brevity, a structure with a nontrivial count function is called **tallied**.

**Krajíček:** Let  $A_i$ , for  $i \in I$ , be structures of the same languages, and assume that A is an ultraproduct of  $A_i$ . Assume that all  $A_i$  are tallied. Then A is tallied.

The Hrushovski Programme

Groups with count function

## **Tallied fields**

A field *F* is *quasi-finite* if *F* is perfect and has precisely one extension of each degree (in a fixed algebraic closure  $\tilde{F}$ ).

**Scanlon:** Any field admitting a non-trivial count function is quasi-finite.

## Frobenious groups

A group *G* is called *Frobenius* if it contains a non-trivial proper subgroup *H* such that

$$H \cap H^g = 1$$
 for all  $g \in G \setminus H$ ;

H is called a Frobenius complement of G. The set

$$\mathcal{K} = \left\{ \mathcal{G} \setminus \bigcup_{g \in \mathcal{G} \setminus \mathcal{H}} \mathcal{H}^g \right\} \cup \{1\}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is called the Frobenius kernel of G.

## A version of the Frobenius Complement Theorem

**B-Alshanqiti:** Assume G is a tallied Frobenius group with a definable Frobenius complement H and the Frobenius kernel K. In addition, assume that H contains an involution. Then

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ► *K* is a definable normal subgroup of *G*.
- ▶ *K* is an abelian group.
- ► *H* contains exactly one involution.

Counting arguments work!