How many rational points can a high genus curve over a finite field have?

Alp Bassa

Sabancı University

Affine plane curves

k a perfect field (e.g. $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{F}_{q} \ldots$)
\bar{k} a fixed algebraic closure of k
Let $f(X, Y) \in k[X, Y]$.
The affine plane curve defined by $f(X, Y)$:

$$
\mathcal{C}_{f}:=\{(x, y) \in \bar{k} \times \bar{k} \mid f(x, y)=0\}
$$

\mathcal{C}_{f} is defined over k.
The set of k-rational points of \mathcal{C}_{f} :

$$
\mathcal{C}_{f}(k):=\{(x, y) \in k \times k \mid f(x, y)=0\}
$$

An example

$k=\mathbb{R}$

$$
f(X, Y)=Y^{2}-X \cdot(X-1) \cdot(X+1)
$$

$\mathcal{C}_{f}(\mathbb{R})$

Curves in n-space

Can generalize this to curves in higher dimensional space: $\mathcal{C} \subset \bar{k}^{n}$ $f_{1}, f_{2}, \ldots f_{n-1} \in k\left[X_{1}, X_{2}, \ldots, X_{n}\right]$.
Affine curve:
$\mathcal{C}:=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \bar{k}^{n} \mid f_{i}\left(a_{1}, \ldots, a_{n}\right)=0\right.$ for $\left.i=1,2, \ldots n-1\right\}$
The set of k-rational points of \mathcal{C} :
$\mathcal{C}(k):=\left\{\left(a_{1}, \ldots, a_{n}\right) \in k^{n} \mid f_{i}\left(a_{1}, \ldots, a_{n}\right)=0\right.$ for $\left.i=1,2, \ldots n-1\right\}$

From now on we assume that \mathcal{C} is a

- absolutely irreducible
- smooth

- projective curve defined over k.

The genus

Invariant

$$
g(\mathcal{C}) \text { : a nonnegative integer }
$$

\mathcal{C} is a line/conic \longrightarrow genus 0
\mathcal{C} is an elliptic curve \longrightarrow genus 1

Curves over Finite Fields

From now on $k=\mathbb{F}_{q}$
$\mathcal{C} / \mathbb{F}_{q} \rightarrow \mathcal{C} \subset{\overline{\mathbb{F}_{q}}}^{n}$ for some $n \in \mathbb{N}$

$$
\mathcal{C}\left(\mathbb{F}_{q}\right) \subset \mathbb{F}_{q}^{n}
$$

So

$$
\begin{gathered}
\# \mathcal{C}\left(\mathbb{F}_{q}\right) \text { is finite } \\
\# \mathcal{C}\left(\mathbb{F}_{q}\right)=?
\end{gathered}
$$

The Hasse-Weil bound

$\mathcal{C} \longrightarrow \zeta_{\mathcal{C}}$ Zeta function of \mathcal{C}
Theorem (Hasse-Weil)
The Riemann hypothesis holds for ζ_{c}.
Corollary (Hasse-Weil bound)
Let $\mathcal{C} / \mathbb{F}_{q}$ be a curve of genus $g(\mathcal{C})$. Then

$$
\# \mathcal{C}\left(\mathbb{F}_{q}\right) \leq q+1+2 \sqrt{q} \cdot g(\mathcal{C}) .
$$

How good is the Hasse-Weil bound?

Various improvements, but:
If the genus $g(\mathcal{C})$ is small (with respect to q) \longrightarrow Hasse-Weil bound is good.
It can be attained, maximal curves, for example over $\mathbb{F}_{q^{2}}$

$$
y^{q}+y=x^{q+1}
$$

Ihara, Manin: The Hasse-Weil bound can be improved if $g(\mathcal{C})$ is large (with respect to q).

Ihara's constant

Ihara:

$$
A(q)=\limsup _{g(\mathcal{C}) \rightarrow \infty} \frac{\# \mathcal{C}\left(\mathbb{F}_{q}\right)}{g(\mathcal{C})}
$$

\mathcal{C} runs over all absolutely irreducible, smooth, projective curves over \mathbb{F}_{q}.

Hasse-Weil bound $\Longrightarrow A(q) \leq 2 \sqrt{q}$
Ihara

$$
\Longrightarrow A(q) \leq \sqrt{2 q}
$$

Drinfeld-Vladut $\quad \Longrightarrow A(q) \leq \sqrt{q}-1$

Lower bounds for $A(q)$

Serre (using class field towers):

$$
A(q)>0
$$

Ihara (modular curves):
If $q=\ell^{2}$ then

$$
A(q) \geq \sqrt{q}-1=\ell-1
$$

In fact $A\left(\ell^{2}\right)=\ell-1$.
Zink (Shimura surfaces):
If $q=p^{3}, p$ a prime number, then

$$
A\left(p^{3}\right) \geq \frac{2\left(p^{2}-1\right)}{p+2}
$$

(generalized by Bezerra-Garcia-Stichtenoth to all cubic finite fields)

How to obtain lower bounds for $A(q)$?

Find sequences $\mathcal{C}_{i} / \mathbb{F}_{q}$ such that $g\left(\mathcal{C}_{i}\right) \rightarrow \infty$ and

$$
\lim _{i \rightarrow \infty} \frac{\# \mathcal{C}_{i}\left(F_{q}\right)}{g\left(\mathcal{C}_{i}\right)} \text { is large. }
$$

Many ways to construct good sequences:

- Modular curves (Elliptic, Shimura, Drinfeld) (over $\mathbb{F}_{q^{2}}$)
- Class field towers (over prime fields)
- Explicit equations (recursively defined)

Recursively defined towers

$f_{1}, f_{2}, \ldots f_{n-1} \in \mathbb{F}_{q}\left[X_{1}, X_{2}, \ldots, X_{n}\right]$
$\mathcal{C}:=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \overline{\mathbb{F}}_{q}^{n} \mid f_{i}\left(a_{1}, \ldots, a_{n}\right)=0\right.$ for $\left.i=1,2, \ldots n-1\right\}$
Recursively defined tower:
Fix $F(U, V) \in \mathbb{F}_{q}[U, V]$.
Define

$$
\begin{gathered}
f_{1}=F\left(X_{1}, X_{2}\right) \\
f_{2}=F\left(X_{2}, X_{3}\right) \\
\\
\cdots \\
f_{n-1}=F\left(X_{n-1}, X_{n}\right) \\
\mathcal{C}_{n}:=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \overline{\mathbb{F}}_{q}^{n} \mid f_{1}=f_{2}=\cdots=f_{n-1}=0\right\}
\end{gathered}
$$

$\mathcal{F}=\left(\mathcal{C}_{n}\right)_{n \geq 1}$ tower recursively defined by F.

Recursively defined by $f(U, V) \in \mathbb{F}_{q}[U, V]$

$$
\begin{gathered}
C_{4}=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \mid F\left(a_{1}, a_{2}\right)=F\left(a_{2}, a_{3}\right)=F\left(a_{3}, a_{4}\right)=0\right\} \subseteq \overline{\mathbb{F}}_{q}^{4} \\
\downarrow \\
C_{3}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \mid F\left(a_{1}, a_{2}\right)=0, F\left(a_{2}, a_{3}\right)=0\right\} \subseteq \overline{\mathbb{F}}_{q}^{3} \\
\downarrow \\
C_{2}=\left\{\left(a_{1}, a_{2}\right) \mid F\left(a_{1}, a_{2}\right)=0\right\} \subseteq{\overline{F_{q}}}^{2}
\end{gathered}
$$

Limit of a tower

Limit of the tower $\mathcal{F}=\left(\mathcal{C}_{n}\right)_{n \geq 1}$ over \mathbb{F}_{q}

$$
\begin{gathered}
\lambda(\mathcal{F})=\lim _{n \rightarrow \infty} \frac{\# \mathcal{C}_{n}\left(\mathbb{F}_{q}\right)}{g\left(\mathcal{C}_{n}\right)} \leq A(q) \leq \sqrt{q}-1 \\
\text { exists }
\end{gathered}
$$

$\lambda(\mathcal{F})=0 \longrightarrow$ asymptotically bad
$\lambda(\mathcal{F})>0 \longrightarrow$ asymptotically good

Example

Garcia-Stichtenoth, 1996, Norm-Trace tower \mathcal{F}_{1} $q=\ell^{2}$

$$
\begin{aligned}
V^{\ell}+V & =\frac{U^{\ell+1}}{U^{\ell}+U} \\
\lambda\left(\mathcal{F}_{1}\right) & =\sqrt{q}-1
\end{aligned}
$$

Attains the Drinfeld-Vladut bound.
Genus computation is difficult (wild ramification) Why many rational points?

$$
\begin{gathered}
q=\ell^{2} \quad V^{\ell}+V=\frac{U^{\ell+1}}{U^{\ell}+U} \\
X_{n}^{\ell}+X_{n}=\frac{X_{n-1}^{\ell+1}}{X_{n-1}^{\ell}+X_{n-1}}, \ldots, X_{3}^{\ell}+X_{3}=\frac{X_{2}^{\ell+1}}{X_{2}^{\ell}+X_{2}}, X_{2}^{\ell}+X_{2}=\frac{X_{1}^{\ell+1}}{X_{1}^{\ell}+X_{1}} \\
X_{1}=a_{1} \in \mathbb{F}_{q} \text { s.t. } \operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{\ell}}\left(a_{1}\right) \neq 0
\end{gathered}
$$

($\ell^{2}-\ell$ choices)

$$
X_{2}=a_{2} \text { with } a_{2}^{\ell}+a_{2}=\frac{a_{1}^{\ell+1}}{a_{1}^{\ell}+a_{1}} \in \mathbb{F}_{\ell} \backslash\{0\}
$$

ℓ choices with $\left.a_{2} \in \mathbb{F}_{q}, \operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{\ell}}\left(a_{2}\right) \neq 0\right)$

$$
X_{3}=a_{3} \text { with } a_{3}^{\ell}+a_{3}=\frac{a_{2}^{\ell+1}}{a_{2}^{\ell}+a_{2}} \in \mathbb{F}_{\ell} \backslash\{0\}
$$

ℓ choices with $\left.a_{3} \in \mathbb{F}_{q}, \operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{\ell}}\left(a_{3}\right) \neq 0\right)$
$\cdots \cdots$ so $\# \mathcal{C}_{n}\left(\mathbb{F}_{q}\right) \geq\left(\ell^{2}-\ell\right) \ell^{n-1}$

Towers over cubic finite fields

- van der Geer-van der Vlugt, $\quad q=2^{3}=8, \mathcal{F}_{2} / \mathbb{F}_{q}$

$$
V^{2}+V=U+1+1 / U
$$

Attains Zink's bound for $p=2$.

- Bezerra-Garcia-Stichtenoth, $q=\ell^{3}, \mathcal{F}_{3} / \mathbb{F}_{q}$

$$
\frac{1-V}{V^{\ell}}=\frac{U^{\ell}+U+1}{U} \quad \lambda\left(\mathcal{F}_{3}\right) \geq \frac{2\left(\ell^{2}-1\right)}{\ell+2}
$$

Generalizes Zink's bound.

- B.-Garcia-Stichtenoth, $q=\ell^{3}, \mathcal{F}_{4} / \mathbb{F}_{q}$

$$
\left(V^{\ell}-V\right)^{\ell-1}+1=\frac{-U^{\ell(\ell-1)}}{\left(U^{\ell-1}-1\right)^{\ell-1}} \quad \lambda\left(\mathcal{F}_{4}\right) \geq \frac{2\left(\ell^{2}-1\right)}{\ell+2}
$$

A new family of towers over all non-prime fields

B.-Beelen-Garcia-Stichtenoth
\mathcal{F}_{5} over $\mathbb{F}_{\ell^{n}}, n \geq 2$:
Notation: $\operatorname{Tr}_{n}(t)=t+t^{\ell}+\cdots+t^{\ell^{n-1}}, \quad N_{n}(t)=t^{1+\ell+\ell^{2}+\ldots+\ell^{n-1}}$

$$
\frac{N_{n}(V)+1}{V^{\ell^{n-1}}}=\frac{N_{n}(U)+1}{U}
$$

Splitting: $N_{n}(\alpha)=-1$

$$
\lambda\left(\mathcal{F}_{5}\right) \geq \frac{2}{\frac{1}{\ell-1}+\frac{1}{\ell^{n-1}-1}}
$$

- $n=2: ~ \ell-1 \rightarrow$ Drinfeld-Vladut bound
- $n=3: \frac{2\left(\ell^{2}-1\right)}{\ell+2} \rightarrow$ Zink's bound

$$
\mathcal{F}_{6} / \mathbb{F}_{q}, \quad q=\ell^{n}, \quad n=2 k+1 \geq 3
$$

$$
\begin{gathered}
\frac{\operatorname{Tr}_{k}(V)-1}{\left(\operatorname{Tr}_{k+1}(V)-1\right)^{\ell^{k}}}=\frac{\left(\operatorname{Tr}_{k}(U)-1\right)^{\ell^{k+1}}}{\left(\operatorname{Tr}_{k+1}(U)-1\right)} \\
\frac{V^{\ell^{n}}-V}{V^{\ell^{k}}}=-\frac{(1 / U)^{\ell^{n}}-(1 / U)}{U^{\ell^{k+1}}}
\end{gathered}
$$

$\mathcal{F}_{6} / \mathbb{F}_{q}, \quad q=\ell^{n}, n=2 k+1$

$$
\lambda\left(\mathcal{F}_{6}\right) \geq \frac{2}{\frac{1}{\ell^{k}-1}+\frac{1}{\ell^{k+1}-1}} \geq \frac{2\left(\ell^{k+1}-1\right)}{\ell+1+\epsilon}
$$

with

$$
\epsilon=\frac{\ell-1}{\ell^{k}-1} .
$$

Note:

$$
\ell^{k+\frac{1}{2}}-1 \geq A\left(\ell^{2 k+1}\right) \geq \frac{2}{\frac{1}{\ell^{k}-1}+\frac{1}{\ell^{k+1}-1}}
$$

2^{15}
$\left(2^{3}\right)^{5} \quad\left(2^{5}\right)^{3}$
$q=2^{k}, k$ large,

$$
\frac{\lambda\left(\mathcal{F}_{5}\right)}{\sqrt{q}-1} \approx 94 \%
$$

Elliptic Curves

$E / k, \operatorname{char}(k) \neq 2,3$

$$
E: Y^{2}=X^{3}+A \cdot X+B
$$

where $4 A^{3}+27 B^{2} \neq 0$.

Elliptic Curves over \mathbb{C}

\mathbb{C} / Λ
topologically a torus inherits a complex structure from \mathbb{C}.
Complex manifold $\rightarrow E(\mathbb{C})$

The group law

Points in E inherit a group structure from \mathbb{C} :

The group law

Points in E inherit a group structure from \mathbb{C} :

The group law

Points in E inherit a group structure from \mathbb{C} :

The group law

Points in E inherit a group structure from \mathbb{C} :

The group law

Points in E inherit a group structure from \mathbb{C} :

Isogenies

A morphism $\varphi: E_{1} \rightarrow E_{2}$, which is a group homomorphism is called an isogeny.
Example: E elliptic curve, $N \in \mathbb{N}$

$$
\begin{aligned}
{[N]: E } & \rightarrow E \\
P & \mapsto \underbrace{P+P+\ldots P}_{N \text { times }}
\end{aligned}
$$

$\# \operatorname{ker}(\varphi)$ is finite.
$\# \operatorname{ker}(\varphi)=N \rightarrow \varphi$ is an N-isogeny $\rightarrow \operatorname{ker}(\varphi) \subset \operatorname{ker}([N])$.

Torsion

$\operatorname{ker}([N])=\{P \in E \mid N \cdot P=0\}=: E[N] \rightarrow N$-torsion points
if $\operatorname{char}(k) \nmid N \quad E[N] \cong \mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ $\{0\} \rightarrow$ supersingular
if $\operatorname{char}(k)=p \quad E[p] \cong$ or

$$
\mathbb{Z} / p \mathbb{Z} \rightarrow \text { ordinary }
$$

Isomorphism classes of elliptic curves

\mathbb{C} / Λ_{1} and \mathbb{C} / Λ_{2} are isomorphic

Λ_{1} and Λ_{2} are homothetic, i.e. $\Lambda_{1}=\alpha \Lambda_{2}, \alpha \in \mathbb{C}^{\times}$.

Let

$$
\mathbb{H}=\{\tau \in \mathbb{C} \mid \operatorname{Im}(\tau)>0\} .
$$

Every lattice is homothetic to a lattice of the form

$$
\Lambda_{\tau}=\mathbb{Z}+\mathbb{Z} \tau
$$

with $\tau \in \mathbb{H}$.
When are Λ_{τ} and $\Lambda_{\tau^{\prime}}$ the same lattice?

When are Λ_{τ} and $\Lambda_{\tau^{\prime}}$ the same lattice?
$\mathrm{SL}_{2}(\mathbb{Z})$ acts on \mathbb{H} by fractional linear transformations:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot \tau=\frac{a \tau+b}{c \tau+d}
$$

Λ_{τ} and $\Lambda_{\tau^{\prime}}$ are the same lattice

τ and τ^{\prime} are in the same orbit under the action of $\mathrm{SL}_{2}(\mathbb{Z})$.

Isomorphism classes of elliptic curves

Elliptic curves / isomorphism \longleftrightarrow lattices in $\mathbb{C} /$ homothety
$\longleftrightarrow \mathbb{H} / \mathrm{SL}_{2}(\mathbb{Z}) \quad \rightarrow X(1)$

The j-Function

There exists a holomorphic function

$$
j: \mathbb{H} \rightarrow \mathbb{C}
$$

which is invariant under $\mathrm{SL}_{2}(\mathbb{Z})$.

$$
j: \mathbb{H} / \mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathbb{C}
$$

is a bijection!

$[E] \longrightarrow j$-invariant

Fact: E supersingular $\longrightarrow j(E) \in \mathbb{F}_{p^{2}}$, where p is the characteristic.
$\therefore j$-line parametrizes isomorphism classes of Elliptic curves \rightarrow has designated $\mathbb{F}_{p^{2}}$-rational points.

Enhanced Elliptic Curves

Elliptic curves with some additional structure

$$
(E, C)
$$

E: Elliptic Curve
C : cyclic subgroup of order N / N-isogeny
$(E, C) \sim\left(E^{\prime}, C^{\prime}\right)$ isomorphism takes $C \rightarrow C^{\prime}$.
$X_{0}(N)$ modular curve parametrizing (E, C).

$\left(N_{i}\right)_{i \geq 0}$ with $N_{i} \rightarrow \infty, p \nmid N_{i}$.

$$
C_{N_{i}}=\left(X_{0}\left(N_{i}\right)(\bmod p)\right)
$$

- $\# C_{N_{i}}\left(\mathbb{F}_{p^{2}}\right)$ is large (supersingular points)
- $g\left(C_{N_{i}}\right)$ can be estimated

$$
\frac{\# C_{N_{i}}\left(\mathbb{F}_{p^{2}}\right)}{g\left(C_{N_{i}}\right)} \rightarrow \sqrt{p^{2}}-1=p-1 \quad \text { (Drinfeld-Vladut bound) }
$$

Elkies: $X_{0}\left(\ell^{n}\right)$ recursive.

Drinfeld Modular Varieties

Drinfeld Modular Curves

$A=\mathbb{F}_{\ell}[T], P$ a prime of A,

$$
\mathbb{F}_{P}=A /<P>=\mathbb{F}_{\ell^{d}}
$$

where $d=\operatorname{deg} P$.
$\mathbb{F}_{P}^{(2)}$: The unique quadratic extension of \mathbb{F}_{P}.
For $N \in \mathbb{F}_{\ell}[T]$ we have

$$
X_{0}(N)
$$

an algebraic curve defined over $\mathbb{F}_{\ell}(T)$, Drinfeld modular curve, parametrizing rank 2 Drinfeld modules together with an N -isogeny. $X_{0}(N)$ has good reduction at all primes $P \nmid N$.

$$
X_{0}(N) / \mathbb{F}_{P}
$$

Many points on Drinfeld modular curves

$X_{0}(N) / \mathbb{F}_{P}$ has many rational points over $\mathbb{F}_{P}^{(2)}=\mathbb{F}_{\ell^{2 d}}$, where $d=\operatorname{deg} P$. Asymptotically:
Theorem (Gekeler)
$P \in \mathbb{F}_{\ell}[T]$ prime of degree d
$\left(N_{k}\right)_{k \geq 0}$: sequence of polynomials in $\mathbb{F}_{\ell}[T]$ with

- $P \nmid N_{k}$
- $\operatorname{deg} N_{k} \rightarrow \infty$

Then the sequence of curves

$$
X_{0}\left(N_{k}\right) / \mathbb{F}_{P}
$$

attains the Drinfeld-Vladut bound over $\mathbb{F}_{P}^{(2)}=\mathbb{F}_{\ell^{2 d}}$.

Elkies: $X_{0}\left(Q^{n}\right)$ recursive.
Norm trace tower is related to (degree $\ell-1$ cover of)

$$
X_{0}\left(T^{n}\right) / \mathbb{F}_{T-1}
$$

Many points over non-quadratic fields

Many points come from the supersingular points
\longrightarrow defined over $\mathbb{F}_{P}^{(2)}$.
In general:
Theorem (Gekeler)
Any supersingular Drinfeld module ϕ of rank r and characteristic P is isomorphic to one defined over L, where L is an extension of F_{P} of degree r.
Idea: Look at space parametrizing rank r Drinfeld modules
Problem: The corresponding space is higher dimensional
($(r-1)$-dimensional), not a curve!
Idea': Look at curves on those spaces, passing through the many
$\mathbb{F}_{\ell \text { r-rational points }}$
(B.-Beelen-Garcia-Stichtenoth)

$$
\frac{\operatorname{Tr}_{k}(V)-1}{\left(\operatorname{Tr}_{k+1}(V)-1\right)^{\ell^{k}}}=\frac{\left(\operatorname{Tr}_{k}(U)-1\right)^{\ell^{k+1}}}{\left(\operatorname{Tr}_{k+1}(U)-1\right)}
$$

$\mathcal{F} / \mathbb{F}_{q}, \quad q=\ell^{n}, \quad n=2 k+1$

$$
A(q) \geq \lambda(\mathcal{F}) \geq \frac{2}{\frac{1}{\ell^{k}-1}+\frac{1}{\ell^{k+1}-1}} \geq \frac{2\left(\ell^{k+1}-1\right)}{\ell+1+\epsilon}
$$

with

$$
\epsilon=\frac{\ell-1}{\ell^{k}-1} .
$$

joint work (in progress) with Beelen, Garcia, Stichtenoth Let ϕ be a rank n Drinfeld Module of characteristic $T-1$.

$$
\phi_{T}=\tau^{n}+g_{1} \tau^{n-1}+g_{2} \tau^{n-2}+\cdots+g_{n-1} \tau+1
$$

Let $\lambda: \phi \rightarrow \psi$ be an isogeny of the form

$$
\tau-u
$$

whose kernel is annihilated by T.
$\exists \mu=\tau^{n-1}+a_{2} \tau^{n-2}+\cdots+a_{n-1} \tau+a_{n}$, s.t.

$$
\mu \cdot \lambda=\phi_{T}
$$

Then

$$
N_{n}(u)+g_{1} \cdot N_{n-1}(u)+g_{2} \cdot N_{n-2}(u)+\cdots+g_{n-1} \cdot N_{1}(u)+1=0
$$

Notation: $N_{k}(x)=x^{1+\ell+\cdots+\ell^{k-2}+\ell^{k-1}}$

Equations for the isogenous Drinfeld module

$\lambda: \phi \rightarrow \psi$

$$
\psi_{T}=\tau^{n}+h_{1} \cdot \tau^{n-1}+\cdots+h_{n-1} \cdot \tau+1
$$

Isogeny: $\lambda \cdot \phi=\psi \cdot \lambda$

$$
\begin{aligned}
& h_{n-1} u^{\ell}=g_{n-1} u \\
& h_{n-2} u^{\ell^{2}}-h_{n-1}=g_{n-2} u-g_{n-1}^{\ell} \\
& \ldots \ldots \\
& h_{1} u^{\ell^{n-1}}-h_{2}=g_{1} u-g_{2}^{\ell} \\
& u^{\ell^{n}}-h_{1}=u-g_{1}^{\ell}
\end{aligned}
$$

$$
1+N_{n}(u)\left[1+\frac{h_{1}}{N_{1}(u)}+\frac{h_{2}^{\ell}}{N_{2}(u)}+\cdots+\frac{h_{n-1}^{\ell-2}}{N_{n-1}(u)}\right]=0 .
$$

$$
g_{1}=g_{2}=\cdots=g_{n-1}=0 \rightarrow \text { supersingular (will split). }
$$

Find curve passing through this point and invariant under $g_{i} \rightarrow h_{i}$.
Consider $g_{2}=\cdots=g_{n-1}=0 \Rightarrow h_{2}=\cdots=h_{n-1}=0$

$$
\begin{aligned}
-g_{1} & =\frac{N_{n}(1 / u)+1}{(1 / u)^{\ell^{n-1}}} \\
-h_{1} & =\frac{N_{n}(1 / u)+1}{1 / u}
\end{aligned}
$$

Letting $v_{0}=1 / u$

$$
\frac{N_{n}(V)+1}{V^{\ell-1}}=\frac{N_{n}(U)+1}{U} .
$$

