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Affine plane curves

k a perfect field (e.g. Q,R,C,Fq...)
k̄ a fixed algebraic closure of k
Let f (X ,Y ) ∈ k[X ,Y ].
The affine plane curve defined by f (X ,Y ):

Cf := {(x , y) ∈ k̄ × k̄ |f (x , y) = 0}

Cf is defined over k .
The set of k-rational points of Cf :

Cf (k) := {(x , y) ∈ k × k|f (x , y) = 0}



An example

k = R
f (X ,Y ) = Y 2 − X · (X − 1) · (X + 1).

Cf (R)



Curves in n-space

Can generalize this to curves in higher dimensional space: C ⊂ k̄n

f1, f2, . . . fn−1 ∈ k[X1,X2, . . . ,Xn].
Affine curve:

C := {(a1, . . . , an) ∈ k̄n|fi (a1, . . . , an) = 0 for i = 1, 2, . . . n − 1}

The set of k-rational points of C:

C(k) := {(a1, . . . , an) ∈ kn|fi (a1, . . . , an) = 0 for i = 1, 2, . . . n−1}



From now on we assume that C is a

• absolutely irreducible

• smooth

• projective

curve defined over k.



The genus
Invariant

g(C) : a nonnegative integer

C is a line/conic −→ genus 0

C is an elliptic curve −→ genus 1



Curves over Finite Fields

From now on k = Fq

C/Fq → C ⊂ F̄q
n

for some n ∈ N

C(Fq) ⊂ Fn
q

So
#C(Fq) is finite

#C(Fq) =?



The Hasse–Weil bound

C −→ ζC Zeta function of C

Theorem (Hasse–Weil)

The Riemann hypothesis holds for ζC .

Corollary (Hasse–Weil bound)

Let C/Fq be a curve of genus g(C). Then

#C(Fq) ≤ q + 1 + 2
√

q · g(C).



How good is the Hasse–Weil bound?

Various improvements, but:
If the genus g(C) is small (with respect to q) −→ Hasse–Weil
bound is good.
It can be attained, maximal curves, for example over Fq2

yq + y = xq+1.

Ihara, Manin: The Hasse–Weil bound can be improved if g(C)
is large (with respect to q).



Ihara’s constant

Ihara:

A(q) = lim sup
g(C)→∞

#C(Fq)

g(C)

C runs over all absolutely irreducible, smooth, projective curves
over Fq.

Hasse–Weil bound =⇒ A(q) ≤ 2
√

q

Ihara =⇒ A(q) ≤
√

2q

Drinfeld–Vladut =⇒ A(q) ≤ √q − 1



Lower bounds for A(q)

Serre (using class field towers):

A(q) > 0

Ihara (modular curves):
If q = `2 then

A(q) ≥ √q − 1 = `− 1

In fact A(`2) = `− 1.

Zink (Shimura surfaces):
If q = p3, p a prime number, then

A(p3) ≥ 2(p2 − 1)

p + 2

(generalized by Bezerra–Garcia–Stichtenoth to all cubic finite
fields)



How to obtain lower bounds for A(q)?

Find sequences Ci/Fq such that g(Ci )→∞ and

lim
i→∞

#Ci (Fq)

g(Ci )
is large.

Many ways to construct good sequences:

• Modular curves (Elliptic, Shimura, Drinfeld) (over Fq2)

• Class field towers (over prime fields)

• Explicit equations (recursively defined)



Recursively defined towers

f1, f2, . . . fn−1 ∈ Fq[X1,X2, . . . ,Xn]

C := {(a1, . . . , an) ∈ F̄q
n|fi (a1, . . . , an) = 0 for i = 1, 2, . . . n − 1}

Recursively defined tower:
Fix F (U,V ) ∈ Fq[U,V ].
Define

f1 = F (X1,X2)

f2 = F (X2,X3)

· · ·

fn−1 = F (Xn−1,Xn)

Cn := {(a1, . . . , an) ∈ F̄q
n|f1 = f2 = · · · = fn−1 = 0}

F = (Cn)n≥1 tower recursively defined by F .



Recursively defined by f (U,V ) ∈ Fq[U,V ]

C4 = {(a1, a2, a3, a4)|F (a1, a2) = F (a2, a3) = F (a3, a4) = 0} ⊆ F̄q
4

����

C3 = {(a1, a2, a3)|F (a1, a2) = 0,F (a2, a3) = 0} ⊆ F̄q
3

����

C2 = {(a1, a2)|F (a1, a2) = 0} ⊆ F̄q
2



Limit of a tower

Limit of the tower F = (Cn)n≥1 over Fq

λ(F) = lim
n→∞

#Cn(Fq)

g(Cn)
≤ A(q) ≤ √q − 1

exists

λ(F) = 0 −→ asymptotically bad

λ(F) > 0 −→ asymptotically good



Example

Garcia–Stichtenoth, 1996, Norm-Trace tower F1

q = `2

V ` + V =
U`+1

U` + U

λ(F1) =
√

q − 1

Attains the Drinfeld–Vladut bound.
Genus computation is difficult (wild ramification)
Why many rational points?



q = `2 V ` + V =
U`+1

U` + U

X `
n+Xn =

X `+1
n−1

X `
n−1 + Xn−1

, . . . ,X `
3 +X3 =

X `+1
2

X `
2 + X2

, X `
2 +X2 =

X `+1
1

X `
1 + X1

X1 = a1 ∈ Fq s.t. TrFq/F`
(a1) 6= 0

(`2 − ` choices)

X2 = a2 with a`2 + a2 =
a`+1

1

a`1 + a1
∈ F`\{0}

` choices with a2 ∈ Fq,TrFq/F`
(a2) 6= 0)

X3 = a3 with a`3 + a3 =
a`+1

2

a`2 + a2
∈ F`\{0}

` choices with a3 ∈ Fq,TrFq/F`
(a3) 6= 0)

· · · · · · so #Cn(Fq) ≥ (`2 − `)`n−1



Towers over cubic finite fields

• van der Geer–van der Vlugt, q = 23 = 8,F2/Fq

V 2 + V = U + 1 + 1/U

Attains Zink’s bound for p = 2.

• Bezerra–Garcia–Stichtenoth, q = `3,F3/Fq

1− V

V `
=

U` + U + 1

U
λ(F3) ≥ 2(`2 − 1)

`+ 2
.

Generalizes Zink’s bound.

• B.–Garcia–Stichtenoth, q = `3,F4/Fq

(V ` − V )`−1 + 1 =
−U`(`−1)

(U`−1 − 1)`−1
λ(F4) ≥ 2(`2 − 1)

`+ 2
.



A new family of towers over all non-prime fields

B.–Beelen–Garcia–Stichtenoth
F5 over F`n , n ≥ 2:

Notation:Trn(t) = t + t` + · · ·+ t`
n−1
, Nn(t) = t1+`+`2+...+`n−1

Nn(V ) + 1

V `n−1 =
Nn(U) + 1

U
.

Splitting: Nn(α) = −1

λ(F5) ≥ 2
1
`−1 + 1

`n−1−1

• n = 2: `− 1→ Drinfeld-Vladut bound

• n = 3: 2(`2−1)
`+2 → Zink’s bound



F6/Fq, q = `n, n = 2k + 1 ≥ 3

Trk(V )− 1

(Trk+1(V )− 1)`k
=

(Trk(U)− 1)`
k+1

(Trk+1(U)− 1)

V `n − V

V `k
= −(1/U)`

n − (1/U)

U`k+1



F6/Fq, q = `n, n = 2k + 1

λ(F6) ≥ 2
1

`k−1
+ 1

`k+1−1

≥ 2(`k+1 − 1)

`+ 1 + ε

with

ε =
`− 1

`k − 1
.

Note:

`k+ 1
2 − 1 ≥ A(`2k+1) ≥ 2

1
`k−1

+ 1
`k+1−1

.

215 (23)5 (25)3

q = 2k ,k large,
λ(F5)
√

q − 1
≈ 94%



Elliptic Curves

E/k , char(k) 6= 2, 3

E : Y 2 = X 3 + A · X + B,

where 4A3 + 27B2 6= 0.



Elliptic Curves over C

k = C

Λ = ω1Z⊕ ω2Z.

C/Λ
topologically a torus
inherits a complex structure from C.
Complex manifold → E (C)



The group law

Points in E inherit a group structure from C:



The group law

Points in E inherit a group structure from C:



The group law

Points in E inherit a group structure from C:



The group law

Points in E inherit a group structure from C:



The group law

Points in E inherit a group structure from C:



Isogenies

A morphism ϕ : E1 → E2, which is a group homomorphism is
called an isogeny.
Example: E elliptic curve, N ∈ N

[N] : E → E
P 7→ P + P + . . .P︸ ︷︷ ︸

N times

#ker(ϕ) is finite.

#ker(ϕ) = N → ϕ is an N-isogeny → ker(ϕ) ⊂ ker([N]).



Torsion

ker([N]) = {P ∈ E |N · P = 0} =: E [N] → N-torsion points

if char(k) - N E [N] ∼= Z/nZ× Z/nZ

if char(k) = p E [p] ∼=
{0} → supersingular
or
Z/pZ→ ordinary



Isomorphism classes of elliptic curves

C/Λ1 and C/Λ2 are isomorphic

⇐⇒

Λ1 and Λ2 are homothetic, i.e. Λ1 = αΛ2, α ∈ C×.

Let
H = {τ ∈ C|Im(τ) > 0}.

Every lattice is homothetic to a lattice of the form

Λτ = Z + Zτ

with τ ∈ H.
When are Λτ and Λτ ′ the same lattice?



When are Λτ and Λτ ′ the same lattice?

SL2(Z) acts on H by fractional linear transformations:(
a b
c d

)
· τ =

aτ + b

cτ + d
.

Λτ and Λτ ′ are the same lattice

⇐⇒

τ and τ ′ are in the same orbit under the action of SL2(Z).



Isomorphism classes of elliptic curves

Elliptic curves / isomorphism ←→ lattices in C / homothety
←→ H/SL2(Z) → X (1)



The j-Function

There exists a holomorphic function

j : H→ C,

which is invariant under SL2(Z).

j : H/SL2(Z)→ C

is a bijection!



−→ j-line
[E ] −→ j-invariant

Fact: E supersingular −→ j(E ) ∈ Fp2 ,
where p is the characteristic.

∴ j-line parametrizes isomorphism classes of Elliptic curves
→ has designated Fp2-rational points.



Enhanced Elliptic Curves

Elliptic curves with some additional structure

(E ,C )

E : Elliptic Curve
C : cyclic subgroup of order N / N-isogeny

(E ,C ) ∼ (E ′,C ′) isomorphism takes C → C ′.

X0(N) modular curve parametrizing (E ,C ).



X0(N)

forget

��

A ⊂ X0(N)(Fp2)

��
X (1) ⊃ supersingular ⊂ X (1)(Fp2)



(Ni )i≥0 with Ni →∞, p - Ni .

CNi
= (X0(Ni ) (mod p))

• #CNi
(Fp2) is large (supersingular points)

• g(CNi
) can be estimated

#CNi
(Fp2)

g(CNi
)
→
√

p2 − 1 = p − 1 (Drinfeld-Vladut bound)

Elkies: X0(`n) recursive.



Drinfeld Modular Varieties

C∞

C K

R R

Q Fq(T )

Z Fq[T ]

Z-lattices inside C → rank 1 or 2
Fq[T ]-lattices inside C∞ → arbitrary high rank possible



Drinfeld Modular Curves

A = F`[T ], P a prime of A,

FP = A/ < P >= F`d

where d = deg P.

F(2)
P : The unique quadratic extension of FP .

For N ∈ F`[T ] we have
X0(N)

an algebraic curve defined over F`(T ), Drinfeld modular curve,
parametrizing rank 2 Drinfeld modules together with an N-isogeny.
X0(N) has good reduction at all primes P - N.

X0(N)/FP



Many points on Drinfeld modular curves

X0(N)/FP has many rational points over F(2)
P = F`2d , where

d = deg P. Asymptotically:

Theorem (Gekeler)

P ∈ F`[T ] prime of degree d
(Nk)k≥0: sequence of polynomials in F`[T ] with

• P - Nk

• deg Nk →∞
Then the sequence of curves

X0(Nk)/FP

attains the Drinfeld–Vladut bound over F(2)
P = F`2d .



Elkies: X0(Qn) recursive.
Norm trace tower is related to (degree `− 1 cover of)

X0(T n)/FT−1



Many points over non-quadratic fields

Many points come from the supersingular points

−→ defined over F(2)
P .

In general:

Theorem (Gekeler)

Any supersingular Drinfeld module φ of rank r and characteristic P
is isomorphic to one defined over L, where L is an extension of FP

of degree r .

Idea: Look at space parametrizing rank r Drinfeld modules
Problem: The corresponding space is higher dimensional
((r − 1)-dimensional), not a curve!
Idea’: Look at curves on those spaces, passing through the many
F`r -rational points



(B.–Beelen–Garcia–Stichtenoth)

Trk(V )− 1

(Trk+1(V )− 1)`k
=

(Trk(U)− 1)`
k+1

(Trk+1(U)− 1)

F/Fq, q = `n, n = 2k + 1

A(q) ≥ λ(F) ≥ 2
1

`k−1
+ 1

`k+1−1

≥ 2(`k+1 − 1)

`+ 1 + ε

with

ε =
`− 1

`k − 1
.



joint work (in progress) with Beelen, Garcia, Stichtenoth
Let φ be a rank n Drinfeld Module of characteristic T − 1.

φT = τn + g1τ
n−1 + g2τ

n−2 + · · ·+ gn−1τ + 1

Let λ : φ→ ψ be an isogeny of the form

τ − u

whose kernel is annihilated by T .
∃µ = τn−1 + a2τ

n−2 + · · ·+ an−1τ + an, s.t.

µ · λ = φT



Then

Nn(u) + g1 · Nn−1(u) + g2 · Nn−2(u) + · · ·+ gn−1 · N1(u) + 1 = 0

Notation: Nk(x) = x1+`+···+`k−2+`k−1



Equations for the isogenous Drinfeld module

λ : φ→ ψ

ψT = τn + h1 · τn−1 + · · ·+ hn−1 · τ + 1

Isogeny: λ · φ = ψ · λ

hn−1u` = gn−1u

hn−2u`
2 − hn−1 = gn−2u − g `n−1

. . . . . .

h1u`
n−1 − h2 = g1u − g `2

u`
n − h1 = u − g `1



1 + Nn(u)
[
1 +

h1

N1(u)
+

h`2
N2(u)

+ · · ·+
h`

n−2

n−1

Nn−1(u)

]
= 0.

g1 = g2 = · · · = gn−1 = 0→ supersingular (will split).

Find curve passing through this point and invariant under gi → hi .

Consider g2 = · · · = gn−1 = 0⇒ h2 = · · · = hn−1 = 0



−g1 =
Nn(1/u) + 1

(1/u)`n−1 ,

−h1 =
Nn(1/u) + 1

1/u

Letting v0 = 1/u

Fq(v0)

??
??

?

��
��

�

Fq(h1)Fq(g1)



Nn(V ) + 1

V `n−1 =
Nn(U) + 1

U
.


