How many rational points can a high genus curve over a finite field have?

Alp Bassa

Sabancı University

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Affine plane curves

k a perfect field (e.g. $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{F}_{q}...$) \overline{k} a fixed algebraic closure of k Let $f(X, Y) \in k[X, Y]$. The affine plane curve defined by f(X, Y):

$$\mathcal{C}_f := \{(x,y) \in \overline{k} \times \overline{k} | f(x,y) = 0\}$$

 C_f is defined over k.

The set of k-rational points of C_f :

$$\mathcal{C}_f(k) := \{(x, y) \in k \times k | f(x, y) = 0\}$$

An example

Curves in *n*-space

Can generalize this to curves in higher dimensional space: $C \subset \overline{k}^n$ $f_1, f_2, \ldots f_{n-1} \in k[X_1, X_2, \ldots, X_n]$. Affine curve:

$$\mathcal{C} := \{(a_1, \dots, a_n) \in \bar{k}^n | f_i(a_1, \dots, a_n) = 0 \text{ for } i = 1, 2, \dots, n-1\}$$

The set of k-rational points of C:

 $\mathcal{C}(k) := \{(a_1, \dots, a_n) \in k^n | f_i(a_1, \dots, a_n) = 0 \text{ for } i = 1, 2, \dots n-1\}$

From now on we assume that $\ensuremath{\mathcal{C}}$ is a

- absolutely irreducible
- smooth

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

• projective curve defined over *k*.

The genus

Invariant

$g(\mathcal{C})$: a nonnegative integer

 \mathcal{C} is a line/conic \longrightarrow genus 0

 ${\mathcal C}$ is an elliptic curve \longrightarrow genus 1

Curves over Finite Fields

From now on $k = \mathbb{F}_q$

 $\mathcal{C}/\mathbb{F}_q \to \mathcal{C} \subset \overline{\mathbb{F}_q}^n$ for some $n \in \mathbb{N}$

 $\mathcal{C}(\mathbb{F}_q) \subset \mathbb{F}_q^n$

So

 $#C(\mathbb{F}_q)$ is finite $#C(\mathbb{F}_q) = ?$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Hasse–Weil bound

 $\mathcal{C} \longrightarrow \zeta_{\mathcal{C}}$ Zeta function of \mathcal{C}

Theorem (Hasse–Weil)

The Riemann hypothesis holds for $\zeta_{\mathcal{C}}$.

Corollary (Hasse–Weil bound) Let C/\mathbb{F}_q be a curve of genus g(C). Then

 $\#\mathcal{C}(\mathbb{F}_q) \leq q+1+2\sqrt{q} \cdot g(\mathcal{C}).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How good is the Hasse-Weil bound?

Various improvements, but:

If the genus $g(\mathcal{C})$ is small (with respect to $q) \longrightarrow$ Hasse–Weil bound is good.

It can be attained, maximal curves, for example over \mathbb{F}_{q^2}

$$y^q + y = x^{q+1}$$

Ihara, Manin: The Hasse–Weil bound can be improved if g(C) is large (with respect to q).

Ihara's constant

Ihara:

$$A(q) = \limsup_{g(\mathcal{C}) o \infty} rac{\#\mathcal{C}(\mathbb{F}_q)}{g(\mathcal{C})}$$

 ${\mathcal C}$ runs over all absolutely irreducible, smooth, projective curves over ${\mathbb F}_q.$

Hasse-Weil bound $\implies A(q) \le 2\sqrt{q}$ Ihara $\implies A(q) \le \sqrt{2q}$ Drinfeld-Vladut $\implies A(q) \le \sqrt{q} - 1$

Lower bounds for A(q)

Serre (using class field towers):

A(q) > 0

Ihara (modular curves): If $q = \ell^2$ then

$$A(q) \geq \sqrt{q} - 1 = \ell - 1$$

In fact $A(\ell^2) = \ell - 1$.

Zink (Shimura surfaces): If $q = p^3$, p a prime number, then

$$A(p^3)\geq \frac{2(p^2-1)}{p+2}$$

(generalized by Bezerra–Garcia–Stichtenoth to all cubic finite fields)

How to obtain lower bounds for A(q)?

Find sequences $\mathcal{C}_i/\mathbb{F}_q$ such that $g(\mathcal{C}_i) \to \infty$ and

$$\lim_{i\to\infty}\frac{\#\mathcal{C}_i(F_q)}{g(\mathcal{C}_i)} \text{ is large.}$$

Many ways to construct good sequences:

- Modular curves (Elliptic, Shimura, Drinfeld) (over F_{q²})
- Class field towers (over prime fields)
- Explicit equations (recursively defined)

Recursively defined towers

$$f_1, f_2, \dots f_{n-1} \in \mathbb{F}_q[X_1, X_2, \dots, X_n]$$
$$\mathcal{C} := \{ (a_1, \dots, a_n) \in \bar{\mathbb{F}_q}^n | f_i(a_1, \dots, a_n) = 0 \text{ for } i = 1, 2, \dots n-1 \}$$

Recursively defined tower: Fix $F(U, V) \in \mathbb{F}_q[U, V]$. Define

$$f_1 = F(X_1, X_2)$$

 $f_2 = F(X_2, X_3)$

$$f_{n-1}=F(X_{n-1},X_n)$$

. . .

 $\mathcal{C}_n := \{(a_1, \dots, a_n) \in \overline{\mathbb{F}_q}^n | f_1 = f_2 = \dots = f_{n-1} = 0\}$ $\mathcal{F} = (\mathcal{C}_n)_{n \ge 1} \text{ tower recursively defined by } F.$

Recursively defined by $f(U, V) \in \mathbb{F}_q[U, V]$

$$C_{4} = \{(a_{1}, a_{2}, a_{3}, a_{4}) | F(a_{1}, a_{2}) = F(a_{2}, a_{3}) = F(a_{3}, a_{4}) = 0\} \subseteq \bar{\mathbb{F}_{q}}^{4}$$

$$\downarrow$$

$$C_{3} = \{(a_{1}, a_{2}, a_{3}) | F(a_{1}, a_{2}) = 0, F(a_{2}, a_{3}) = 0\} \subseteq \bar{\mathbb{F}_{q}}^{3}$$

$$\downarrow$$

$$C_{2} = \{(a_{1}, a_{2}) | F(a_{1}, a_{2}) = 0\} \subseteq \bar{\mathbb{F}_{q}}^{2}$$

Limit of a tower

Limit of the tower $\mathcal{F} = (\mathcal{C}_n)_{n \geq 1}$ over \mathbb{F}_q

$$\lambda(\mathcal{F}) = \lim_{n o \infty} rac{\#\mathcal{C}_n(\mathbb{F}_q)}{g(\mathcal{C}_n)} \leq A(q) \leq \sqrt{q} - 1$$
exists

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\lambda(\mathcal{F}) = 0 \longrightarrow$ asymptotically bad $\lambda(\mathcal{F}) > 0 \longrightarrow$ asymptotically good

Example

Garcia–Stichtenoth, 1996, Norm-Trace tower \mathcal{F}_1 $q=\ell^2$

$$V^{\ell} + V = \frac{U^{\ell+1}}{U^{\ell} + U}$$

$$\lambda(\mathcal{F}_1) = \sqrt{q} - 1$$

Attains the Drinfeld–Vladut bound. Genus computation is difficult (wild ramification) Why many rational points?

$$q = \ell^2 \qquad V^{\ell} + V = \frac{U^{\ell+1}}{U^{\ell} + U}$$
$$X_n^{\ell} + X_n = \frac{X_{n-1}^{\ell+1}}{X_{n-1}^{\ell} + X_{n-1}}, \dots, X_3^{\ell} + X_3 = \frac{X_2^{\ell+1}}{X_2^{\ell} + X_2}, X_2^{\ell} + X_2 = \frac{X_1^{\ell+1}}{X_1^{\ell} + X_1}$$
$$X_1 = a_1 \in \mathbb{F}_q \text{ s.t. } Tr_{\mathbb{F}_q/\mathbb{F}_\ell}(a_1) \neq 0$$
$$(\ell^2 - \ell \text{ choices})$$
$$X_2 = a_2 \text{ with } a_2^{\ell} + a_2 = \frac{a_1^{\ell+1}}{a_1^{\ell} + a_1} \in \mathbb{F}_\ell \setminus \{0\}$$

 ℓ choices with $a_2 \in \mathbb{F}_q, \, \textit{Tr}_{\mathbb{F}_q/\mathbb{F}_\ell}(a_2)
eq 0)$

$$X_3 = a_3 \text{ with } a_3^{\ell} + a_3 = \frac{a_2^{\ell+1}}{a_2^{\ell} + a_2} \in \mathbb{F}_{\ell} \setminus \{0\}$$

$$\ell \text{ choices with } a_3 \in \mathbb{F}_q, Tr_{\mathbb{F}_q/\mathbb{F}_{\ell}}(a_3) \neq 0\}$$

$$\cdots \text{ so } \#\mathcal{C}_n(\mathbb{F}_q) \ge (\ell^2 - \ell)\ell^{n-1}$$

Towers over cubic finite fields

• van der Geer–van der Vlugt, $q=2^3=8, \mathcal{F}_2/\mathbb{F}_q$

$$V^2 + V = U + 1 + 1/U$$

Attains Zink's bound for p = 2.

• Bezerra–Garcia–Stichtenoth, $q = \ell^3, \mathcal{F}_3/\mathbb{F}_q$

$$rac{1-V}{V^\ell} = rac{U^\ell+U+1}{U} \quad \lambda(\mathcal{F}_3) \geq rac{2(\ell^2-1)}{\ell+2}.$$

Generalizes Zink's bound.

• B.–Garcia–Stichtenoth, $q = \ell^3, \mathcal{F}_4/\mathbb{F}_q$

$$(V^{\ell}-V)^{\ell-1}+1=rac{-U^{\ell(\ell-1)}}{(U^{\ell-1}-1)^{\ell-1}}\quad \lambda(\mathcal{F}_4)\geq rac{2(\ell^2-1)}{\ell+2}.$$

A new family of towers over all non-prime fields

B.-Beelen-Garcia-Stichtenoth \mathcal{F}_5 over \mathbb{F}_{ℓ^n} , $n \geq 2$:

Notation: $Tr_n(t) = t + t^{\ell} + \dots + t^{\ell^{n-1}}, \ N_n(t) = t^{1+\ell+\ell^2+\dots+\ell^{n-1}}$ $\frac{N_n(V)+1}{V^{\ell^{n-1}}} = \frac{N_n(U)+1}{U}.$ Splitting: $N_n(\alpha) = -1$

$$\lambda(\mathcal{F}_5) \geq \frac{2}{\frac{1}{\ell-1} + \frac{1}{\ell^{n-1}-1}}$$

• $n = 2: \ell - 1 \rightarrow \text{Drinfeld-Vladut bound}$ • $n = 3: \frac{2(\ell^2 - 1)}{\ell + 2} \rightarrow \text{Zink's bound}$

$$\begin{aligned} \mathcal{F}_6/\mathbb{F}_q, \ q &= \ell^n, \ n = 2k+1 \ge 3 \\ \\ \frac{Tr_k(V) - 1}{(Tr_{k+1}(V) - 1)^{\ell^k}} &= \frac{(Tr_k(U) - 1)^{\ell^{k+1}}}{(Tr_{k+1}(U) - 1)} \\ \\ \frac{V^{\ell^n} - V}{V^{\ell^k}} &= -\frac{(1/U)^{\ell^n} - (1/U)}{U^{\ell^{k+1}}} \end{aligned}$$

$$\mathcal{F}_6/\mathbb{F}_q, \ q = \ell^n, \ n = 2k+1$$

 $\lambda(\mathcal{F}_6) \ge \frac{2}{\frac{1}{\ell^k - 1} + \frac{1}{\ell^{k+1} - 1}} \ge \frac{2(\ell^{k+1} - 1)}{\ell + 1 + \epsilon}$

with

$$\epsilon = \frac{\ell - 1}{\ell^k - 1}.$$

Note:

$$\ell^{k+\frac{1}{2}} - 1 \ge A(\ell^{2k+1}) \ge \frac{2}{rac{1}{\ell^{k}-1} + rac{1}{\ell^{k+1}-1}}.$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

$$2^{15}$$
 $(2^3)^5$ $(2^5)^3$
 $q = 2^k$, k large,
 $\frac{\lambda(\mathcal{F}_5)}{\sqrt{q} - 1} \approx 94\%$

Elliptic Curves

$$E/k$$
, $char(k) \neq 2,3$
 $E: Y^2 = X^3 + A \cdot X + B$,
where $4A^3 + 27B^2 \neq 0$.

Elliptic Curves over ${\mathbb C}$

$$k = \mathbb{C}$$

$$\Lambda = \omega_1 \mathbb{Z} \oplus \omega_2 \mathbb{Z}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 \mathbb{C}/Λ topologically a torus inherits a complex structure from \mathbb{C} . Complex manifold $\rightarrow E(\mathbb{C})$

Points in *E* inherit a group structure from \mathbb{C} :

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Points in *E* inherit a group structure from \mathbb{C} :

Points in *E* inherit a group structure from \mathbb{C} :

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Points in *E* inherit a group structure from \mathbb{C} :

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Points in *E* inherit a group structure from \mathbb{C} :

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Isogenies

A morphism φ : $E_1 \rightarrow E_2$, which is a group homomorphism is called an *isogeny*.

Example: E elliptic curve, $N \in \mathbb{N}$

$$\begin{bmatrix} N \end{bmatrix} : E \to E \\ P \mapsto \underbrace{P+P+\ldots P}_{N \text{ times}}$$

 $\# ker(\varphi)$ is finite.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\# ker(\varphi) = N \rightarrow \varphi$ is an *N*-isogeny $\rightarrow ker(\varphi) \subset ker([N])$.

Torsion

 $ker([N]) = \{P \in E | N \cdot P = 0\} =: E[N] \rightarrow N \text{-torsion points}$ if $char(k) \nmid N \quad E[N] \cong \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ if $char(k) = p \quad E[p] \cong \text{ or }$ $\mathbb{Z}/p\mathbb{Z} \rightarrow \text{ ordinary}$

Isomorphism classes of elliptic curves

 \mathbb{C}/Λ_1 and \mathbb{C}/Λ_2 are isomorphic

 Λ_1 and Λ_2 are homothetic, i.e. $\Lambda_1 = \alpha \Lambda_2, \alpha \in \mathbb{C}^{\times}$.

Let

$$\mathbb{H} = \{\tau \in \mathbb{C} | \mathit{Im}(\tau) > 0\}.$$

Every lattice is homothetic to a lattice of the form

$$\Lambda_{\tau} = \mathbb{Z} + \mathbb{Z}\tau$$

with $\tau \in \mathbb{H}$. When are Λ_{τ} and $\Lambda_{\tau'}$ the same lattice? When are Λ_{τ} and $\Lambda_{\tau'}$ the same lattice?

 $SL_2(\mathbb{Z})$ acts on \mathbb{H} by fractional linear transformations:

$$\left(egin{array}{c} {a} & {b} \\ {c} & {d} \end{array}
ight) \cdot au = rac{{a au + b}}{{c au + d}}.$$

(日) (日) (日) (日) (日) (日) (日) (日)

 $\Lambda_{ au}$ and $\Lambda_{ au'}$ are the same lattice

 τ and τ' are in the same orbit under the action of $SL_2(\mathbb{Z})$.

Isomorphism classes of elliptic curves

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The *j*-Function

There exists a holomorphic function

 $j: \mathbb{H} \to \mathbb{C},$

which is invariant under $SL_2(\mathbb{Z})$.

 $j: \mathbb{H}/\mathrm{SL}_2(\mathbb{Z}) \to \mathbb{C}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is a bijection!

Fact: *E* supersingular $\longrightarrow j(E) \in \mathbb{F}_{p^2}$, where *p* is the characteristic.

 $\therefore j$ -line parametrizes isomorphism classes of Elliptic curves \rightarrow has designated \mathbb{F}_{p^2} -rational points.

Enhanced Elliptic Curves

Elliptic curves with some additional structure

(E, C)

- E: Elliptic Curve
- C: cyclic subgroup of order N / N-isogeny

 $(E, C) \sim (E', C')$ isomorphism takes $C \rightarrow C'$.

 $X_0(N)$ modular curve parametrizing (E, C).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $(N_i)_{i\geq 0}$ with $N_i \to \infty$, $p \nmid N_i$.

$$C_{N_i} = (X_0(N_i) \pmod{p})$$

- $\#C_{N_i}(\mathbb{F}_{p^2})$ is large (supersingular points)
- $g(C_{N_i})$ can be estimated

$$rac{\#\mathcal{C}_{\mathcal{N}_i}(\mathbb{F}_{p^2})}{g(\mathcal{C}_{\mathcal{N}_i})} o \sqrt{p^2} - 1 = p - 1 \quad (\mathsf{Drinfeld-Vladut bound})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Elkies: $X_0(\ell^n)$ recursive.

Drinfeld Modular Varieties

Drinfeld Modular Curves

 $A = \mathbb{F}_{\ell}[T]$, P a prime of A,

$$\mathbb{F}_P = A / < P >= \mathbb{F}_{\ell^d}$$

where $d = \deg P$. $\mathbb{F}_{P}^{(2)}$: The unique quadratic extension of \mathbb{F}_{P} . For $N \in \mathbb{F}_{\ell}[T]$ we have $X_{0}(N)$

an algebraic curve defined over $\mathbb{F}_{\ell}(T)$, Drinfeld modular curve, parametrizing rank 2 Drinfeld modules together with an *N*-isogeny. $X_0(N)$ has good reduction at all primes $P \nmid N$.

$$X_0(N)/\mathbb{F}_P$$

Many points on Drinfeld modular curves

 $X_0(N)/\mathbb{F}_P$ has many rational points over $\mathbb{F}_P^{(2)} = \mathbb{F}_{\ell^{2d}}$, where $d = \deg P$. Asymptotically:

Theorem (Gekeler)

 $P \in \mathbb{F}_{\ell}[T]$ prime of degree d $(N_k)_{k \geq 0}$: sequence of polynomials in $\mathbb{F}_{\ell}[T]$ with

- $P \nmid N_k$
- deg $N_k \to \infty$

Then the sequence of curves

 $X_0(N_k)/\mathbb{F}_P$

attains the Drinfeld–Vladut bound over $\mathbb{F}_{P}^{(2)} = \mathbb{F}_{\ell^{2d}}$.

Elkies: $X_0(Q^n)$ recursive. Norm trace tower is related to (degree $\ell - 1$ cover of)

 $X_0(T^n)/\mathbb{F}_{T-1}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Many points over non-quadratic fields

Many points come from the supersingular points \longrightarrow defined over $\mathbb{F}_{P}^{(2)}$.

In general:

Theorem (Gekeler)

Any supersingular Drinfeld module ϕ of rank r and characteristic P is isomorphic to one defined over L, where L is an extension of F_P of degree r.

Idea: Look at space parametrizing rank r Drinfeld modules Problem: The corresponding space is higher dimensional ((r - 1)-dimensional), not a curve! Idea': Look at curves on those spaces, passing through the many \mathbb{F}_{ℓ^r} -rational points (B.-Beelen-Garcia-Stichtenoth)

$$\frac{Tr_k(V) - 1}{(Tr_{k+1}(V) - 1)^{\ell^k}} = \frac{(Tr_k(U) - 1)^{\ell^{k+1}}}{(Tr_{k+1}(U) - 1)}$$
$$\mathcal{F}/\mathbb{F}_q, \ q = \ell^n, \ n = 2k + 1$$

$$egin{aligned} \mathcal{A}(q) \geq \lambda(\mathcal{F}) \geq rac{2}{rac{1}{\ell^k-1}+rac{1}{\ell^{k+1}-1}} \geq rac{2(\ell^{k+1}-1)}{\ell+1+\epsilon} \end{aligned}$$

with

$$\epsilon = \frac{\ell - 1}{\ell^k - 1}.$$

joint work (in progress) with Beelen, Garcia, Stichtenoth Let ϕ be a rank *n* Drinfeld Module of characteristic T - 1.

$$\phi_T = \tau^n + g_1 \tau^{n-1} + g_2 \tau^{n-2} + \dots + g_{n-1} \tau + 1$$

Let $\lambda:\phi\to\psi$ be an isogeny of the form

 $\tau - u$

whose kernel is annihilated by *T*. $\exists \mu = \tau^{n-1} + a_2 \tau^{n-2} + \dots + a_{n-1} \tau + a_n, \text{ s.t.}$ $\mu \cdot \lambda = \phi \tau$ Then

$$N_n(u) + g_1 \cdot N_{n-1}(u) + g_2 \cdot N_{n-2}(u) + \cdots + g_{n-1} \cdot N_1(u) + 1 = 0$$

Notation:
$$N_k(x) = x^{1+\ell+\dots+\ell^{k-2}+\ell^{k-1}}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Equations for the isogenous Drinfeld module

$$\lambda:\phi\to\psi$$

$$\psi_{\mathcal{T}} = \tau^n + h_1 \cdot \tau^{n-1} + \dots + h_{n-1} \cdot \tau + 1$$

Isogeny: $\lambda \cdot \phi = \psi \cdot \lambda$

$$h_{n-1}u^{\ell} = g_{n-1}u$$

$$h_{n-2}u^{\ell^{2}} - h_{n-1} = g_{n-2}u - g_{n-1}^{\ell}$$

$$\dots$$

$$h_{1}u^{\ell^{n-1}} - h_{2} = g_{1}u - g_{2}^{\ell}$$

$$u^{\ell^{n}} - h_{1} = u - g_{1}^{\ell}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$1 + N_n(u) \Big[1 + \frac{h_1}{N_1(u)} + \frac{h_2^{\ell}}{N_2(u)} + \dots + \frac{h_{n-1}^{\ell^{n-2}}}{N_{n-1}(u)} \Big] = 0.$$

$$g_1 = g_2 = \dots = g_{n-1} = 0 \rightarrow \text{supersingular (will split)}.$$

Find curve passing through this point and invariant under $g_i \rightarrow h_i$.

Consider
$$g_2 = \cdots = g_{n-1} = 0 \Rightarrow h_2 = \cdots = h_{n-1} = 0$$

$$-g_1 = rac{N_n(1/u)+1}{(1/u)^{\ell^{n-1}}}, \ -h_1 = rac{N_n(1/u)+1}{1/u}$$

Letting $v_0 = 1/u$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\frac{N_n(V)+1}{V^{\ell^{n-1}}}=\frac{N_n(U)+1}{U}.$$